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Abstract

We present a satisfiability tester Qsat for quantified Boolean formulae and a restric-
tion QsatCNF of Qsat to unquantified conjunctive normal form formulae. Qsat

makes use of procedures which replace subformulae of a formula by equivalent for-
mulae. By a sequence of such replacements, the original formula can be simplified
to true or false. It may also be necessary to transform the original formula to
generate a subformula to replace. QsatCNF eliminates collections of variables from
an unquantified clause form formula until all variables have been eliminated. Qsat

and QsatCNF can be applied to hardware verification and symbolic model checking.
Results of an implementation of QsatCNF are described, as well as some complexity
results for Qsat and QsatCNF. Qsat runs in linear time on a class of quantified
Boolean formulae related to symbolic model checking. We present the class of “long
and thin” unquantified formulae and give evidence that this class is common in
applications. We also give theoretical and empirical evidence that QsatCNF is of-
ten faster than Davis and Putnam-type satisfiability checkers and ordered binary
decision diagrams (OBDDs) on this class of formulae. We give an example where
QsatCNF is exponentially faster than BDDs.
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Qsat is a new decision procedure for satisfiability of quantified Boolean for-
mulae with potential applications to hardware verification and symbolic model
checking. The philosophy of Qsat is to test satisfiability of a formula by re-
peatedly replacing subformulae by simpler equivalent subformulae. QsatCNF

is an application of Qsat to unquantified clause form formulae, interpreted as
quantified Boolean formulae by considering all free variables to be existentially
quantified. Qsat and QsatCNF test satisfiability of a formula by successively
eliminating variables from it, producing an equivalent formula, until all vari-
ables have been eliminated. The motivation for Qsat and QsatCNF is that
satisfiability testers for unquantified formulae such as Davis and Putnam’s
method seem to be more efficient than BDDs (ordered BDDs, OBDDs) when
there is not too much backtracking. BDDs can process large (unquantified)
formulae because they make use of an ordering of the variables which breaks
the processing down into smaller steps that are easier to perform. The idea
of Qsat and QsatCNF is to import this BDD philosophy into satisfiability
testing, by applying a modification of Davis and Putnam’s method not to
the whole formula at once, but piece by piece, where each application of the
modified Davis and Putnam method to a piece of the formula simplifies the
formula. This reduces the amount of backtracking. Qsat and QsatCNF can
be built on top of any satisfiability tester for unquantified Boolean formulae,
including St̊almarck’s method [1].

It appears (see section 11) that BDDs are good for systems that are long and
thin, such as adders. These are also systems for which QsatCNF should be effi-
cient, because such systems can be broken into parts having a limited amount
of communication between them. Each part corresponds to a subformula of
the original formula. QsatCNF can simplify one such subformula, and then be
applied recursively to the remaining formula. Thus it may be that QsatCNF

is efficient on a large number of applications where BDDs are currently used.
Similarly, Qsat should be efficient for quantified Boolean formulae that are
long and thin, in a certain sense. BDDs can also be efficient on problems that
are not long and thin, such as some versions of barrel shifters. QsatCNF may
not be as fast on such problems.

The general method by which Boolean formulae are used for system testing is
the following:

(1) A Boolean formula G is constructed from a system S and its specification,
expressing that the system does not satisfy its specification. Methods for
generating G are well known.

(2) The formula G is tested for satisfiability (consistency).
(3) If G is unsatisfiable, then S is correct. If G is satisfiable, then there is an
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error in S, and the nature of the satisfiability of G can help to identify
the error in S.

The system S can be a computer circuit or some system containing intercon-
nected objects, which can be defined as a component or part of a physical
system, such as a gate in a circuit. The formula G can be obtained by defining
the formula A as a Boolean formula representing the system S and B as a
Boolean formula representing the statement that S fails to satisfy its specifica-
tion. Then G can be taken to be the conjunction A∧B of these two formulae,
expressing that S fails to satisfy its specification.

Binary decision diagrams (BDDs) [2] have been widely used in CAD applica-
tions such as logic synthesis, testing and formal verification. BDDs transform
a circuit into a canonical form, depending on an ordering of the Boolean
variables, and two circuits are equivalent if and only if they have the same
canonical form. For many kinds of circuits, BDDs work very well, especially
when a good ordering of the variables can be found. Equivalence checking [3,4]
is important, because one can verify a new or optimized circuit by showing
that it is equivalent to an old and trusted circuit. Commercial equivalence
checkers can now verify circuits with millions of gates which are clearly out of
reach for traditional simulation.

Satisfiability algorithms for Boolean formulae in clause form can also be used
for hardware verification[5]. In this approach, the formula G above is in clause
form, which is a special form of unquantified Boolean formula. An efficient
method such as Davis and Putnam’s method can then be applied to test if the
formula G is satisfiable. Davis and Putnam’s method was first described in the
paper [6], though modern implementations differ in some ways. Most modern
implementations use the method of DPLL [7], which eliminates variables by
case analysis rather than ordered resolution. A recent, very efficient imple-
mentation of DPLL is described in [8]. [9] combined BDDs and satisfiability
testers to solve verification problems. Another method for satisfiability testing
of unquantified Boolean formulae, not necessarily in clause form, is disclosed
in [1]. This method works breadth-first, trying all possible truth assignments
to small subsets of the variables of a formula. From these assignments, in-
formation about dependencies between variables is obtained which can aid in
determining satisfiability.

Automatic test pattern generation (ATPG) is another important problem in
CAD. Given a combinational circuit, a stuck-at fault causes a wire to have
a constant value. The task of ATPG is to generate input patterns that de-
tect such stuck-at faults. It was well known that ATPG is equivalent to
propositional satisfiability. Efficient SAT-based ATPG techniques have been
developed[10].
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Symbolic model checking [11,12,13] is concerned with verifying sequential sys-
tems. The use of BDDs for symbolic model checking was a breakthrough,
because it permitted much larger systems to be verified than was possible
before. BDDs permit the state of a system to be represented and manipu-
lated efficiently, in many cases. However, the paper [14] gives some Boolean
formulae obtained from symbolic model checking problems on which satisfi-
ability algorithms such as DPLL and Stalmarck’s method are more efficient
than BDDs. Other examples are given in [5] in which the smallest BDD for
a Boolean function is of exponential size, regardless of the variable ordering
used. There is therefore also an interest in seeing how far satisfiability-based
approaches can extend in symbolic model checking applications.

Boolean satisfiability has been extensively studied. See [15] for an excellent
survey of a wide range of satisfiability techniques. However some important
problems in hardware verification cannot be expressed with quantifier-free
Boolean formulae. Computing fixed points in symbolic model checking is one
such example. Therefore there is a need for satisfiability testers for quantified
Boolean formulae. There has been some work in decision procedures for quan-
tified boolean formulae [16,17]. Our technique differs from the previous work
in that it modifies the quantified Boolean formula from the inside out, rather
from the outside in. That is, Qsat can choose to process a quantifier other
than one of the outermost quantifiers of the formula.

The same flexibility in the processing of quantifiers is inherent in QsatCNF.
This flexibility enables QsatCNF to exploit structures in the hardware verifica-
tion domain. In particular, QsatCNF is very efficient in handling long and thin
circuits. Note that the propositional satisfiability problem without quantifiers
is a special case of quantified Boolean formulae where all variables are assumed
to be existentially or universally quantified. Since QsatCNF resembles the be-
haviors of BDDs, it complements the traditional DPLL style SAT solvers. An
interesting future research direction is to combine the two approaches.

Many of the problems mentioned in [18] are “long and thin,” meaning that they
have small cut widths. Actually, the definition of cut width differs somewhat
from one paper to another, but all such definitions capture approximately the
same idea. We will show below that many of the problems from [19] are also
long and thin, as well as several other benchmark problems we constructed.
In fact all problems we tried from [19] have an average cut width of 19 or
less. This suggests that the class of long and thin problems is fairly common
in applications. It turns out that the worst-case time bound for QsatCNF on
this class of long and thin problems is better than that of BDD’s and Davis
and Putnam’s method by an exponential factor. We also have examples where
the QsatCNF implementation is faster than BDD’s and Davis and Putnam’s
method on this class of problems. This gives empirical and theoretical evidence
that QsatCNF will be faster on many problems from this class.
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1 Terminology

1.1 Boolean quantifiers and operators

∃ is used for existential quantification and ∀ for universal quantification. ∧
is used for logical conjunction (and), ∨ for logical disjunction (or), and ¬ for
logical negation. The symbol↔ is used for equivalence and + for exclusive or.
The constants true and false are called truth values. The Boolean operators
are defined on truth values in standard ways, so that x∧ y is true if and only
if x is true and y is true, x ∨ y is true if and only if x is true or y is true,
¬x is true if and only if x is false, x ↔ y is true if and only if x and y
have the same truth value, and (x + y) is true if and only if x and y have
different truth values. Capital letters (like X and Y ) refer to sets or sequences
of Boolean variables.

