
SAT Solving with GPU Accelerated Inprocessing

Muhammad Osama (�)1 ∗ , Anton Wijs1 † , and Armin Biere2 ‡

1 Eindhoven University of Technology, Eindhoven, The Netherlands
2 Johannes Kepler University, Linz, Austria

o.m.m.muhammad@tue.nl a.j.wijs@tue.nl biere@jku.at

Abstract. Since 2013, the leading SAT solvers in the SAT competition all use in-
processing, which unlike preprocessing, interleaves search with simplifications.
However, applying inprocessing frequently can still be a bottle neck, i.e., for hard
or large formulas. In this work, we introduce the first attempt to parallelize in-
processing on GPU architectures. As memory is a scarce resource in GPUs, we
present new space-efficient data structures and devise a data-parallel garbage col-
lector. It runs in parallel on the GPU to reduce memory consumption and im-
proves memory access locality. Our new parallel variable elimination algorithm
is twice as fast as previous work. In experiments our new solver PARAFROST
solves many benchmarks faster on the GPU than its sequential counterparts.
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1 Introduction

During the past decade, SAT solving has been used extensively in many applications,
such as combinational equivalence checking [27], automatic test pattern generation [33,
40], automatic theorem proving [14], and symbolic model checking [7,13]. Simplifying
SAT problems prior to solving them has proven its effectiveness in modern conflict-
driven clause learning (CDCL) SAT solvers [5, 6, 17], particularly when applied on
real-world applications relevant to software and hardware verification [16, 20, 22, 24].

Since 2013, simplification techniques [8, 16, 19, 21, 41] are also used periodically
during SAT solving, which is known as inprocessing [3–6, 23]. Applying inprocessing
iteratively to large problems can be a performance bottleneck in SAT solving procedure,
or even increase the size of the formula, negatively impacting the solving time.

Graphics processors (GPUs) have become attractive for general-purpose computing
with the availability of the Compute Unified Device Architecture (CUDA) program-
ming model. CUDA is widely used to accelerate applications that are computation-
ally intensive w.r.t. data processing. For instance, we have applied GPUs to accelerate
explicit-state model checking [11, 43], bisimilarity checking [42], the reconstruction of
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genetic networks [12], wind turbine emulation [30], metaheuristic SAT solving [44],
and SAT-based test generation [33]. Recently, we introduced SIGmA [34, 35] as the
first SAT simplification preprocessor to exploit GPUs.

Contributions. Embedding GPU inprocessing in a SAT solver is highly non-trivial and
has never been attempted before, according to the best of our knowledge. Efficient data
structures are needed that allow parallel processing, and that support efficient adding
and removing of clauses. For this purpose, we contribute the following:
1. We propose a new dynamically expanded data structure for clauses supporting both

32-bit [17] and 64-bit references with a minimum of 20 bytes per clause.
2. A new parallel garbage collector is presented, tailored for GPU inprocessing.
3. Our new parallel variable elimination algorithm is twice as fast as [34] and together

with other improvements yields much higher performance and robustness.
4. Our parallel inprocessing is deterministic (i.e., results are reproducible).

In addition, we propose a new preprocessing technique targeted towards data-parallel
execution, called Eager Redundancy Elimination (ERE), which is applicable on both
original and learnt clauses. All contributions have been implemented in our solver
PARAFROST and benchmarked on a larger set than considered previously in [34],
using 493 application problems. We discuss the potential performance gain of the GPU
inprocessing and its impact on SAT solving, compared to a sequential version of our
solver as well as CADICAL [6], a state-of-the-art solver developed by the last author.

2 Preliminaries

All SAT formulas in this paper are in conjunctive normal form (CNF). A CNF formula
is a conjunction of m clauses

∧m
i=1 Ci, where each clause Ci is a disjunction of k literals∨k

j=1 �j , and a literal is a Boolean variable x or its complement ¬x, which we refer to
as x̄. We represent clauses by sets of literals, i.e., {�1, . . . , �k} represents the formula
�1 ∨ . . . ∨ �k, and a SAT formula by a set of clauses, i.e., {C1, . . . , Cm} represents the
formula C1 ∧ . . . ∧ Cm. With S�, we refer to the set of clauses containing literal �, i.e.,
S� = {C ∈ S | � ∈ C}. If for a variable x, we have either Sx = ∅ or Sx̄ = ∅ (but
not both), then the literal x̄ or x, respectively, is called a pure literal. A clause C is a
tautology iff there exists a variable x with {x, x̄} ⊆ C, and C is unit iff |C| = 1.

In this paper we integrate GPU-accelerated inprocessing and CDCL [28, 32, 36].
One important aspect of CDCL is to learn from previous assignments to prune the
search space and make better decisions in the future. This learning process involves the
periodic adding of new learnt clauses to the input formula while CDCL is running.

In this paper, clauses are either considered to be LEARNT or ORIGINAL (redundant
and irredundant in [23] and in the SAT solver CADICAL [6]). A LEARNT clause is
added to the formula by the CDCL clause learning process, and an ORIGINAL clause is
part of the formula from the very start. Furthermore, each assignment is associated with
a decision level that acts as a time stamp, to monitor the order in which assignments are
performed. The first assignment is made at decision level one.

Variable Elimination (VE). Variables can be removed from clauses by either applying
the resolution rule or substitution (also known as gate equivalence reasoning) [16, 23].
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Concerning the former, we represent application of the resolution rule w.r.t. some vari-
able x using a resolving operator ⊗x on clauses C1 and C2. The result of applying
the rule is called the resolvent [41]. It is defined as C1 ⊗x C2 = C1 ∪ C2 \ {x, x̄},
and can be applied iff x ∈ C1, x̄ ∈ C2. The ⊗x operator can be extended to re-
solve sets of clauses w.r.t. variable x. For a formula S , let L ⊂ S be the set of learnt
clauses when we apply the resolution rule. The set of new resolvents is then defined as
Rx(S) = {C1 ⊗x C2 | C1 ∈ Sx \ L ∧ C2 ∈ Sx̄ \ L ∧ ¬∃y.{y, ȳ} ⊆ C1 ⊗x C2}.
Notice that the learnt clauses can be ignored [23] (i.e., in practice, it is not effective to
apply resolution on learnt clauses). The last condition avoids that a resolvent should not
be a tautology. After eliminating variable x in S, the resulting formula S ′ is defined as
S ′ = Rx(S) ∪ (S \ (Sx ∪ Sx̄)), i.e., the new resolvents are combined with the original
and learnt clauses that do not reference x.

Substitution detects patterns encoding logical gates, and substitutes the involved
variables with their gate-equivalent counterparts. Previously [34], we only considered
AND gates. In the current work, we add support for Inverter, If-Then-Else and XOR gate
extractions. For all logical gates, substitution can be performed by resolving non-gate
clauses (i.e., clauses not contributing to the gate itself) with gate clauses [23].