1.2 Formulae

A quantified Boolean formula is a formula built up from Boolean variables
and the Boolean operators of conjunction, disjunction, negation, and other
Boolean operators. Thus (x∧(y∨z)) is a quantified Boolean formula. Boolean
quantifiers are also allowed to occur in quantified Boolean formulae. Thus if B
is a quantified Boolean formula andX is a set of Boolean variables, then ∃X[B]
and ∀X[B] are also quantified Boolean formulae, where ∃X is considered an
existential quantifier and ∀X is considered a universal quantifier. ∀X[B] is
often considered to abbreviate ¬∃X[¬B]. If X is the set or list {x, y, z}, then
∃X[A] abbreviates the quantified Boolean formula ∃x[∃y[∃z[A]]]. An example
of a quantified Boolean formula is ∃x[x ∧ ¬∃y[y ∨ z]]. Often the term “quan-
tified” is dropped. A quantified Boolean formula without any occurrences of
quantifiers is said to be unquantified. An occurrence of a variable x in a for-
mula A is called free if this occurrence is not within the scope of a quantifier
∃x or ∀x. Only the occurrence of z is free in the example formula. Variable
occurrences that are not free are called bound. If A is a quantified Boolean for-
mula and X is a set of variables, then A[X] denotes a formula A that contains
the free variables X. A formula B having the free variables X is often taken
to abbreviate ∃X[B] or ∀X[B]. A literal is a Boolean variable or its negation.
If y is a variable, it is assumed that ¬¬y is identical to y. The literal ¬y is
the complement of y, and likewise y is the complement of ¬y. The literals y
and ¬y are said to be complementary. A clause is a disjunction of literals, as,
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x ∨ ¬y ∨ z. A set of clauses, also termed a conjunctive normal form formula,
is a conjunction of clauses, such as C ∧D∧E, where C, D, and E are clauses.

1.3 Subformulae

Each Boolean formula A is a subformula of itself. Also, if A is of the form
B⊗C, where ⊗ is a Boolean operator, and D is a subformula of B or C, then
D is also a subformula of A. Likewise, if D is a subformula of B, then D is a
subformula of ¬B and a subformula of ΩX[B] where Ω is ∃ or ∀.

1.4 Simplifications

For a Boolean formula A, A|y refers to A with all free occurrences of the
Boolean variable y replaced by true, and the resulting formula simplified as
many times as possible with respect to usual Boolean simplifications. These
are the following: B ∧ true simplifies to B, B ∧ false simplifies to false, and
other standard simplifications for eliminating true and false from Boolean
expressions. Also, ∃x[B] and ∀x[B] simplify to B if there are no free occur-
rences of the variable x in B. Let A|¬y refers to A with all free occurrences of
the variable y replaced by false, and the resulting formula likewise simplified.
There are also the additional simplifications B ∧ p simplifies to B|p ∧ p and
p ∧ B simplifies to p ∧ B|p if p is a literal. Also, B ∨ p simplifies to B|¬p ∨ p
and p∨B simplifies to p∨B|¬p. If A is a Boolean formula and x is a Boolean
variable, then ∃x[A] is defined to be equivalent to the formula A|x ∨ A|¬x.

1.5 Interpretations

An interpretation is a set I of literals, often viewed as a conjunction of its
elements, such that no pair of complementary literals occur in I. If I is an
interpretation and A is a Boolean formula, then A|I is A with all occurrences
of x replaced by true, for x ∈ I, and all occurrences of x replaced by false, for
x such that ¬x ∈ I, with simplifications applied as before. The formula A|I is
read “A relative to I.” A formula B is satisfiable if there is an interpretation
I such that B|I is true. Such an interpretation I is said to satisfy B. An
interpretation I such that B|I is false is said to contradict or falsify B. A
formula B is falsifiable if there is an interpretation I such that B|I is false. If
B is not satisfiable, then B is unsatisfiable. A formula B is a tautology if for
all I which assign truth values to all free variables of B, B|I is true. A formula
B is a contradiction if for all I which assign truth values to all free variables
of B, B|I is false. Two formulae A and B are equivalent (A ≡ B) if and only
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if for all interpretations I of their free variables, A|I is true if and only if B|I
is true. A formula A is said to logically imply a formula B if and only if for
all interpretations I of the free variables of A and B, if A|I is true then B|I is
true. Also, a formula A logically implies B if and only if the formula ¬A∨B
is a tautology.

1.6 Equivalences

As the standard Boolean equivalences which may be used for transforming
formulae into equivalent formulae, the following may be taken, possibly with
others added: (A⊗ B) ≡ (B ⊗ A) where ⊗ is ∧, ∨, ↔, or +, (A⊗ B)⊗ C ≡
A ⊗ (B ⊗ C), where ⊗ is ∧ ∨, ↔, or +, ¬¬B ≡ B, ¬(A ∧ B) ≡ ¬A ∨ ¬B,
¬(A ∨ B) ≡ ¬A ∧ ¬B, together with other equivalences for pushing negation
inside connectives and distributing ∧ over ∨ and defining other connectives
in terms of negation, ∧ and ∨. Also, ΩX[A ⊗ B] ≡ (ΩX[A]) ⊗ B where ⊗
is ∧ or ∨ and Ω is ∃ or ∀, and the variables X do not occur free in B,
ΩX[B] ≡ B if the variables X do not occur free in B, ∀X[B] ≡ ¬∃X[¬B],
∃X[B] ≡ ¬∀X[¬B], ∃X[∃Y [B]] ≡ ∃Y [∃X[B]], ∀X[∀Y [B]] ≡ ∀Y [∀X[B]],
∃X[A∨B] ≡ (∃X[A])∨ (∃X[B]), and ∀X[A∧B] ≡ (∀X[A])∧ (∀X[B]). These
may be used in either direction.

1.7 Duals

If a formula A has only the Boolean operators ∧, ∨, and ¬ and quantifiers, then
a formula B is called the dual of A if B is obtained from A by interchanging
the Boolean operators ∧ and ∨ and interchanging the quantifiers ∀ and ∃
and adding an additional negation to all the Boolean variables. Such a B
is equivalent to ¬A. It is often the case that a method which applies to a
formula A can also be applied to the dual B of A with small modifications.
For example, A is satisfiable if and only if the dual B of A is not a tautology.

Formulae are constructed from circuits as follows. A signal on a wire is iden-
tified with a Boolean variable. Each gate is converted into a Boolean formula
expressing the required relationship between its input and output signals. Thus
an OR-gate with inputs x and y and output z would be converted into the
formula z ↔ (x ∨ y). A formula representing the entire circuit is obtained as
the conjunction (and) of all the formulae for its gates. This formula can be
converted to clause form (if desired) by converting each of the gate formulae
to clause form; standard methods for doing this are known. For example, the
clause form for the formula z ↔ (x ∨ y) is (¬z ∨ x ∨ y) ∧ (¬x ∨ z) ∧ (¬y ∨ z).
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2 High-level description of QSAT

Let the relation � be defined so that F [∃Z[B]] � F [∃X[B1 ∧ B′2]], where F ,
B1, B′2, X, and Z are as follows:

F is a quantified Boolean formula with no free variables. ∃Z[B] is a subformula
of F , so we write F [∃Z[B]] to indicate this. Z is a list of variables which
consists of the variables in the lists X and Y in some order, so ∃Z[B] ≡
∃X[∃Y [B]]. The formula B is equivalent to B1 ∧ B2, where the variables Y
do not occur free in B1. The formula B′2 is equivalent to ∃Y [B2] but does not
have the quantifiers ∃Y .

The relation � is defined dually on formulae of the form F [∀X[∀Y [B]]].

Theorem 1 If F � F ′ then F ≡ F ′.

Proof. ∃Z[B] ≡ ∃X[∃Y [B]] ≡ ∃X[∃Y [B1∧B2]] ≡ ∃X[B1∧∃Y [B2]] ≡ ∃X[B1∧
B′2]. q.e.d.

Also, if F � F ′ then F ′ has some quantifiers eliminated that appear in F . Let
the relation �∗ be defined by F1 �∗ Fn if Fi � Fi+1 for all i, 1 ≤ i < n.

The algorithm Qsat is as follows:

procedure qsat(F );

find F ′ such that F �∗ F ′ and F ′ has no quantifiers in it;

if F ′ is true then return true;

else if F ′ is false then return false;

else return error ; fi

end qsat;

Theorem 2 If Qsat(F ) returns true then F is a tautology and if Qsat(F )
returns false then F is unsatisfiable. Also, for every formula F having no free
variables, either F �∗ true or F �∗ false.

Proof. If Qsat(F ) returns true then F �∗ true, so F ≡ true and therefore
F is a tautology. If Qsat(F ) returns false then F �∗ false, so F ≡ false
and therefore F is unsatisfiable. For the rest, for any F containing at least one
variable, one can find F ′ containing fewer variables than F such that F � F ′.
By repeated operations of this form, all variables will be eliminated, yielding
a formula equivalent to true or false. q.e.d.
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The difficult parts of Qsat are (1) expressing B as B1 ∧ B2 and (2) finding
B′2 equivalent to ∃Y [B2] but without the quantifiers ∃Y occurring in B′2. We
refer to such a selection of a subset Y of the variables of B as a cut of B.
Finding B′2 given Y and B1 is done by the procedures simp and sat which
will be described below. Finding B′2 requires up to 2n calls to a satisfiability
procedure, where n is the number of variables in X that appear free in B2.
Therefore it is important to find a cut of B that makes n small. The quantity
n will be called the cost of the cut. It is also important to find a cut so that
Y does not contain too many variables, because the amount of backtracking
increases with the size of Y .

Typically B is a conjunction of subformulae and B2 will be chosen as all
of these subformulae that contain the variables Y free. Thus finding a cut
corresponds to choosing a set Y of variables to eliminate from B. The quantity
n will also be called the cost of the set Y of variables. This quantity represents
the connections between a portion of the circuit or system represented by B2

and the rest of the circuit or system. Therefore, it is important to choose the
set Y of variables to eliminate as a set that is not too large and is isolated
from the rest of the system as much as possible. For long, thin systems, one
can choose Y as some of the variables that appear at one end of the system,
for example.

It is also possible to choose cuts based on an ordering of the variables Z. Recall
that B is typically a conjunction of many subformulae. Two variables z and z′

of Z are said to be closely related if they appear free in the same subformula
of B. Recall that variables correspond to signals or parts of the system being
verified, and often correspond to physical locations in this system. We can
choose an ordering z1, z2, . . ., zk of the variables of Z so that variables that
are closely related appear near each other in this ordering. For example, if
the system being verified is long and thin, then we can choose the ordering
so that one progresses through the system from one end to the other as one
progresses up the ordering. If one is verifying that two systems are equivalent,
and both are long and thin, then the ordering can be chosen to progress in
parallel through both systems, from one end to the other, as one progresses up
the ordering. Once the ordering has been chosen, then the cuts can be chosen
to eliminate all variables larger than some bound b from B, where b is chosen
so that the cost of the cut is small and so that the number of variables being
eliminated each time is not too large.

3 simp and sat procedures

Qsat makes use of two procedures, simp and sat which can be used to replace
a quantified Boolean formula by a simpler equivalent formula, together with
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a number of refinements which are subsequently described. The procedures
simp and sat are applied repeatedly in Qsat.

The procedure simp takes a Boolean formula A and produces another for-
mula A′ equivalent to A. Informally, the procedure simp gathers together a
complete collection of interpretations Ii that make A false, and for each one
it constructs a clause Di expressing the negation of Ii. Then the conjunction
(and) of the Di is equivalent to A, because this conjunction expresses the fact
that none of the Ii are true. Since all ways of making the formula A false
have been excluded, the fact that A is true has been expressed. A′ equivalent
to A has been obtained, where A′ is the conjunction of these Di.

We now express the procedure simp algorithmically. This procedure takes a
Boolean formula A and an interpretation I as arguments. It returns a set A′ of
clauses containing only the free variables of A such that if I is empty, then A′

is logically equivalent to A. If A occurs in some other Boolean formula F , then
let F ′ be F ′ with an occurrence of A replaced by A′. Then F ′ is equivalent to
F . Thus satisfiability of F can be tested by finding some such subformula A,
replacing it in F by A′, and testing satisfiability of F ′. Since F ′ is often simpler
than F (any non-free variables in A have been eliminated, at least), it may
be simpler to test satisfiability of F ′ than F . Of course, universal quantifiers
in F can be replaced by existential quantifiers using the fact that ∀X[C[X]]
is equivalent to ¬∃X[¬C[X]]. This gives a decision procedure to decide if F
is a tautology (it simplifies to true) or a contradiction (it simplifies to false).
This procedure can also test if a formula F with free variables is satisfiable,
as follows: let Y be the free variables in F . Then F is satisfiable if and only
if ∃Y [F ] is a tautology, and whether ∃Y [F ] is a tautology can be tested by
reducing it to true or false by successive simplifications.

The procedures simp and sat make use of two auxiliary procedures unsat and
taut. The procedures unsat and taut can return true, false, or ↑ (unknown).
These procedures must satisfy the following conditions:.

(1) If unsat(B) returns true then B is unsatisfiable.
(2) If B is unsatisfiable and has no free variables then unsat(B) returns

true.
(3) If unsat(B) returns false then B is satisfiable.
(4) If B is satisfiable and has no free variables then unsat(B) returns false.
(5) If taut(B) returns true then B is a tautology.
(6) If B is a tautology and has no free variables then taut(B) returns true.

Intuitively, unsat is a procedure that tests whether a formula is unsatisfiable,
but it can give up before an answer is computed and return ↑ (unknown)
in some cases. Also, taut is a procedure for testing whether a formula is a
tautology, and it can also give up before an answer is computed and return ↑
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(unknown) in some cases. Both unsat and taut can be arbitrary procedures
for testing unsatisfiability or tautology. The fact that any such procedures
can be used makes it possible to implement simp and sat without having
to program unsat and taut and makes it possible for very efficient existing
implementations of tests for unsatisfiability and tautology to be used.

The procedure simp is defined as follows.

procedure simp(A, I);

if unsat(A|I) = true then return ¬d1 ∨ ¬d2 ∨ . . . ∨ ¬dn;

where D = {d1, d2, . . . , dn} is a subset of I such that A|D is unsatisfiable

else if taut(A|I) = true then return true;

else

let y be some free variable in A such that neither y nor ¬y occurs in I;

let A1 be simp(A, I ∪ {y});

if ¬y does not occur in any clause of A1|I and A1|I is unsatisfiable

then return A1; fi;

let A2 be simp(A, I ∪ {¬y});

if y does not occur in any clause of A2|I and A2|I is unsatisfiable

then return A2; fi;

return A1 ∧ A2;

fi

end simp;

The two conditional statements involving y and ¬y are optimizations that
may be omitted. Now, simp(A) is defined for a Boolean formula A to be
simp(A, {}), that is, the result returned when simp(A, I) is called with I
equal to the empty set. If A has no free variables, then simp(A) is either
true or false. When simp(A, I) returns a formula A′, then it is said that
the bound variables of A have been eliminated from A to produce A′. The
procedure simp can be called on a formula without bound variables.

Theorem 3 The procedure simp(A, {}) returns a set S of clauses such that
S ≡ A.

Proof. We show that for any interpretation I of the free variables of A, I |= A
iff I |= S.
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Suppose I 6|= A. Consider the set of J ⊆ I such that simp(A, J) is called
during the execution of simp(A, {}). Since I 6|= A, A|I = false hence A|J =
false for some such J . For some such J , unsat(A|J) will return true. When
simp(A, J) is called for this J , a clause D will be returned such that J 6|= D
and I 6|= D. Such a D will be a clause in S, so I 6|= S as well.

Suppose I |= A. Consider again the set of J ⊆ I such that simp(A, J) is called
during the execution of simp(A, {}). Since I |= A, A|I = true hence for no
such J , A|J = false. Thus no clause D will be returned such that I 6|= D.
Since S has no such clauses D, I |= S as well. q.e.d.

The procedure sat is a faster version of simp that applies when the free
variables of A are existentially quantified. This quantification means looking
for one interpretation that makes A true. In this case, the procedure can be
stopped as soon as one such interpretation is found, and it is not necessary to
continue looking for more.

The procedure sat tests if formulae A of the form ∃Y [B] are tautologies,
assuming that all free variables in B are mentioned in Y, and is defined as
follows:.

procedure sat(∃Y [B]);

if unsat(B) = true then return false;

else if unsat(B) = false then return true;

else

let y be some free variable in B;

let B1 be sat(∃Y [B|y]);

if B1 is true then return true fi;

let B2 be sat(∃Y [B|¬y]);

if B2 is true then return true fi;

return false;

fi

end simp;

If B is satisfiable, then sat(∃Y [B]) will return true, else sat(∃Y [B]) will
return false. Equivalently, if ∃Y [B] is a tautology, then sat(∃Y [B]) will return
true, else sat(∃Y [B]) will return false. The procedure sat has an advantage
over simp in that sat may stop sooner, and therefore take less time. However,
sat cannot be called in as many cases as simp can. The procedure sat can
be called on a formula in which the list X or Y of variables may be empty.
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The procedure sat can be extended to formulae of the form ∀X[B] by calling
sat on ∃X[¬B]. If sat(∃X[¬B]) returns false, then sat(∀X[B]) returns true;
if sat(∃X[¬B]) returns true, then sat(∀X[B]) returns false. This is justified
by the fact that ∀X[B] is equivalent to ¬∃X[¬B]. Equivalently, if B is not
falsifiable (a tautology), then sat(∀Y [B]) will return true, else sat(∀Y [B])
will return false.

Theorem 4 The procedure sat(A) returns true iff A is satisfiable, where A
has no free variables and is of the form ∃Y [B].

Proof. Suppose A is satisfiable. Then there is an interpretation I of the vari-
ables Y such that I |= B. Eventually sat(∃Y [B|J ]) will be called on some
J ⊆ I such that B|J is true. For some such J , unsat(B|J) will return false.
Therefore sat(∃Y [B|J ]) will return true, so sat(A) will return true.

Suppose A is unsatisfiable. Then for no interpretation I of the variables Y ,
I |= B. Thus sat(∃Y [B|J ]) will never be called on some J ⊆ I such that B|J
is true. This implies that unsat will never return false. Therefore sat will
return false. q.e.d.