For instance, the first three clauses in the formula {{x, ā, b̄}, {x̄, a}, {x̄, b}, {x, c}}
together encode a logical AND-gate, hence the final clause can be resolved with the sec-
ond and the third clauses, producing the simplified formula {{a, c}, {b, c}}. Combining
gate equivalence reasoning with the resolution rule tends to result in smaller formulas
compared to only applying the resolution rule [16, 23, 37].

Subsumption elimination. SUB performs self-subsuming resolution followed by sub-
sumption elimination [16]. The former can be applied on clauses C1, C2 iff for some
variable x, we have C1 = C ′

1 ∪ {x}, C2 = C ′
2 ∪ {x̄}, and C ′

2 ⊆ C ′
1. In that case, x

can be removed from C1. The latter is applied on clauses C1, C2 with C2 ⊆ C1. In that
case, C1 is redundant and can be removed. If C2 is a LEARNT clause, it must be consid-
ered as ORIGINAL in the future, to prevent deleting it during learnt clause reduction, a
procedure which attempts to reduce the number of learnt clauses [6, 23]. For instance,
consider the formula S = {{a, b, c}, {ā, b}, {b, c, d}}. The first clause is self-subsumed
by the second clause w.r.t. variable a and can be strengthened to {b, c} which in turn
subsumes the last clause {b, c, d}. The latter clause is then removed from S and the
simplified formula becomes {{b, c}, {ā, b}}.

Blocked clause elimination. BCE [25] can remove clauses for which variable elimi-
nation always results in tautologies. Consider the formula {{a, b, c}, {ā, b̄}, {ā, c̄}}. All
three literals a, b and c are blocking the first clause, since resolving a produces the tau-
tologies {{b, c, b̄}, {b, c, c̄}}, resolving b produces {ā, a, c}, and resolving c produces
{ā, a, b}. Hence the blocked clause {a, b, c} can be removed from S. Again, as for VE,
only original clauses are considered.

Eager Redundancy Elimination. ERE is a new elimination technique that we propose,
which repeats the following until a fixpoint has been reached: for a given formula S and
clauses C1 ∈ S, C2 ∈ S with x ∈ C1 and x̄ ∈ C2 for some variable x, if there exists a
clause C ∈ S for which C ≡ C1⊗xC2, then let S := S \{C}. In this work, we restrict
removing C to the condition (C1 is LEARNT ∨ C2 is LEARNT) =⇒ C is LEARNT.



136 M. Osama et al.

If the condition holds, C is called a redundancy and can be removed without alter-
ing the original satisfiability. For example, consider S = {{a, c̄}, {c, b}, {d̄, c̄}, {b, a},
{a, d}}. Resolving the first two clauses gives the resolvent {a, b} which is equivalent to
the fourth clause in S. Also, resolving the third clause with the last clause yields {a, c̄}
which is equivalent to the first clause in S. ERE can remove either {a, c̄} or {a, b} but
not both. Note that this method is entirely different from Asymmetric Tautology Elimi-
nation in [21]. The latter requires adding so-called hidden literals to all clauses to check
which is a hidden tautology. ERE can operate on learnt clauses and does not require
literals addition, making it more effective and adequate to data parallelism.

3 GPU Memory and Data Structures

GPU Architecture. Since 2007, NVIDIA has been developing a parallel computing
platform called CUDA [31] that allows developers to use GPU resources for general
purpose processing. A GPU contains multiple streaming multiprocessors (SMs), each
SM consisting of an array of streaming processors (SPs). Every SM can execute multi-
ple threads grouped together in 32-thread scheduling units called warps.

A GPU computation can be launched in a program by the host (CPU side of a
program) by calling a GPU function called a kernel, which is executed by the device
(GPU side of a program). When a kernel is called, it is specified how many threads need
to execute it. These threads are partitioned into thread blocks of up to 1,024 threads
(or 32 warps). Each block is assigned to an SM. All threads together form a grid. A
hardware warp scheduler evenly distributes the launched blocks to the available SMs.
Concerning the memory hierarchy, a GPU has multiple types of memory:

– Global memory with high bandwidth but also high latency is accessible by both
GPU threads and CPU threads and thus acts as interface between CPU and GPU.

– Constant memory is read-only for all GPU threads. It has a lower latency than
global memory, and can be used to store any pre-defined constants.

– Shared memory is on-chip memory shared by the threads in a block. Each SM has
its own shared memory. It is much smaller in size than global and constant memory
(in the order of tens of kilobytes), but has a much lower latency. It can be used to
efficiently communicate data between threads in a block.

– Registers are used for on-chip storage of thread-local data. It is very small, but
provides the fastest memory.

To hide the latency of global memory, ensuring that the threads perform coalesced
accesses is one of the best practices. When the threads in a warp try to access a con-
secutive block of 32-bit words, their accesses are combined into a single (coalesced)
memory access. Uncoalesced memory accesses can, for instance, be caused by data
sparsity or misalignment. Furthermore, we use unified memory [31] to store the main
data structures that need to be regularly accessed by both the CPU and the GPU. Unified
memory creates a pool of managed memory that is shared between the CPU and GPU.
This pool is accessible to both sides using the same addresses. Regarding atomicity, a
GPU can run atomic instructions on both global and shared memory. Such an instruc-
tion performs a read-modify-write memory operation on one 32-bit or 64-bit word.



SAT Solving with GPU Accelerated Inprocessing 137

(a) container for a clause (b) container for a formula

Fig. 1: Data structures to store a SAT formula on a GPU

Data Structures. To efficiently implement inprocessing techniques for GPU archi-
tectures, we designed a new data structure from scratch to count the number of learnt
clauses, and store other relevant clause information, while keeping the memory con-
sumption as low as possible. Fig. 1 shows the proposed structures to store a clause
(denoted by SCLAUSE) and the SAT formula represented in CNF form (denoted by
CNF). The state member in Fig. 1a stores the current clause state. A clause is either
ORIGINAL, LEARNT (see Section 2) or DELETED. A GPU thread is not allowed to deal-
locate memory, however, a clause can be set to DELETED and freed later during garbage
collection. The members added and flag mark the clause for being resolvent (when
applying the resolution rule) and contributing to a gate (for substitution), respectively.
The lbd entry denotes the literal block distance (LBD), i.e., the number of decision
levels contributing to a conflict [2]. The used counter is used to keep track of how long
a LEARNT clause should be used before it gets deleted during database reduction [6,38].
Both used and lbd can be altered via clause strengthening [6] in SUB.

The signature (sig) of a clause is computed by hashing its literals to a 32-bit
value [16]. It is used to quickly compare clauses. The first literal in a clause is preallo-
cated and stored in the fixed array literals[1]. As has been done for the MINISAT
solver, we adapted the union structure to allow dynamically expanding the literals
array. This is accepted by NVIDIA’s compiler (NVCC). In our previous work [34], we
stored a pointer in each clause referencing the first literal, with the literals being in a
separate array. This consumes 8 bytes of the clause space. However, SCLAUSE only
needs 4 bytes for the literals array, resulting in the clause occupying 20 bytes in
total, including the extra information of the learnt clause, compared to 24 bytes in our
previous work.