The tests unsat and taut (these tests are called within sat and simp) can be
done using an arbitrary decision procedure for quantified Boolean formulae.
These procedures permit the procedures simp and sat to avoid some test-
ing of quantified Boolean formulae in some cases. The procedures simp and
sat can be called in two modes, inner mode and free mode. In inner mode,
it is assumed that whenever simp(A, I) or sat(A) is called, then A is of the
form ∃X[B(X, Y )] or ∀X[B(X,Y )] where B contains no quantifiers. Every
quantified Boolean formula will contain at least one such subformula, so inner
mode is sufficient to handle any quantified Boolean formula. In inner mode,
whenever unsat(A) or taut(A) is called, and A has no free variables, then A
is of the form ∃X[B(X)] or ∀X[B(X)] where B is an unquantified Boolean
formula, that is, it contains no quantifiers. The formula ∃X[B(X)] is equiva-
lent to true if and only if B is satisfiable, otherwise it is equivalent to false.
The formula ∀X[B(X)] is equivalent to true if and only if ¬B(X) is unsatisfi-
able, otherwise it is equivalent to false. Thus in all cases, unsat and taut can
be implemented using a satisfiability test for unquantified Boolean formulae
if inner mode is used. Many methods are known for testing if unquantified
Boolean formulae are satisfiable, including DPLL for formulae in clause form.
These tests are typically applied to an entire formula at once to determine
whether the whole formula is satisfiable. The method Qsat works in smaller
steps, which can make the entire process significantly more efficient. In free
mode, the formula B(X, Y ) may contain Boolean quantifiers. In this case, a
procedure for satisfiability of arbitrary quantified Boolean formulae can be
used. One possibility for this is to call simp or sat recursively on the formula
B. Also, these successive calls to unsat and taut are permitted to have mem-
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ory, in the sense that earlier calls may record information about A that can
make later calls more efficient.

The part of the procedure simp that determines D can be done by unsat,
as well; it suffices to return ¬d1 ∨ ¬d2 ∨ . . . ∨ ¬dn where {d1, d2, . . . , dn} = I
when unsat(A|I) returns true. It is also possible to describe procedures that
return smaller formulae, by noting which of the di are really necessary for
showing that A|I is unsatisfiable. For correctness of the simp procedure, it is
only necessary that some such D be returned when unsat(A|I) returns true.
For smaller I, if some such D is returned, it can make the procedure simp
more efficient, but it is not necessary for correctness.

The overall procedure for simplifying a quantified Boolean formula F accord-
ing to Qsat is to find a sub-formula A of F or a formula equivalent to F to
which the procedure simp or sat can be applied. Such a formula A is then
replaced by A′, A′ being simp(A) or sat(A) in F to obtain a simpler formula
F ′ equivalent to F . This procedure can be repeated on F ′ in turn any number
of times, until one obtains a formula that can be tested for satisfiability or
tautology by some other means, or else one may obtain simply true or false.

An example of the operation of the procedure simp will now be given. Suppose
that A is the formula ∃z[(x∨y∨z)∧(x∨y∨¬z)∧((¬x∨¬y∨z)∧(¬x∨¬y∨¬z)].
Thus Y is the list {x, y} of variables. When simp(A, I) is called with I equal
to {}, the empty set, it is seen that that A|I is not unsatisfiable, nor is it a
tautology. I interpreted as a conjunction is true, so that A|I is equivalent to
A, which is neither a tautology nor unsatisfiable. The next step is to pick a
variable in Y , say x, and call simp(A, {x}). This in turn will find that A|x
is not unsatisfiable, nor is A|x a tautology. The formula A|x is obtained by
replacing x by true and simplifying; this yields ∃z[(true∨y∨ z)∧ (true∨y∨
¬z)∧(¬true∨¬y∨z)∧(¬true∨¬y∨¬z)], which simplifies to ∃z[(¬y∨z)∧(¬y∨
¬z)]. So the other variable in I, namely y is next picked, and simp(A, {x, y}) is
called. A|{x,y} is now found to be unsatisfiable. The next task is to find a subset
D of {x, y} such that A|D is unsatisfiable; in this case, the only subset that
works is {x, y}. Thus {¬x,¬y} (representing the clause ¬x ∨ ¬y) is returned
as the value of simp(A, {x, y}). Now simp(A, {x,¬y}) is called. A|{x,¬y} is
found to be satisfiable. Also, A|{x,¬y} is true, which is a tautology. Thus, true
is returned. The call to simp(A, {x}) then returns the conjunction of these
results, which is (¬x∨¬y)∧ true, or, ¬x∨¬y. Now simp(A, {¬x}) is called
which in turn will call simp(A, {¬x, y}) and simp(A, {¬x,¬y}). The former
returns true, and the latter returns {x, y}, representing the clause x∨y. Thus
the call to simp(A, {¬x}) returns the conjunction of these results, which is
x∨ y. Finally, the call to simp(A, {}) returns the conjunction of ¬x∨¬y and
x ∨ y, which is (¬x ∨ ¬y) ∧ (x ∨ y). It is indeed true that (¬x ∨ ¬y) ∧ (x ∨ y)
is equivalent to ∃z[(x∨ y ∨ z)∧ (x∨ y ∨¬z)∧ (¬x∨¬y ∨ z)∧ (¬x∨¬y ∨¬z)].
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An optimization to Qsat is to speed up the satisfiability testing by noting
when a subformula can be expressed as a Boolean combination of two other
formulae not sharing free variables. Suppose the procedure simp or sat is
testing a subformula of the form ∃x[∃y[B(x, z) ∧C(y, z)]] where z is the only
free variable. A partial interpretation I may assign a truth value to z, say,
true. This formula A then becomes ∃x[∃y[B(x, true) ∧ C(y, true)]]. Such
a formula will be given to the procedure unsat. However, this formula can
first be rearranged in an equivalence-preserving way to obtain the formula
∃x[B(x, true)]∧∃y[C(y, true)]. This formula consists of the two subformulae
∃x[B(x, true)] and ∃y[C(y, true)] which do not share free variables. Thus
unsat can be more efficient by testing satisfiability of these two subformulae
separately and combining the results.

Thus it is useful to detect when a formula can be processed more efficiently by
expressing it in terms of two other formulae not sharing free variables. In most
cases, the recognition of such decompositions must be done by the user. In
the procedures unsat and taut called by simp and sat, it is possible to test
satisfiability or tautology of formulae of the form B1 ⊗ B2, where B1 and B2

have no free variables in common and⊗ is either conjunction or disjunction, by
testing satisfiability of B1 and B2 separately and combining the results. Thus
B1 ∧ B2 is satisfiable if both Bi are, and B1 ∨ B2 is satisfiable if either Bi is.
This idea can be incorporated into the simp and sat procedures to improve
their efficiency. It is possible for the user of the sat and simp procedures
to specify how such partitioning should take place: If B is a conjunction or
disjunction of many formulae Ci, then the order of these subformulae may
have to be rearranged in order to permit such a partitioning to take place.
For this, the user can give some guidance as to two sets of variables that do
not occur together in any formula Ci, and this can be used to reorder the
formula into the form B1 ⊗ B2 where each Bi is a conjunction or disjunction
of many Ci, and B1 and B2 do not share free variables. The same technique
can be applied if a formula is C1 ⊗ C2 ⊗ . . .⊗ Cn where ⊗ is either exclusive
or or equivalence, because these operators, like conjunction and disjunction,
are associative and commutative. Thus the user can obtain a formula of the
form B1 ⊗B2 where B1 and B2 do not share free variables.

4 Applications to Symbolic Model Checking

The procedures simp and sat can also be used to detect when fixpoints of
repetitive systems have been attained. A repetitive formula is a formula of the
form A(X1, X2)∧A(X2, X3)∧. . .∧A(Xn−1, Xn). Let us refer to this formula by
An(X1, X2, . . . , Xn). The formula A(X,Y ) is often of the form ∃Z[A′(X,Z, Y )]
for some formula A′. Such formulae are often encountered in symbolic model
checking. For symbolic model checking applications, it is of interest to know for

15



which n the formula B(X1)∧An(X1, X2, . . . , Xn)∧C(Xn) is unsatisfiable. It is
often useful to know that this formula is unsatisfiable for all n. Thus a test is
presented that can verify that the formula B(X1)∧An(X1, X2, . . . , Xn)∧C(Xn)
is unsatisfiable for all n.

Let Bn(Xn) be the formula

∃X1[∃X2[∃X3[. . . [∃Xn−1[B(X1) ∧ An(X1, X2, . . . , Xn)] . . .]

It is of interest to know whether for all n, Bn(Xn) ∧ C(Xn) is unsatisfiable.
This is equivalent to the question whether (B1(X) ∨ B2(X) ∨ . . . ∨ Bn(X) ∨
. . .) ∧ C(X) is unsatisfiable. This can be done by finding the smallest n such
that Bn+1(X) logically implies B1(X) ∨ B2(X) ∨ . . . ∨ Bn(X); such an n
must exist by properties of these formulae. One can test whether Bn+1(X)
logically implies B1(X) ∨ B2(X) ∨ . . . ∨ Bn(X) by testing whether the for-
mula ¬Bn+1(X) ∨ (B1(X) ∨ B2(X) ∨ . . . ∨ Bn(X)) is valid, that is, whether
∀X[¬Bn+1(X)∨B1(X)∨B2(X)∨ . . .∨Bn(X)] is a tautology. This is a quanti-
fied Boolean formula which can be simplified to true using above methods iff
it is a tautology. When such an n has been found, then one can test whether
Bj(X)∧C(X) is satisfiable for any non-negative integer j not larger than n; if
not, then one knows that for all n, Bn(X)∧C(X) is unsatisfiable. Otherwise,
for some n, Bn(X)∧C(X) is satisfiable. One can test whether Bj(X)∧C(X)
is satisfiable by testing whether ∃X[Bj(X) ∧ C(X)] is a tautology.

5 Complexity bound for QSAT

It is possible to bound the complexity of Qsat on a special class of quantified
Boolean formulae.

Definition 5.1 A quantified Boolean formula A is k width bounded if every
subformula of A has at most k free variables.

Theorem 5 If Qsat is applied to a formula A that has no free variables and
is k width bounded, and Qsat is called in inner mode, then the time taken is
linear in the length of A and exponential in k.

Proof. Qsat will perform a sequence of calls to simp, which will be called
first on the innermost formulae of the form ∀X[B] or ∃X[B]. Thus whenever
simp is called on a formula, it will be of the form ∀X[B] or ∃X[B] where
all quantifiers will already have been eliminated from B by previous calls to
simp. Thus B will be of the form (B1 op1 B2 op2 · · · opn−1 Bn) where the
Bi are unquantified formulae with at most k variables and opi are binary
Boolean connectives (if negations have been pushed to the bottom). Each Bi

will either be an unquantified subformula of A or an unquantified conjunctive
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normal form formula obtained by previous calls to simp. Each call to simp
will eliminate at least one variable and will return an unquantified conjunctive
normal form formula having at most k − 1 free variables. Also, each call will
take timeO(ck)|B| for some constant c, where |B| is the length of B, because of
backtracking on the variables of B. The total time is bounded by

∑
B O(ck)|B|,

or by
∑
B O(ck)

∑
i |Bi| because |B| ≤ 2

∑
i |Bi|. Let

∑′
B,i denote the sum over

the formulae Bi that have not been affected by prior calls to simp, and thus
were subformulae of A, and let

∑′′
B,i denote the sum over the formulae Bi

that are obtained by previous calls to simp. Note that these subformulae
Bi of A referred to in

∑′
B,i will be disjoint, because no occurrence of such a

subformula will appear inside another such occurrence. Thus
∑′
B,i |Bi| ≤ |A|.

Also, we can assume that when simp returns a result, it is in conjunctive
normal form with tautologous and duplicate clauses deleted. This implies that
each such formula has at most 3k clauses and each clause has at most k
literals. Therefore each such formula Bi returned by simp satisfies |Bi| ≤ bk

for some constant b. Also, the total number of formulae Bi is bounded by |A|,
because each such Bi corresponds to a subformula of A and contributes to
at most one B in the sum. Thus

∑
B,i 1 ≤ |A|. Therefore

∑
B O(ck)

∑
i |Bi| =

O(ck)
∑
B,i |Bi| ≤ O(ck)(

∑′
B,i |Bi|+

∑′′
B,i |Bi|)≤ O(ck)(|A|+max(|Bi|)(

∑′′
B,i 1))

= O(ck)(|A|+ bk|A|) ≤ O((bc)k)|A|. q.e.d.

For a fixed k, this time bound is linear in |A|. Such formulae arise naturally
in the computation of fixed points for symbolic model checking.

Theorem 6 Suppose the formulae A, A′, B, and C are as in section 4. Sup-
pose the formulae A′, B, and C are unquantified Boolean formulae having at
most k free variables. Then the formulae ∀X[¬Bn+1(X) ∨ B1(X) ∨ B2(X) ∨
. . . ∨Bn(X)] and ∃X[Bj(X) ∧ C(X)] are k-width bounded quantified Boolean
formulae, or may be made so by moving quantifiers in a linearly computable
and equivalence-preserving manner.

Proof. The only part that does not follow immediately from the definitions is
that the formula Bn(Xn), defined as

∃X1[∃X2[∃X3[. . . [∃Xn−1[B(X1) ∧ An(X1, X2, . . . , Xn)] . . .],

has to be expressed instead as

∃Xn−1[. . . ∃X2[∃X1[B(X1) ∧ A(X1, X2)] ∧ A(X2, X3)] ∧ . . . ∧ A(Xn−1, Xn)]

This manner of expressing the formula guarantees that all subformulae have
at most k free variables. q.e.d.

The length of the formula Bi is linear in i, so the length of the formula
∀X[¬Bn+1(X)∨B1(X)∨B2(X)∨ . . .∨Bn(X)] is quadratic in n. The preced-
ing theorem then shows that Qsat can decide the satisfiability of this formula
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in time quadratic in n. However, the formulae Bi share many subformulae. If
this is taken into account, and whenever simp(F ) is called, all occurrences of
F are replaced by simp(F ), then the time can be reduced to be linear in n.
This also requires the formula ∀X[¬Bn+1(X)∨B1(X)∨B2(X)∨ . . .∨Bn(X)]
to be represented economically so that common subformulae are only stored
once.

6 Complexity Bounds for QsatCNF and BDDs

We now present some complexity bounds for QsatCNF, as well as some results
for BDDs. In harmony with our previous use of the term, we define a cut of
a set S of clauses as a selection of a subset Y of the variables of S as bound
variables and the remainder as free. If the variables of S are linearly ordered
and the bound variables Y are selected as all those larger than a given variable
x in S, then this cut is said to be a cut at x, and also an ordered cut. The
cost of a cut Y of S is the number of variables x of S not in Y such that for
some variable y in Y , and some clause C in S, x and y both appear in S. The
clause C is said to cross such a cut Y . The cost of the cut Y corresponds to
the number of variables in the set X mentioned above in the description of
QsatCNF. The average cost of a cut of S relative to an ordering on variables
is the average of the costs of the ordered cuts for this ordering. The maximum
cost of a cut relative to a variable ordering is defined similarly. This maximum
cost of a cut is also called the cut width or width of the circuit.

In [18], the complexity of automatic test pattern generation (ATPG) was stud-
ied. The ATPG problem was reduced to a propositional satisfiability problem.
It was shown that the complexity of the SAT problem can be exponentially
bounded with respect to the cut width of a circuit. It was also shown that
many practical problems have small cut widths. Further, good variable order-
ings for these problems were found automatically by a heuristic for reducing
the cut width. This suggests that for problems having small cut widths, finding
good variable orderings is often easy, even without an understanding of the
problem structure. The method of [18] is not restricted to conjunctive normal
form formulae but requires expensive rewriting at each variable assignment.

Theorem 7 The time taken by QsatCNF on sets S of clauses having n lin-
early ordered variables and maximum costs of ordered cuts w and in which a
bounded number d of variables are eliminated in each call to simp is O(n ·2w).

Proof. The time is dominated by the calls to taut and unsat. Calls to taut
are very fast. The number of calls to unsat is bounded by 2c and each call
takes time at most bd for some constant b. The time on each cut is then at
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most 2c · bd. Each cut eliminates at least one variable, so at most n such cuts
must be processed and the total time is at most n · 2c · bd. Since c ≤ w and b
and d are bounded, the total time is O(n2w). q.e.d.

Corollary 6.1 The time taken by QsatCNF on sets S of clauses having n
linearly ordered variables and bounded maximum costs of ordered cuts and in
which a bounded number d of variables are eliminated in each call to simp is
O(n).

Corollary 6.2 The time taken by QsatCNF on sets S of clauses having n
linearly ordered variables and O(log(n)) maximum costs of ordered cuts and
in which a bounded number d of variables are eliminated in each call to simp
is polynomial.

Typically b is much smaller than 2, because only one model needs to be found
in the bound variable region (Y ) but all models need to be found in the free
variable region (X). Thus the cost of the cuts has a much larger influence
on the running time of QsatCNF than the number d of variables that are
eliminated.

In general, long and thin circuits correspond to sets S of clauses with small
costs of cuts, assuming that the circuit is laid out horizontally and variables
are ordered left to right according to the positions of the corresponding wires
in the circuit. BDDs with a good ordering typically do well on such circuits,
but DPLL-type methods often do not. A vertical line through such a circuit
corresponds to a cut, and the number of wires that cross the line is proportional
to the number of clauses that cross the cut. In a long and thin circuit, this
number of wires should be small, so the cost of the cut should be small.
Sometimes the cost of a cut can be small even if many wires cross the vertical
line. This corresponds to the case when many clauses cross a cut but only
a few variables are mentioned in these clauses. Since adders and some other
hardware circuits are long and thin, it is to be expected that QsatCNF will
be efficient on them if the variables are properly ordered. If the variables are
improperly ordered, the costs of cuts can be very large, and QsatCNF can be
very slow.