As implemented in MINISAT, we use the clauses field in CNF (Fig. 1b) to store
the raw bytes of SCLAUSE instances with any extra literals in 4-byte buckets with 64-
bit reference support. The cap variable indicates the total memory capacity available
for the storage of clauses, and size reflects the current size of the list of clauses. We
always have size ≤ cap. The references field is used to directly access the clauses
by saving for each clause a reference to their first bucket. The mechanism for storing
references works in the same way as for clauses.

In addition, in a similar way, an occurrence table structure, denoted by OT, is created
which has a raw pointer to store the 64-bit clause references for each literal in the



138 M. Osama et al.

formula and a member structure OL. The creation of an OL instance is done in parallel
on the GPU for each literal using atomic instructions. For each clause C, a thread is
launched to insert the occurrences of C’s literals in the associated lists.

Initially, we pre-allocate unified memory for clauses and references which is in
size twice as large as the input formula, to guarantee enough space for the original and
learnt clauses. This amount is guaranteed to be enough as we enforce that the number
of resolvents never exceeds the number of ORIGINAL clauses. The OT memory is real-
located dynamically if needed after each variable elimination. Furthermore, we check
the amount of free available GPU memory before allocation is done. If no memory is
available, the inprocessing step is skipped and the solving continues on the CPU.

4 Parallel Garbage Collection

Modern sequential SAT solvers implement a garbage collection (GC) algorithm to re-
duce memory consumption and maintain data locality [2, 6, 17].

Since GPU global memory is a scarce resource and coalesced accesses are essential
to hide the latency of global memory (see Section 2), we decided to develop an efficient
and parallel GC algorithm for the GPU without adding overhead to the GPU computa-
tions.

Fig. 2: An example of parallel GC on a GPU

Fig. 2 demonstrates the proposed
approach for a simple SAT for-
mula S = {{a, b̄, c}, {a, b, c̄}, {d, b̄},
{d̄, b}}, in which {a, b, c̄} is to be
deleted. The figure shows, in addition,
how the references and clauses

lists in Fig. 1b are updated for the given
formula. The reference for each clause
C is calculated based on the sum of
the sizes (in buckets) of all clauses pre-
ceding C in the list of clauses. For
example, the first clause (C1) requires
α + (k − 1) = 5 + 2 = 7 buckets,
where the constant α is the number of
buckets needed to store SCLAUSE, in
our case 20 bytes / 4 bytes, and k is
the clause size in terms of the number
of literals. Given the number of buck-
ets needed for C1, the next clause (C2)
must be stored starting from position 7
in the list of clauses. This position plus the size of C2 determines in a similar way the
starting position for C3, and so on.

The first step towards compacting the CNF instance when C2 is to be deleted is
to compute a stencil and a list of corresponding clause sizes in terms of numbers of
buckets. In this step, each clause Ci is inspected by a different thread that writes a ‘0’
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Algorithm 1: Parallel Garbage Collection
Input : global Sin, stencil, buckets, constant α , shared shCls, shLits
Output: numCls, numLits

1 numCls, numLits ← COUNTSURVIVED(Sin);
2

numCls, numLits ← COUNTSURVIVED(Sin);
Sout ← ALLOCATE(numCls, numLits);

3 stencil, buckets← COMPUTESTENCIL(Sin);
4 buckets← EXCLUSIVESCAN(buckets);
5 references(Sout) ← COMPACTREFS(buckets, stencil);
6 COPYCLAUSES(Sout, Sin, buckets, stencil);

7 kernel COUNTSURVIVED (Sin):
8 register rCls ← 0, rLits ← 0;
9 for all i ∈ � 0, |Sin| � in parallel

10 register C ← Sin[i];
11 if state(C) �= DELETED then

12 rCls ← rCls + 1, rLits ← rLits + |C|;
13 if tid < |Sin| then

14 shCls[tid] = rCls, shLits[tid] = rLits;
15 else

16 shCls[tid] = 0, shLits[tid] = 0;
17 SYNCTHREADS( );
18 for b : blockDim/2, b/2 → 1 do // b will be blockDim/2, (blockDim/2)/2, ..., 1
19 if tid < b then

20 shCls[tid] ← shCls[tid] + shCls[tid + b], shLits[tid] ← shLits[tid] + shLits[tid + b];
21 SYNCTHREADS( );
22 if tid = 0 then

23 ATOMICADD(numCls, shCls[tid]), ATOMICADD(numLits, shLits[tid]);
24 kernel COMPUTESTENCIL (Sin):
25 for all i ∈ � 0, |Sin| � in parallel

26 register C ← Sin[i];
27 if state(C) = DELETED then

28 stencil[i] ← 0 , buckets[i] ← 0;
29 else

30 stencil[i] ← 1 , buckets[i] ← α + (|C| − 1);
31 kernel COPYCLAUSES (Sout, Sin, buckets, stencil):
32 for all i ∈ � 0, |Sin| � in parallel

33 if stencil[i] then

34 register & Cdest ← (SCLAUSE &)(clauses(Sout) + buckets[i]);
35 Cdest ← Sin[i];

stencil, buckets← COMPUTESTENCIL(Sin);
buckets← EXCLUSIVESCAN(buckets);
references(Sout) ← COMPACTREFS(buckets, stencil);
COPYCLAUSES(Sout, Sin, buckets, stencil);

kernel COUNTSURVIVED (Sin):
register rCls ← 0, rLits ← 0;
for all i ∈ � 0, |Sin| � in parallel

register C ← Sin[i];
if state(C) �=�� DELETED then

rCls ← rCls + 1, rLits ← rLits + |C|;
if tid < |Sin| then

shCls[tid] = rCls, shLits[tid] = rLits;
else

shCls[tid] = 0, shLits[tid] = 0;
SYNCTHREADS( );
for b : blockDim/2, b/2 → 1 do // b will be blockDim/2, (blockDim/2)/2, ..., 1

if tid < b then

shCls[tid] ← shCls[tid] + shCls[tid + b], shLits[tid] ← shLits[tid] + shLits[tid + b];
SYNCTHREADS( );

if tid = 0 then

ATOMICADD(numCls, shCls[tid]), ATOMICADD(numLits, shLits[tid]);
kernel COMPUTESTENCIL (Sin):

for all i ∈ � 0, |Sin| � in parallel

register C ← Sin[i];
if state(C) = DELETED then

stencil[i] ← 0 , buckets[i] ← 0;
else

stencil[i] ← 1 , buckets[i] ← α + (|C| − 1);
kernel COPYCLAUSES (Sout, Sin, buckets, stencil):

for all i ∈ � 0, |Sin| � in parallel

if stencil[i] then

register & CdestCC ← (SCLAUSE &)(clauses(Sout) + buckets[i]);
CdestCC ← Sin[i];

at position i of a list named stencil if the clause must be deleted, and a ‘1’ otherwise.
The size of stencil is equal to the number of clauses. In a list of the same size called
buckets, the thread writes at position i ‘0’ if the clause will be deleted, and otherwise
the size of the clause in terms of the number of buckets.