A complexity analysis based on cut can also be applied to BDDs [20,12]. Given
a set of clauses S, we define a graph G. Each node in G represents a variable
in S. There is an edge between two nodes in G iff there is a clause in S
containing the variables corresponding to the two nodes. The cut and the cost
of the cut can defined based on the graph structure. If the set of clauses S
are generated by a structural translation from a circuit, then G is essentially
an undirected graph representation of the circuit with the exception that G
contains edges between inputs(outputs) of a gate. If each gate in a circuit can
only have constant fanin and fanout, adding the extra edges in G does not
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affect the complexity analysis. A circuit can also be represented as a directed
graph, where each node represents a wire and each directed edge represents
the connection from an input to an output of a gate. Based on this directed
graph structure, [12] defined the concepts of forward width and reverse width
of a circuit by distinguishing the directions of edges crossing a cut. It was
shown that if a circuit computes function f , the size of OBDD that represents
f is O(n2wf2wr ), where n is the number of inputs of the circuit and wf is
the forward width and wr is the reverse width of the circuit. For example,
testing whether the output of a circuit can be true can be represented as
a Boolean satisfiability problem. A naive solution is to build the OBDD for
the circuit and see if there is a path to 1 in the OBDD. This approach is
doubly exponential in the cut width of the circuit, while QsatCNF is single
exponential. Intuitively, building an OBDD that represents the functionality of
the circuit is an overkill for the problem, as one assignment of input variables
that sets the output to be true is sufficient.

Some examples are known [14] for which DPLL-type satisfiability algorithms
are faster than BDDs. One can imagine stringing together a long sequence
of such problems; such a sequence could not be solved by a BDD due to
the difficulty of each problem, and it could not be solved by a DPLL-type
algorithm, either, because such algorithms typically perform poorly on long,
thin circuits. However, QsatCNF could solve such a problem by solving the
subproblems in sequence, one by one.

In fact, it is possible to give an explicit example for which QsatCNF is expo-
nentially faster than OBDDs.

Definition 6.3 The hidden weighted bit function hwb is defined by

hwb(x1, . . . , xn) = xsum

where the xi are bits and x0 = 0 and sum is the number of i such that xi is 1.

Theorem 8 Consider the problem of verifying that for all x1, . . . , xn,

(x1 ∨ x2 ∨ . . . ∨ xn) ⊃ hwb(x1, . . . , xn, 0) = hwb(1, x1, . . . , xn)

where n is 2k − 2 for some k. Then this problem, with a suitable variable
ordering, can be solved by QsatCNF in polynomial time, but for OBDDs with
any variable ordering it takes exponential time.

Proof. It is known ([5], page 78) that any OBDD for the hidden weighted bit
function is of exponential size, regardless of the variable ordering. This implies
that OBDDs will take exponential time to determine whether (x1 ∨ x2 ∨ . . .∨
xn) ⊃ hwb(x1, . . . , xn, 0) = hwb(1, x1, . . . , xn). The reason for this is that by
setting some xi to 0, we can compute hwb(x1, . . . , xn/2) from hwb(x1, . . . , xn, 0),
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but hwb(x1, . . . , xn/2) requires an exponential size OBDD. Therefore the OBDD
for hwb(x1, . . . , xn, 0) must be even bigger.

However, the most natural representation of the function hwb(x1, . . . , xn, xn+1)
by a set of clauses corresponding to a bounded fan-in circuit has cut width
O(log(n)), as follows: First, one can compute the sum of the xi by a tree of
binary adders. This can be done from left to right, by adding x1 and x2, adding
the result to x3, et cetera. It can also be done from right to left, adding xn and
xn−1, adding the result to xn−2, et cetera. Another way is to compute the sum
by a nearly balanced binary tree of adders. Any of these three possibilities
will give the bound we desire. Next, the most straightforward way to select
the correct variable xsum is to use a barrel-shifter like structure. This involves
a binary tree in which one bit of the sum is used at each node to determine
whether to propogate the left or right child upwards. It is also necessary to
represent the formula (x1 ∨ x2 ∨ . . .∨ xn). To do this with binary fan-in gates
requires a tree of disjunctions. The disjunctions can be associated to the left
or to the right, as the additions were, or computed in a nearly balanced binary
tree structure.

A suitable ordering on these variables results in a logarithmic cut width, and
this ordering can be found easily. First, each adder requires only O(log(n))
variables. The general way to order variables is assign each variable x a hor-
izontal position h(x) corresponding to a reasonable layout of the circuit and
order the variables by their horizontal positions so that x < y if h(x) < h(y).
The inputs can be ordered x1, x2, ..., xn from left to right, at equally spaced
intervals. Then any variable that depends on two others can be given a posi-
tion halfway between them. For example, if s1 is the sum of x1 and x2 then
s1 would be halfway between x1 and x2, h(s1) = (h(x1) + h(x2))/2. Other
similar ordering schemes work just as well. This gives logarithmic cut width
if the operations are associated to the left or right or in a nearly balanced
binary tree structure, as suggested above. If a gate has a large fanout, then
it has a large effect on the cut width, so it may be necessary to consider a
variety of positions for the output variable of such a gate; in general, outputs
of gates with large fanout should be made small in the ordering to reduce the
cut width. One can also simply try all positions for such variables and pick
the one that minimizes the cut width.

This approach gives logarithmic (or even constant) cut widths for all parts of
the circuit. The only gates with large fanout are those corresponding to bits
of the sum, and if these are ordered large in the ordering, then the cut width
is logarithmic for these also. Thus the total cut width is O(log(n)) and by
corollary 6.2, QsatCNF can test satisfiability of a set of clauses representing
the given problem in polynomial time. q.e.d.

This result should be seen as a theoretical result, that there exist circuits
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that are hard for BDD’s but easy for QsatCNF. If the circuit for computing
hwb(x1, . . . , xn, xn+1) were not natural for the Boolean function being com-
puted, the preceding theorem might not be as interesting. However, the circuit
seems to be the most straightforward method of computing hwb. As for the
ordering, there are a number of good and fully automatic heuristics for order-
ing variables to reduce the cut width, such as those in [18], so it does not seem
difficult to find an ordering as required by the theorem. For a human having
understanding of the structure of the circuit, the ordering is also very natural.
Finally, the use of mathematically defined functions such as hwb to obtain
benchmarks is standard practice, as for example the use of the pigeonhole
problems, known to be unsatisfiable, to obtain benchmarks for propositional
satisfiability checkers.

The same bound applies also to the original version of Davis and Putnam’s
method [6] which uses ordered resolution. In fact, many of the complexity
bounds and comments about choosing variable orderings in this paper apply
equally well to ordered resolution. However, DPLL[7] is often much faster than
ordered resolution, so one would expect QsatCNF to be faster in many cases
as well.

BDDs can also be used for satisfiability testing in other ways that may be
faster. Let B be the Boolean expression (x1∨x2∨. . .∨xn) ⊃ hwb(x1, . . . , xn, 0)
= hwb(1, x1, . . . , xn). We can test if B is satisfiable by building a BDD for B
and testing if the BDD is 0 since an unsatisfiable formula is identically false
and has a BDD of 0. Since B is unsatisfiable, any BDD for B will be 0,
which is very small (constant size). However, in order to construct this BDD,
intermediate BDDs need to be built that may be larger. The complexity of
constructing this BDD may depend on the manner in which these intermediate
BDDs are built. It is also possible to incorporate the intermediate signals in
a circuit for computing hwb into B when testing its satisfiability; this might
lead to a faster method.

7 QsatCNF implementation

Recall that an unquantified Boolean formula S can be viewed as the quantified
Boolean formula ∃Z[S] where Z includes all the free variables of S. Applying
Qsat to ∃Z[S] gives a procedure to test whether the unquantified Boolean for-
mula S is satisfiable. If Qsat(∃Z[S]) returns true then S is satisfiable, else S
is unsatisfiable. Suppose S is a clause form (conjunctive normal form) formula.
Let Y be a nonempty subset of the variables Z and let X be the remaining
variables. Since S is a conjunction of clauses, S may be written as S1 ∧ S2

where S2 is a conjunction of the clauses mentioning variables in Y and S1 is
a conjunction of the remaining clauses in S. Then ∃Z[S] ≡ ∃X[∃Y [S1 ∧ S2]]
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≡ ∃X[S1 ∧ ∃Y [S2]] ≡ ∃X[S1 ∧ simp(∃Y [S2])]. Let the conjunctive normal
form formula S ′2 be simp(∃Y [S2]). Then the formula S1 ∧ S ′2 is a conjunc-
tive normal form formula that has fewer free variables than S. Therefore the
same procedure can be applied to this formula in turn, until all variables are
eliminated. In this way we obtain the restriction QsatCNF of Qsat to clause
form formulae S. The satisfiability problem for quantified Boolean formulae is
PSPACE-complete, but that for quantifier-free conjunctive normal form for-
mulae is NP-complete, so the latter is probably much easier. Note that the
full simp procedure is not needed to implement QsatCNF. Instead, one only
needs the restriction simpCNF of simp to conjunctive normal form formulae.
In fact, only simpCNF was implemented, and not the full simp procedure.

To further illustrate the connection between Qsatand QsatCNF, we show
how Qsat could be implemented using only simpCNF. If A is an arbitrary
quantifier-free formula, then simp(∃Z[A]) ≡ simpCNF(∃Z[∃W [A′]]) where A′

is a conjunctive normal form formula and ∃W [A′] is equivalent to A. So for
formulae of the form ∃Z[A] where A is quantifier-free, simp can be imple-
mented on top of simpCNF using a conjunctive normal form translator that
has the option of adding extra existentially quantified variables W (as in
the structure-preserving translation [21]). The structure-preserving translation
permits any Boolean formula to be put in conjunctive normal form in linear
time. Also, simpCNF can be extended to formulae of the form ∀Z[A] by du-
ality where A is quantifier-free. If d indicates the dual, then simpCNF(∀Z[A])
= (simpCNF(∃Z[Ad]))d. These techniques permit simp to be implemented on
top of simpCNF. In this way, Qsat could be implemented on top of simpCNF

by always choosing to apply simp to a subformula of the form ∃Z[A] or ∀Z[A],
where A is quantifier-free, as in inner mode.

A version of QsatCNF was implemented by Bill Yakowenko [22] in C, and
on certain problems it did better than SATO. This implementation used fast
data structures to select good cuts rapidly. However, it did not have SATO’s
sophisticated methods for solving the basic satisfiability problem.

The version of QsatCNF we implemented and tested assumes that the variables
Z are linearly ordered, and that the variables Y are chosen as the d largest
variables in this ordering, for some d. With notation as above, with S as a set
of clauses, we obtain the following procedure:
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procedure QsatCNF(S);

if S contains the empty clause then return false

else if S has no variables then return true;

let n be the number of variables in S;

choose a number d of variables to eliminate from S,

where 0 < d ≤ n;

let Y be the set of the d largest variables in S;

let T be the set of clauses in S mentioning variables in Y ;

let X be the variables in T not included in Y ;

return QsatCNF(S\T ∪ simp(∃Y [T ]));

end QsatCNF;

The procedure simp eliminates the variables Y from T and returns a set T ′

of clauses such that T ′ ≡ ∃Y [T ]. The clauses in T ′ are called output lemmas,
or just lemmas, of QsatCNF in the following description. These lemmas men-
tion only variables in X and are written on intermediate output files during
the execution of QsatCNF. Recall that simp performs a Davis and Putnam
(DPLL[7])-like backtracking search of partial interpretations of the free vari-
ables X in T , generating all models in the process, and repeatedly calls unsat
on subproblems generated during this search. unsat is a Davis and Putnam
(DPLL) procedure that stops at the first model. SATO has been modified so
that both simp and unsat are performed by one call to SATO. This modi-
fied SATO procedure explores the X variables first, then the Y variables, in a
Davis and Putnam-type search. During the exploration of the X variables, all
models must be generated, but during the exploration of the Y variables, only
one model need be generated. The calls to unsat correspond to the portion
of the execution of SATO that is spent searching the bound variables Y of
T . Lemmas generated during this part of the search are not output, but are
called internal lemmas of QsatCNF.

QsatCNF was implemented by the first author in C on top of the significantly
modified version of SATO3.2. QsatCNF calls this modified version of SATO to
implement the procedure simp, and uses file i/o to communicate the output
lemmas between calls to simp. Each such call is called a round of QsatCNF.
The implementation only works for clause form formulae, even though Qsat

itself is defined more generally.

One wants to make the backtracking during the search of the X variables
efficient by a purity test or something similar. It turns out that this is not
sound. However, if at a given point in the search, neither a variable x in X
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nor its negation appears in any active clauses, then only one choice for x need
be tried. This can significantly improve efficiency. In the Y region, a purity
test as usual in DPLL can be used.

As an example of the unsoundness of the purity rule, suppose that S is
p ∧ (¬p ∨ ¬q) ∧ (q ∨ r) ∧ ¬r. Suppose the variable r is eliminated. Then
QsatCNF(S\T ∪ simp(∃Y [T ])) is called, where T is (q ∨ r) ∧ ¬r and S\T
is p ∧ (¬p ∨ ¬q). Note that q is pure in T , but one cannot delete the clause
containing q from T , because this will result in simp(∃Y [T ]) returning true
and QsatCNF(S) returning true. If no purity rule is applied, simp(∃Y [T ])
returns q and QsatCNF(S) returns false. However, q is not pure in S, so a
modified purity rule could be applied that considered the whole clause set S
and not just T .

The DPLL method used by SATO has been modified in the following ways,
among others, in the QsatCNF implementation:

When splitting on a variable, QsatCNF chooses the variable and the truth
value to maximize the number of satisfied clauses, subject to the restriction
that variables in X have to be chosen first. This is similar to GRASP [23]. This
strategy tends to find models sooner and also tends to generate fewer internal
lemmas. This means that larger lemmas can be tolerated; in fact, QsatCNF’s
default bound on lemma size is 100.

The output lemmas generated by the QsatCNF implementation may have un-
necessary variables in them, because QsatCNF does not check that all literals
in these lemmas are really needed. Eliminating these extra variables could
significantly increase the efficiency of the QsatCNF implementation.

The QsatCNF implementation computes the average and maximum cost of a
cut right away, so one can know quickly whether the problem is too hard. A
good idea is simply to call a standard satisfiability tester in such a case.

One technique that can make QsatCNF more efficient is to reformulate the
problem by splitting clauses; this entails replacing a clause C1 ∪ C2 by the
two clauses C1 ∪ {x} and C2 ∪ {¬x} where x is a new variable, all variables
in C1 are smaller in the ordering than all variables in C2, and x is ordered in
between C1 and C2. Splitting can reduce the cost of cuts because each of the
two resulting clauses will cross fewer cuts, and the number of variables in each
clause is less.
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8 Methods of reordering variables

Because the costs of cuts can depend on the ordering of the variables, we
implemented a number of reordering routines which will now be described.
In this section we consider general methods that can be applied without any
special knowledge of the structure of the problem. In the next section we
consider more specialized methods that can be applied under human guidance
when the structure of the problem is known. It is probably best initially to
use methods that take advantage of the structure of the problem, and then
try to improve the ordering using general heuristics.

Consider the variables V to be ordered by a function f :V → {1, . . . , |V |}
mapping each variable x onto an integer f(x), so that x < y if f(x) < f(y).
We assume that some ordering of the variables is given initially. Define the
inverse of an ordering to be the ordering in which the order of the variables
is reversed.

One reordering method reduces the average cost of a cut by interchanges of
variables. Such interchanges are continued until there is no further reduction
in the average cost of a cut.

Another lexicographic method reduces the cost of the maximum cut, namely,
the cut at the maximum variable, as much as possible, then does this for the
cut at the next largest variable, and so on. This routine is very fast, and may
be expressed by the following algorithm:

for(i = Max atom; i > 1; i--){

for(j = i; j > 0; j--)

Cj = cost of cut at i if i and j are exchanged;

pick j such that Cj is minimal;

exchange i and j

}

The ordering heuristic used in all our tests is to try four orderings and pick
the one that minimizes the maximum cost of a cut. These four orderings are:

(1) The original ordering.
(2) The inverse of the original ordering.
(3) The lexicographic ordering, applied to variables in the original ordering.
(4) The lexicographic ordering, applied to the variables in the inverse of their

original ordering.
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Note that the maximum cost of a cut in an ordering may differ considerably
from the maximum cost of a cut in the inverse ordering. Also, ties in the lexi-
cographic ordering are broken based on the original ordering of the variables,
so the last two possibilities above may give different results.

If one has a good ordering on the input variables, this can be used to order
all the variables in a problem. Such orderings are often needed in any case
for BDD’s. For example, the remaining variables can be ordered according
to the ordering on the maximum or minimum input variable on which they
depend. This is sometimes good for long, thin circuits like adders. Another
good method is to use an ordering as illustrated by the hidden weighted bit
function in section 6, in which variables are ordered by real number positions
and the position associated with the output of a gate is the average of the
positions of the inputs.

The effectiveness of such orderings depends on the manner in which the
formula is expressed. Often a formula is translated to clause form using a
“structure-preserving” translation in which new Boolean variables are intro-
duced for subformulae of the original formula. When this is done, it is impor-
tant to associate multiple conjunctions and disjunctions properly to make this
ordering yield a smaller cost of cut.

For example, suppose we have a formula A1∧A2∧. . .∧An where the maximum
input variable that Ai depends on is i. Then we should express this formula
as ((A1 ∧ A2) ∧ A3) ∧ . . . and introduce new variables B1, B2, and B3, such
that

B1 ≡ (A1 ∧ A2)

B2 ≡ (B1 ∧ A3)

B3 ≡ (B2 ∧ A4)

. . .

since then the maximum input variable that Bi depends on is i + 1. If this
formula is expressed by associating to the right, by

B1 ≡ (An−1 ∧ An)

B2 ≡ (An−2 ∧B1)

. . .

then all Bi depend on An, so ordering by the maximum input variable that
the Bi depend on, does not order the Bi well. A survey of ordering methods
for BDDs is given in section 2.5.2 of [5]. These orderings roughly correspond
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to the orderings implemented in QsatCNF, except that we did not implement
the “sifting” approach which may give better results.