At step 2, a parallel exclusive-segmented scan operation is applied on the buckets
array to compute the new references. In this scan, the value stored at position i, masked
by the corresponding stencil, is the sum of the values stored at positions 0 up to, but
not including, i. An optimised GPU implementation of this operation is available via
the CUDA CUB library [29], which transforms a list of size n in log(n) iterations. In
the example, this results in C3 being assigned reference 7, thereby replacing C2.

At step 3, the stencil list is used to update references in parallel, which are
be kept together in consecutive positions. The standard DeviceSelect::Flagged

function of the CUB library can be used for this, which uses stream compaction [10].
Finally, the actual clauses are copied to their new locations in clauses.

Alg. 1 describes in detail the GPU implementation of the parallel GC. As input,
Alg. 1 requires a SAT formula Sin as an instance of CNF. The constant α is kept in
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GPU constant memory for fast access. The highlighted lines in grey are executed on
GPU. To begin GC, we count the number of clauses and literals in the Sin formula after
simplification has been applied (line 1). The counting is done via the parallel reduction
kernel COUNTSURVIVED, listed at lines 7-23. In kernels, we use two conventions. First
of all, with tid, we refer to the block-local ID of the executing thread. By using this ID,
we can achieve that different threads in the same block work on different data, as for
instance at lines 13-16. Second of all, we use so-called grid-stride loops to process data
elements in parallel. An example of this starts at line 9. The statement for all i ∈ �0, N�
in parallel expresses that all natural numbers in the range [0, N) must be considered
in the loop, and that this is done in parallel by having each executing thread start with
element tid, i.e., i = tid, and before starting each additional iteration through the loop,
the thread adds to i the total number of threads on the GPU. If the updated i is smaller
than N , the next iteration is performed with this updated i. Otherwise, the thread exits
the loop. A grid-stride loop ensures that when the range of numbers to consider is larger
than the number of threads, all numbers are still processed.

The values rCls and rLits at line 8 will hold the current number of clauses and
literals, respectively, counted by the executing thread. The register keyword indicates
that the variables are stored in the thread-local register memory. Within the loop at lines
9-12, the counters rCls, rLits are updated incrementally if the clause at position i in
clauses is not deleted. Once a thread has checked all its assigned clauses, it stores the
counter values in the (block-local) shared memory arrays (shCls, shLits) at lines 13-14.

A non-participating thread simply writes zeros (line 16). Next, all threads in the
block are synchronised by the SYNCTHREADS call. The loop at lines 18-21 performs the
actual parallel reduction to accumulate the number of non-deleted clauses and literals
in shared memory within thread blocks. In the for loop, b is initially set to the number
of threads in the block (blockDim), and in each iteration, this value is divided by 2 until
it is equal to 1 (note that blocks always consist of a power of two number of threads).

The total number of clauses and threads is in the end stored by thread 0, and this
thread adds those numbers using atomic instructions to the globally stored counters
numCls and numLits at line 23, resulting in the final output. In the procedure described
here, we prevent having each thread perform atomic instructions on the global memory,
by which we avoid a potential performance bottleneck. The computed numbers are used
to allocate enough memory for the output formula at line 2 on the CPU side.

The kernel COMPUTESTENCIL, called at line 3, is responsible for checking clause
states and computing the number of buckets for each clause. The COMPUTESTENCIL
kernel is given at lines 24-30. If a clause C is set to DELETED (line 27), the correspond-
ing entries in stencil and buckets are cleared at line 28, otherwise the stencil

entry is set to 1 and the buckets entry is updated with the number of clause buckets.
The EXCLUSIVESCAN routine at line 4 calculates the new references to store the

remaining clauses based on the collected buckets. For that, we use the exclusive scan
method offered by the CUB library. The COMPACTREFS routine called at line 5 groups
the valid references, i.e., those flagged by stencil, into consecutive values and stores
them in references(Sout), which refers to the references field of the output for-
mula Sout. Finally, copying clause contents (literals, state, etc.) is done in the COPY-
CLAUSES kernel, called at line 6. This kernel is described at lines 31-35. If a clause in



SAT Solving with GPU Accelerated Inprocessing 141

Sin is flagged by stencil via thread i, then a new SCLAUSE reference is created in
clauses(Sout), which refers to the clauses field in Sout, offset by buckets[i].

The GC mechanism described above resulted from experimenting with several less
efficient mechanisms first. In the first attempt, two atomic additions per thread were
performed for each clause, one to move the non-deleted clause buckets and the other
for moving the corresponding reference. However, the excessive use of atomics resulted
in a performance bottleneck and produced a different simplified formula on each run,
that is, the order in which the new clauses were stored depended on the outcome of
the atomic instructions. The second attempt was to maintain stability by moving the
GC to the host side. However, accessing unified memory on the host side results in a
performance penalty, as it implicitly results in copying data to the host side.

5 Parallel Inprocessing Procedure

To exploit parallelism in simplifications, each elimination method is applied on mul-
tiple variables simultaneously. Doing so is non-trivial, since variables may depend
on each other; two variables x and y are dependent iff there exists a clause C with
(x ∈ C ∨ x̄ ∈ C) ∧ (y ∈ C ∨ ȳ ∈ C). If both x and y were to be processed for sim-
plification, two threads might manipulate C at the same time. To guarantee soundness
of the parallel simplifications, we apply our least constrained variable elections algo-
rithm (LCVE) [34] prior to simplification. It is responsible for electing a set of mutually
independent variables (candidates) from a set of authorised candidates. The remaining
variables relying on the elected ones are frozen. These notions are defined by Defs. 1-4.

Definition 1 (Authorised candidates). Given a CNF formula S, we call A the set of
authorised candidates: A = {x | 1 ≤ h[x] ≤ μ ∨ 1 ≤ h[x̄] ≤ μ}, where

– h is a histogram array (h[x] is the number of occurrences of x in S).
– μ denotes a given maximum number of occurrences allowed for both x and its

negation x̄, representing the cut-off point for the LCVE algorithm.

Definition 2 (Candidate Dependency Relation). We call a relation D : A × A a
candidate dependency relation iff ∀x, y ∈ A, xD y implies that ∃C ∈ S.(x ∈ C ∨ x̄ ∈
C) ∧ (y ∈ C ∨ ȳ ∈ C)

Definition 3 (Elected candidates). Given a set of authorised candidates A, we call a
set ϕ ⊆ A a set of elected candidates iff ∀x, y ∈ ϕ. ¬(xD y)

Definition 4 (Frozen candidates). Given the sets A and ϕ, the set of frozen candi-
dates F ⊆ A is defined as F = {x | x ∈ A ∧ ∃y ∈ ϕ. xD y}

A top-level description of GPU parallel inprocessing is shown in Alg. 2. The blue-
colored lines highlight new contributions of the current work compared to our prepro-
cessing algorithm presented in [34]. As input, it takes the current formula Sh from the
solver (executed on the host) and copies it to the device global memory as Sd (line 1).

Initially, before simplification, we compute the clause signatures and order variables
via concurrent streams at lines 2-3. A stream is a sequence of instructions that are exe-
cuted in issue-order on the GPU [31]. The use of concurrent streams allows the running
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Algorithm 2: Parallel Inprocessing
Input : Sh, μ, phases

1 Sd ← COPYTODEVICE (Sh);
2 CALCSIGNATURES (Sd, stream0);
3 A ← ORDERVARIABLES (Sd, stream1);
4

CALCSIGNATURES (Sd, stream0);
A ← ORDERVR ARIABLESVV (Sd, stream1);
while p : 0 → phases do

5 SYNCALL ( ) ; // Synchronize all streams
6 T ← CREATEOT (Sd);
7

T ← CREATEOT (Sd);
PROPAGATE (Uh,Sd, T );

8 ϕ ← LCVE (Sd, T ,A, μ);
9 if p = phases then

10 ERE (Sd, T , ϕ);
11

p
ERE (Sd, T , ϕ);
break;

12 SORTOT (T , ϕ, LISTKEY);
13 Ud ← ELIMINATE (Sd, T , ϕ) ; // Applies VE, SUB, and BCE
14

SORTOT (T , ϕ, LISTKEY);
Ud ← ELIMINATE (Sd, T , ϕ) ; // Applies VE, SUB, and BCE
Uh ← COPYTOHOSTASYNC (Ud, stream1);

15 COLLECT (Sd, stream2);
16

,
COLLECT (Sd, stream2);
μ ← μ × 2;

17 device function LISTKEY (a, b):
18 Ca ← Sd[a], Ca ← Sd[b] ; // Ca = {x1, x2, . . . , xk}, Cb = {y1, y2, . . . , yk}
19 if |Ca| �= |Cb| then return Ca < Cb ;
20 if x1 �= y1 then return x1 < y1 ;
21 if x2 �= y2 then return x2 < y2 ;
22 if |Ca| > 2 ∧ (xk �= yk) then return xk < yk ;
23 else return sig(Ca) < sig(Cb) ;

device function LISTKEY (a, b):
Ca ← Sd[a], Ca ← Sd[b] ; // Ca = {x1, x2, . . . , xk}, Cb = {y1, y2, . . . , yk}
if |Ca| �=�� |Cb| then return Ca < Cb ;
if x1 �=�� y1 then return x1 < y1 ;
if x2 �=�� y2 then return x2 < y2 ;
if |Ca| > 2 ∧ (xk �=�� yk) then return xk < yk ;
else return sig(Ca) < sig(Cb) ;

of multiple GPU kernels concurrently, if there are enough resources. The ORDERVARI-
ABLES routine produces an ordered array of authorised candidates A following Def. 1.
The while loop at lines 4-16 applies VE, SUB, and BCE, for a configured number
of iterations (indicated by phases), with increasingly large values of the threshold μ.
Increasing μ exponentially allows LCVE to elect additional variables in the next elim-
ination phase since after a phase is executed on the GPU, many elected variables are
eliminated. The ERE method is computationally expensive. Therefore, it is only exe-
cuted once in the final iteration, at line 10. At line 5, SYNCALL is called to synchronize
all streams being executed. At line 6, the occurrence table T is created. The LCVE
routine produces on the host side an array of elected mutually independent variables ϕ,
in line with Def. 3.

The parallel creation of the occurrence lists in T results in the order of these lists be-
ing chosen non-deterministically. This results in the ELIMINATE procedure called at line
13, which performs the parallel simplifications, to produce results non-deterministically
as well. To remedy this effect, the lists in T are sorted according to a unique key in as-
cending order. Besides the benefit of stability, this allows SUB to abort early when
performing subsumption checks. The sorting key function is given as the device func-
tion LISTKEY at lines 17-24. It takes two references a, b and fetches the corresponding
clauses Ca, Cb from Sd (line 18). First, clause sizes are tested at line 19. If they are
equal, the first, the second, and the last literal in each clause are checked, respectively,
at lines 20-22. Otherwise, clause signatures are tested at line 23. CADICAL implements
a similar function, but only considers clause sizes [6]. The SORTOT routine launches a
kernel to sort the lists pointed to by the variables in ϕ in parallel. Each thread runs an
insertion sort to in-place swap clause references using LISTKEY.
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The ELIMINATE procedure at line 13 calls SUB to remove any subsumed clauses
or strengthen clauses if possible, after which VE is applied, followed by BCE. The
SUB and BCE methods call kernels that scan the occurrence lists of all variables in ϕ
in parallel. For more information on this, see [34]. The VE method uses a new parallel
approach, which is explained in Section 6. Both the VE and SUB methods may add new
unit clauses atomically to a separate array Ud. The propagation of these units cannot be
done immediately on the GPU due to possible data races, as multiple variables in a
clause may occur in unit clauses. For instance, if we have unit clauses {a} and {b},
and these would be processed by different threads, then a clause {ā, b̄, c} could be
updated by both threads simultaneously. Thus, this propagation is delayed until the
next iteration, and performed by the host at line 7. Note that T must be recreated first
to consider all resolvents added by VE during the previous phase. The ERE method at
line 10 is executed only once at the last phase (phases) before the loop is terminated.
Section 7 explains in detail how ERE can be effective in simplifying both ORIGINAL

and LEARNT clauses in parallel. At line 14, new units are copied from the device to the
host array Uh asynchronously via stream1. The COLLECT procedure does the GC as
described by Alg. 4 via stream2. Both streams are synchronized at line 5.

6 Three-Phase Parallel Variable Elimination

The BVIPE algorithm in our previous work [34] had a main shortcoming due to the
heavy use of atomic operations to add new resolvents. Per eliminated variable, two
atomic instructions were performed, one for adding new clauses and the other for
adding new literals. Besides performance degradation, this also resulted in the order
of added clauses being chosen non-deterministically, which impacted reproducibility
(even though the produced formula would always at least be logically the same).

The approach to avoiding the excessive use of atomic instructions when adding
new resolvents is to perform parallel VE in three phases. The first phase scans the
constructed list ϕ to identify the elimination type (e.g., resolution or gate substitution) of
each variable and to calculate the number of resolvents and their corresponding buckets.

The second phase computes an exclusive scan to determine the new references for
adding resolvents, as is done in our GC mechanism (Section 4). At the last phase, we
store the actual resolvents in their new locations in the simplified formula. For solution
reconstruction, we use an atomic addition to count the resolved literals. The order in
which they are resolved is irrelevant. The same is done for adding units. For the latter,
experiments show that the number of added units is relatively small compared to the
eliminated variables, hence the penalty of using atomic instructions is almost negligible.
It would be overkill to use a segmented scan for adding literals or units.

At line 1 of Alg. 3, phase 1 is executed by the VARIABLESWEEP kernel (given at
lines 15-27). Every thread scans the clause set of its designated literals x and x̄ (line 17).
References to these clauses are stored at Tx and Tx̄. Moreover, register variables t, β, γ
are created to hold the current type, number of added clauses, and number of added
literals of x, respectively. If x is pure at line 19, then there are no resolvents to add and
the clause sets of x and x̄ are directly marked as DELETED by the routine TOBLIVION.
Moreover, this routine adds the marked literals atomically to resolved. At line 22, we
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Algorithm 3: Three-Phase Parallel Variable Elimination
Input : global ϕ, Sd, T , Ud, resolved, type, buckets, added, constant α

1 resolved, type, buckets, added← VARIABLESWEEP(ϕ,Sd, T );
2

resolved, type, buckets, added← VARIABLESWEEP(ϕ,Sd, T );
lastadded ← −1, lastidx ← −1, lastcref ← −1, lastC ← ∅;

3 for j : |ϕ| − 1, j − 1 → 0 do // find index and # resolvents of last eliminated x
4 if type[j] �= 0 then

5 lastidx ← j, lastadded ← added[j]; break;
6 buckets← EXCLUSIVESCAN (buckets, SIZE(clauses), stream0);
7 added← EXCLUSIVESCAN (added, SIZE(references), stream1);
8

buckets← EXCLUSIVESCAN (buckets, SIZE(clauses), stream0);
added← EXCLUSIVESCAN (added, SIZE(references), stream1);
SYNCALL( );

9 numCls ← lastadded + added[lastidx];
10 lastcref ← references[numCls − 1], lastC ← clauses[lastcref];
11 numBuckets ← lastcref + (α + SIZE(lastC) − 1);
12 RESIZE(clauses, numBuckets), RESIZE(references, numCls);
13 Sd, Ud ← VARIABLERESOLVENT(ϕ,Sd, T , type, buckets, added);
14

Sd, Ud ← VARIABLERESOLVENT(ϕ,Sd, T , type, buckets, added);

15 kernel VARIABLESWEEP (ϕ,Sd, T ):
16 for all i ∈ � 0, |ϕ| � in parallel

17 register x ← ϕ[i], Tx ← T [x], Tx̄ ← T [x], t ← NONE, β ← 0, γ ← 0;
18 type[i] ← 0, buckets[i] ← 0, added[i] ← 0 ; // initially reset
19 if Tx = ∅ ∨ Tx̄ = ∅ then // check if x is a pure literal
20 resolved← TOBLIVION(x,Sd, Tx, Tx̄);
21 else

22 t, β, γ ← GATEREASONING (x,Sd, Tx, Tx̄, σ);
23 if t �= GATE then

24 t, β, γ ← MAYRESOLVE (x,Sd, Tx, Tx̄) ; // t may set to RESOLUTION
25 if t �= 0 then // x can be eliminated
26 type[i] ← t, added[i] ← β, buckets[i] ← α × β + (γ − β);
27 resolved← TOBLIVION(x,Sd, Tx, Tx̄);
28 kernel VARIABLERESOLVENT (ϕ,Sd, T , type, buckets, added):
29 for all i ∈ � 0, |ϕ| � in parallel

30 register x ← ϕ[i], Tx ← T [x], Tx̄ ← T [x];
31 register t ← type[i], cref ← buckets[i], rpos = added[i];
32 if t = RESOLUTION then

33 (Sd,Ud) ← (Sd,Ud) ∪ RESOLVE(x,Sd, Tx, Tx̄, rpos, cref);
34 if t = GATE then

35 (Sd,Ud) ← (Sd,Ud) ∪ SUBSTITUTE(x,Sd, Tx, Tx̄, rpos, cref);

kernel VARIABLESWEEP (ϕ,Sd, T )T :

for all i ∈ � 0, |ϕ| � in parallel

register x ← ϕ[i], TxTT ← T [x], T¯TTxTT ← T [x], t ← NONE, β ← 0, γ ← 0;
type[i] ← 0, buckets[i] ← 0, added[i] ← 0 ; // initially reset
if TxTT = ∅ ∨ T¯TTxTT = ∅ then // check if x is a pure literal

resolved← TOBLIVION(x,Sd, TxTT , T¯TTxTT );
else

t, β, γ ← GATEREASONING (x,Sd, TxTT , T¯TTxTT , σ);
if t �=�� GATE then

t, β, γ ← MAYRESOLVE (x,Sd, TxTT , T¯TTxTT ) ; // t may set to RESOLUTION
if t �= 0�� then // x can be eliminated

type[i] ← t, added[i] ← β, buckets[i] ← α × β + (γ − β);
resolved← TOBLIVION(x,Sd, TxTT , T¯TTxTT );

kernel VARIABLERESOLVENT (ϕ,Sd, T , type, buckets, added)d :

for all i ∈ � 0, |ϕ| � in parallel

register x ← ϕ[i], TxTT ← T [x], T¯TTxTT ← T [x];
register t ← type[i], cref ← buckets[i], rpos = added[i];
if t = RESOLUTION then

(Sd,Ud) ← (Sd,Ud) ∪ RESOLVE(x,Sd, TxTT , T¯TTxTT , rpos, cref);ff
if t = GATE then

(Sd,Ud) ← (Sd,Ud) ∪ SUBSTITUTE(x,Sd, TxTT , T¯TTxTT , rpos, cref);ff

check first if x contributes to a logical gate using the routine GATEREASONING, and
save the corresponding β and γ. If this is the case, the type t is set to GATE, otherwise
we try resolution at line 24. The condition β ≤ (|Tx| + |Tx̄|) is tested implicitly by
MAYRESOLVE to limit the number of resolvents per x. If t is set to a nonzero value
(line 25), the type and added arrays are updated correspondingly. The total number of
buckets needed to store all added clauses is calculated by the formula (α×β+(γ−β))
and stored in buckets[i] at line 26. After type and added have been completely
constructed, the loop at lines 3-4 identifies the index of the last variable eliminated
starting from position |ϕ|−1. If the condition at line 4 holds, index j and the number of
underlying resolvents are saved to lastidx and lastadded, respectively. These values will
be used later to set the new size of the simplified formula Sd on the host side.

Phase 2 is now ready to apply EXCLUSIVESCAN on the added and buckets lists.
Both clauses and references refer to the structural members of Sd, as described
in Fig. 1b. The procedure at line 6 takes the old size of clauses to offset the calcu-
lated references of the added resolvents. The SIZE routine returns the size of the input
structure. Similarly, the second call at line 7 takes the old size of references and cal-
culates the new indices for storing new references. Both scans are executed concurrently
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Algorithm 4: Parallel Eager Redundancy Elimination for Inprocessing
Input : global ϕ, Sd, T

1 kernel ERE (ϕ,Sd, T ):
2 for all i ∈ � 0, |ϕ| �y in parallel

3 x ← ϕ[i];
4 for C ∈ Sd[T [x]] do

5 for C′ ∈ Sd[T [x̄]] do

6 if (Cm ←RESOLVE (x,C,C′)) �= ∅ then

7 if state(C) = LEARNT ∨ state(C′) = LEARNT then

8 st ← LEARNT
9 else

10 st ← ORIGINAL
11 FORWARDEQUALITY (Cm,Sd, T , st);
12 device function FORWARDEQUALITY (Cm,Sd, T , st):
13 minList ← FINDMINLIST (T , Cm);
14 for all i ∈ � 0, |minList| �x in parallel

15 C ← Sd[minList[i]];
16 if C = Cm ∧ (state(C) = LEARNT ∨ state(C) = st) then state(C) ← DELETED ;

kernel ERE (ϕ,Sd, T )T :

for all i ∈ � 0, |ϕ| �y in parallel

x ← ϕ[i];
for C ∈ Sd[T [x]] do

for C′ ∈ Sd[T [x̄]] do

if (Cm ←RESOLVE (x,C,C′)) �=�� ∅ then

if state(C) = LEARNT ∨ state(C′) = LEARNT then

st ← LEARNT
else

st ← ORIGINAL
FORWARDEQUALITY (Cm,Sd, T , st);

device function FORWARDEQUALITY (Cm,Sd, T , st):
minList ← FINDMINLIST (T , Cm);
for all i ∈ � 0, |minList| �x in parallel

C ← Sd[minList[i]];
if C = Cm ∧ (state(C) = LEARNT ∨ state(C) = st) then state(C) ← DELETED ;

via stream0 and stream1, and are synchronized by the SYNCALL call at line 8. After
the exclusive scan, the last element in added gives the total number of clauses in Sd

minus the resolvents added by the last eliminated variable. Therefore, adding this value
to lastadded gives the total number of clauses in Sd (line 9). At line 10, the last clause
lastC and its reference lastcref are fetched. At line 11, the number of buckets of lastC
is added to lastcref to get the total number of buckets numBuckets. The numBuckets and
numCls are used to resize clauses and references, respectively, at line 12.

Finally, in phase 3, we use the calculated indices in added and buckets to guide
the new resolvents to their locations in Sd. The kernel is described at lines 28-35. Each
thread either calls the procedure RESOLVE or SUBSTITUTE, based on the type stored
for the designated variables. Any produced units are saved into Ud atomically. The cref
and rpos variables indicate where resolvents should be stored in Sd per variable x.

7 Eager Redundancy Elimination

Alg. 4 describes a two-dimensional kernel, in which from each thread ID, an x and y
coordinate is derived. This allows us to use two nested grid-stride loops. In the loops, we
specify which of the two coordinates should be used to initialise i in the first iteration.

Based on the kernel’s y-dimension ID (line 2), each thread merges where possible
two clauses of its designated variable x and its complement x̄ (lines 3-6), and writes the
result in shared memory as Cm. This new clause is produced by the routine RESOLVE
at line 6. At lines 7-10, we check if one of the resolved clauses is LEARNT, and if so, the
state st of Cm is set to LEARNT as well, otherwise it is set to ORIGINAL. This state of
Cm will guide the FORWARDEQUALITY routine called at line 11 to search for redundant
clauses of the same type. This routine is a device function, as it can only be called from
a kernel, and is described at lines 12-17. In this function, the x-dimension of the thread
ID is used to search the clauses referenced by the minimum occurrence list minList,
which is produced by FINDMINLIST at line 13. It has the minimum size among the lists
of all literals in Cm. If a clause C is found that is equal to Cm and is either LEARNT or
has a state equal to the one of Cm, it is set to DELETED (lines 16).



146 M. Osama et al.

50 100 150 200 250 300 350
# Formulas

0

20

40

60

80

100

S
p

ee
d

u
p

Min: 1.3x

Max: 93x

Average: 48x

(a) Parallel GC vs. sequential

50 100 150 200 250 300 350
# Formulas

1

2

3

4

S
p

ee
d

u
p

Min: 1.005x

Max: 4x

Average: 1.6x

(b) Three-Phase VE vs. atomic version

Fig. 3: Speedup of the proposed VE and GC algorithms on the benchmark suite

8 Experiments

We implemented the proposed algorithms in PFROST-GPU3 with CUDA C++ version
11.0 [31]. We evaluated all GPU experiments on an NVIDIA Titan RTX GPU. This
GPU has 72 SMs (64 cores each), 24 GB global memory and 48 KB shared memory.
The GPU operates at a base clock of 1.3 GHz (boost: 1.7 GHz). The GPU machine was
running Linux Mint v20 with an Intel Core i5-7600 CPU of 3.5 GHz base clock speed
(turbo: 4.1 GHz) and a system memory of 32 GB.

We selected 493 SAT problems from the 2013-2020 SAT competitions. All formu-
las larger than 5 MB in size are chosen, excluding redundancies (repeated CNFs across
competitions). For very small problems, the GPU is not really needed, as only few vari-
ables and clauses can be removed. The selected problems encode around 70+ different
real-world applications, with various logical properties.

In the experiments, besides the implementations of our new GPU algorithms, we in-
volved a CPU-only version of PARAFROST (PFROST-CPU), and the CADICAL [6]
SAT solver for the solving of problems, and executed these on the compute nodes of
the Lisa CPU cluster4. Each problem was analysed in isolation on a separate computing
node. Each computing node had an Intel Xeon Gold 6130 CPU running at a base clock
speed of 2.1 (turbo: 3.7) GHz with 96 GB of system memory, and runs on Debian Linux
operating system. With this information, we adhere to all five principles laid out in the
SAT manifesto (version 1) [9], noting that we also included problems older than three
years, to have a sufficient number of large problems to work with.

SAT-Simplification Speedup. Figure 3 discusses the performance evaluation of the
GPU Algorithms 1 and 3 compared to their previous implementations in SIGMA [34].
For these experiments, we set μ and phases initially to 32 and 5, respectively. Prepro-
cessing is only enabled to measure the speedup. Fig. 3a shows the speedup of running
parallel GC against a sequential version on the host. Clearly, for almost all cases, Alg. 1
achieved a drastic acceleration when executed on the device with a maximum speed
up of 93× and an average of 48×. Fig. 3b reveals how fast the 3-phase parallel VE is

3 Solvers/formulas are available at https://gears.win.tue.nl/software/parafrost.
4 This work was carried out on the Dutch national e-infrastructure with the support of SURF

Cooperative.

https://gears.win.tue.nl/software/parafrost
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compared to version using more atomic instructions. On average, the new algorithm is
twice as fast as the old BVIPE algorithm [34]. In addition, we get reproducible results.
SAT-Solving. These experiments provide a thorough assessment of our CPU/GPU
solver, the CPU-only version, and CADICAL on SAT solving with preprocessing +
inprocessing turned on. The features walksat, vivification and probing [6] are disabled
in CADICAL as they are not yet supported in PARAFROST. As in PARAFROST,
all elimination methods in CADICAL are turned on with a bound on the occurrence
list size set to 30,000. The same parameters for the search heuristics are used for all
experiments. However, we delay the scheduling of inprocessing in PARAFROST until
4,000 of the fixed (root) variables are removed. The occurrence limit μ is bounded by
32 in CADICAL. On the other hand, we start with 32 and double this value every new
phase as shown in Alg. 2. These extensions increase the likelihood of doing more work
on the GPU. The timeout for all experiments is set to 5,000 seconds. The timeout for
the sequential solvers has a 6% tolerance (i.e., is 5,300 seconds in total) to compensate
for the different CPU frequencies of the GPU machine and the cluster nodes.

Figure 4 demonstrates the runtime results for all solvers over the benchmark suite.
Subplot (a) shows the total time (simplify + solving) for all formulas. Data are sorted
w.r.t. the x-axis. The simplify time accounts data transfers in PFROST-GPU. Overall,
PFROST-GPU dominates over PFROST-CPU and CADICAL. Subplot (b) demon-
strates the solving impact of PFROST-GPU versus CADICAL on SAT/UNSAT for-
mulas. PFROST-GPU seems more effective on UNSAT formulas than CADICAL. Col-
lectively, PFROST-GPU performed faster on 196 instances (58% out of all solved), in
which 18 formulas were unsolved by CADICAL.

Subplots (c) and (d) show simplification time and its percentage of the total process-
ing time, respectively. Clearly, the CPU/GPU solver outperforms its sequential counter-
part due to the parallel acceleration. Plot (d) tells us that PFROST-GPU keeps the
workload in the region between 0 and 20% as the elimination methods are scheduled
on a bulk of mutually independent variables in parallel. In CADICAL, variables and
clauses are simplified sequentially, which takes more time. Plot (e) shows the effective-
ness of ERE on formulas with successful clause reductions. The last plot (f) reflects the
overall efficiency of parallel inprocessing on variables and clauses (learnt clauses are
included). Data are sorted in descending order. Reductions can remove up to 90% and
80% of the variables and clauses, respectively.

9 Related Work

A simple GC monitor for GPU term rewriting has been proposed by van Eerd et al. [18].
The monitor tracks deleted terms and stores their indices in a list. New terms can be
added at those indices. The authors in [1, 26] investigated the challenges for offload-
ing garbage collectors to an Accelerated Processing Unit (APU). Matthias et al. [39]
introduced a promising alternative for stream compaction [10] via parallel defragmen-
tation on GPUs. Our GC, on the other hand, is tailored to SAT solving, which allows
it to be simple yet efficient. Regarding inprocessing, Järvisalo et al. [23] introduced
certain rules to determine how and when inprocessing techniques can be applied. Ac-
celeration of the DPLL SAT solving algorithm on a GPU has been done in [15], where
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some parts of the search were performed on a GPU and the remainder is handled by
the CPU. Incomplete approaches are more amenable to be executed entirely on a GPU,
e.g., an approach using metaheuristic algorithms [44]. We are the first to work on GPU
inprocessing in modern CDCL solvers.

10 Conclusion

We have shown that GPU-accelerated inprocessing significantly reduces simplification
time in SAT solving, allowing more problems to be solved. Parallel ERE and VE can be
performed efficiently on many-core systems, producing impactful reductions on both
original and learnt clauses in a fraction of a second, even for large problems. The pro-
posed parallel GC achieves a substantial speedup in compacting SAT formulas on a
GPU, while stimulating coalesced accessing of clauses.

Concerning future work, the results suggest to continue taking the capabilities of
GPU inprocessing further by supporting more simplification techniques.
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12. Bošnački, D., Odenbrett, M., Wijs, A., Ligtenberg, W., Hilbers, P.: Efficient reconstruction
of biological networks via transitive reduction on general purpose graphics processors. BMC
Bioinformatics 13(281) (2012)

13. Bradley, A.R.: SAT-based model checking without unrolling. In: VMCAI 2011. pp. 70–87.
Springer (2011)

14. Brown, C.E.: Reducing Higher-Order Theorem Proving to a Sequence of SAT Problems.
Journal of Automated Reasoning 51(1), 57–77 (Jun 2013)
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17. Eén, N., Sörensson, N.: An Extensible SAT-solver. In: SAT. LNCS, vol. 2919, pp. 502–518.
Springer (2004)

18. Eerd, J. van, Groote, J.F., Hijma, P., Martens, J., Wijs, A.J.: Term Rewriting on GPUs. In:
FSEN. LNCS, Springer, to appear (2021)

19. Gebhardt, K., Manthey, N.: Parallel Variable Elimination on CNF Formulas. In: Timm, I.J.,
Thimm, M. (eds.) KI 2013: Advances in Artificial Intelligence. pp. 61–73. Springer Berlin
Heidelberg, Berlin, Heidelberg (2013)

20. Han, H., Somenzi, F.: Alembic: An efficient algorithm for CNF preprocessing. In: Proc. 44th
ACM/IEEE Design Automation Conference. pp. 582–587. IEEE (2007)

https://doi.org/10.5281/zenodo.4500928


150 M. Osama et al.

21. Heule, M., Järvisalo, M., Biere, A.: Clause Elimination Procedures for CNF Formulas. In:
LPAR. LNCS, vol. 6397, pp. 357–371. Springer (2010)

22. Järvisalo, M., Biere, A., Heule, M.J.: Simulating circuit-level simplifications on CNF. Jour-
nal of Automated Reasoning 49(4), 583–619 (2012)

23. Järvisalo, M., Heule, M.J., Biere, A.: Inprocessing Rules. In: IJCAR. LNCS, vol. 7364, pp.
355–370. Springer (2012)

24. Jin, H., Somenzi, F.: An incremental algorithm to check satisfiability for bounded model
checking. ENTCS 119(2), 51–65 (2005)

25. Kullmann, O.: On a generalization of extended resolution. Discrete Applied Mathematics 97,
149–176 (1999)
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37. Ostrowski, R., Grégoire, E., Mazure, B., Sais, L.: Recovering and Exploiting Structural
Knowledge from CNF Formulas. In: Proceedings of the 8th International Conference on
Principles and Practice of Constraint Programming. pp. 185–199. CP ’02, Springer-Verlag,
London, UK, UK (2002)

38. Soos, M., Kulkarni, R., Meel, K.S.: Crystalball: Gazing in the black box of SAT solving.
In: Janota, M., Lynce, I. (eds.) Theory and Applications of Satisfiability Testing - SAT
2019 - 22nd International Conference, SAT 2019, Lisbon, Portugal, July 9-12, 2019, Pro-
ceedings. Lecture Notes in Computer Science, vol. 11628, pp. 371–387. Springer (2019).
https://doi.org/10.1007/978-3-030-24258-9 26

39. Springer, M., Masuhara, H.: Massively Parallel GPU Memory Compaction. In: ISMM. pp.
14–26. ACM (2019)

40. Stephan, P., Brayton, R.K., Sangiovanni-Vincentelli, A.L.: Combinational test generation
using satisfiability. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 15(9), 1167–1176 (1996)

41. Subbarayan, S., Pradhan, D.K.: NiVER: Non-increasing variable elimination resolution for
preprocessing SAT instances. In: SAT. LNCS, vol. 3542, pp. 276–291. Springer (2004)

https://nvlabs.github.io/cub/
https://nvlabs.github.io/cub/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://doi.org/10.1007/978-3-030-24258-9_26


SAT Solving with GPU Accelerated Inprocessing 151

42. Wijs, A.: GPU accelerated strong and branching bisimilarity checking. In: TACAS, LNCS,
vol. 9035, pp. 368–383. Springer (2015)
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