9 Choosing an ordering for particular examples

We now give some ordering techniques that depend on a detailed knowledge
of the structure of the problem. Such methods are however fairly straightfor-
ward for a human to apply. We illustrate these techniques on the benchmarks
on which QsatCNF was run. For simplicity in discussing these examples, we
assume that the Boolean variables are integers, so that we write i for the
variable xi; this is the convention used for DIMACS input.

We first discuss the maxmin example. This example expresses that

max(a, b) ≥ min(a, b),

where a and b are n-bit binary numbers and max and min are defined by

max(x, y) ≡ if x ≥ y then x else y

min(x, y) ≡ if x ≥ y then y else x

To encode this in clause form, we let a[i], b[i], max [i], and min[i] be Boolean
variables representing the i-th bits of a, b, max(a, b), and min(a, b), respec-
tively. We also let ge(a, b, i) be a variable signifying whether the i low-order
bits of a are greater than or equal to the i low-order bits of b, and simi-
larly for ge(max ,min, i). Finally, ge(max ,min) is a variable signifying whether
max(a, b) ≥ min(a, b), and ge(a, b) is a variable signifying whether a ≥ b. Thus
ge(max ,min) ≡ ge(max ,min, n) and ge(a, b) ≡ ge(a, b, n).

Now, the variables ge(a, b, i), ge(max ,min, i), max(a, b, i), and min(a, b, i) can
be defined in terms of each other and the variables a[i], b[i], as well as all these
quantities with i replaced by i−1. In addition, ge(max ,min) and ge(a, b) need
to be used in defining these variables.

The simplest way to order these variables is to order them by i. Since there are
six quantities, we could let a[i] be 6 · i, b[i] be 6 · i+ 1, et cetera. The problem
with this is that ge(max ,min) and ge(a, b) would then have large values. Since
ge(max ,min) and ge(a, b) are related to so many other quantities, it is better
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to make them small. In this way, we finally obtain the following ordering:

ge(max ,min): 1 ge(a, b, i): 6 · i− 1

ge(a, b): 2 max [i]: 6 · i

a[i]: 6 · i− 3 min[i]: 6 · i+ 1

b[i]: 6 · i− 2 ge(max ,min, i): 6 · i+ 2

This is the ordering used in the “dpmaxmin” examples in the tables below.
With this ordering, the dpmaxmin example has a very small average cost of a
cut, which is 4 even for large n. Other orderings, however, have a much larger
cost. The “maxmin” examples below are formalized with a different ordering
and a structure-preserving translation. The maxmin examples can be solved
quickly by BDDs.

We next consider the barrel shifter. This example has an n-bit register S
holding a quantity indicating how far another register X is to be rotated.
This is formalized in terms of time steps; at the first time step, the register
X is either rotated one bit or zero bits, depending on whether S[1] is 1 or 0.
At the second time step, the register X is rotated either two bits or zero bits,
depending on whether S[2] is 1 or 0, and so forth.

The theorem to be proved is that the binary value of S gives the amount that
the register X is rotated. This can be expressed as one statement, but it is
much better to consider one bit of X at a time and verify that it gets shifted by
the proper amount. Even better is to verify for each value of S separately, 2n

values in all, that the specified bit of X gets shifted the proper amount. With
this encoding, this problem is easily solved by QsatCNF, but the problems are
so trivial that they are not included in the following tables of runtimes. The
version of this problem with all values of S considered at once for one bit of X
is problem “barrel” below. For these problems, it is best to order the variables
so that the bits of S occur early in the ordering, because they are related to
so many other variables. The other variables, representing bits of X at various
times, can be ordered in a natural manner, left to right.

We now discuss how to order clause sets having the structure of a nearly-
balanced binary tree. This can be expressed by the set {{xi,¬x2·i,¬x2·i+1} |
1 ≤ i ≤ n} of clauses. If the variables are ordered x1 < x2 < x3 . . ., then the
average cost of an (ordered) cut will be linear. This is because each clause
{xi,¬x2·i,¬x2·i+1} contributes i + 1 to the sum of the costs of the cuts. (The
cost is one for cuts from i + 1 to 2 · i and two for the cut at 2 · i + 1.) If the
variables are ordered x1 > x2 > x3 . . . then the average cost of a cut is about
twice as large, because then the given clause contributes 2 · i + 1 to the sum
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of the costs of the cuts. However, if the tree is ordered prefix, postfix, or infix,
regarding xi as a node and x2·i and x2·i+1 as its children, then the average cost
of a cut is O(log(n)). Each cut is crossed by at most log(n) clauses in the tree.
There are about log(n) levels to the tree, and the probability of a clause at a
given level crossing a cut is about one half. Therefore the average cost of a cut
is O(log(n)). For these orderings, the average cost of a cut is about twice as
large for prefix as for postfix, with the cost for infix being in the middle. We
note that a factor of two in the average cost of a cut can make a tremendous
difference in the efficiency of QsatCNF.

We next illustrate the importance of the variable ordering with these clause
sets: {{x1, xi, xi+1} | 1 ≤ i ≤ n}. To reduce the costs of the cuts, the variable
x1 should come early in the ordering. If the variables are ordered x1 < x2 <
x3 < . . . then the average cost of a cut is constant. If the variables are ordered
x1 > x2 > x3 . . . the average cost of a cut is linear in n. Even if the variables
are ordered x1 > x2 > x3 . . ., the average cost of a cut can be made constant
by introducing the clause form of the formulae x1 ≡ y1 and yi ≡ yi+1 for
1 ≤ i < n. This is similar to splitting clauses. Then instead of the clause
{x1, xi, xi+1} the clause {yi, xi, xi+1} may be used, with the variable ordering
x1 > y1 > x2 > y2 > x3 > y3 . . .. This preserves the meaning of the formula
but reduces the average cost of a cut to a constant. This is one advantage
of QsatCNF, namely, the costs of cuts can be reduced by introducing new
variables. This is not so easy with BDDs. Of course, it is best to keep closely
related variables near each other in the ordering if possible. For example, the
clauses {{xi, xi+1, xi+2} | 1 ≤ i ≤ n} have a constant average cost of cut if
the variables are ordered x1 < x2 < x3 . . . or x1 > x2 > x3 . . . but the cost
can be much larger if other orderings are used. The general rule is to keep
related variables close together, but variables that are closely related to many
others should occur early in the ordering or should be handled by splitting or
by introducing equivalences as above.

It will be clear from the test examples below that the choice of an ordering
can have a dramatic effect on the average and maximum cost of a cut. It is
probably best in general to give a good variable ordering based on the topology
and layout of circuit, then perhaps optimize it using a reordering routine.

10 Choosing cuts

Even after a variable ordering is chosen, it is still necessary to choose which
cuts to process in QsatCNF. In many examples, some of the cuts will have
larger costs than others, and QsatCNF can be much faster if the cuts to be
processed by simp are chosen well. It is not obvious how to do this, however.
For this purpose, we introduce a mathematical model of the time taken to
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process a cut and use it to derive a systematic method of choosing cuts that
works well in practice.

Once we have a method of estimating the time t taken to process a cut, then
the cut is chosen which minimizes the ratio t/d of this time t to d, where d
is the number of variables eliminated (the variables considered to be bound
in the call to simp). This cut is chosen so that the average time required to
eliminate each variable is as small as possible.

The estimate used for the time t taken to process a cut is 2d/(2b)2c/2 where c is
the cost of the cut and d is the number of (bound) variables eliminated. Thus
a large value of b (called the best cut ratio) means that eliminating bound
variables is easy compared to handling free variables, so it’s best to eliminate
many variables at a time and choose large values of d. The default value for b
is 30, which typically works well. We also require that at least b/2 variables be
eliminated each round. It’s reasonable that eliminating bound variables (Y )
is easy compared to eliminating the free variables (X) because in the calls
to unsat it is only necessary to find one model of Y to know whether the
problem is satisfiable but in the free variable region it is necessary to find all
models of X, which often takes much longer. Also, the procedure taut called
by simp is very fast for clause form formulae, because it is only necessary to
test if every clause is a tautology.

The best cut ratio b can be adjusted, too, based on the performance of
QsatCNF. If the average cost of a cut is small but QsatCNF is taking a long
time per round, then it must be that d is too large, so in this case b should
be reduced. If each round is very fast, then probably too few variables are
being eliminated each round, and b should be increased. If the average cost
of a cut is large (say 50 or over), the only hope is to do the whole problem
at once; this can be done by making the best cut ratio very large, say 1000,
which essentially calls a DPLL algorithm once on the whole problem.

The estimate of the time taken on a cut could be improved by considering not
only the cost of the cut but also the number of clauses of various sizes that
cross the cut. This might give a more accurate estimate, and thereby improve
the choice of cuts and further reduce the execution time of QsatCNF.

11 Test results

We ran QsatCNF on several benchmarks and have some test results. The
benchmarks were chosen as problems typical of well-known hardware verifi-
cation problems for which BDD’s perform well. Three such problems were
chosen, together with the problems from the IFIP problem set [19] which have
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been proposed as illustrative of the efficiency of BDD’s.

The general way to convert a problem to conjunctive normal form is as fol-
lows: Suppose one has a circuit C to compute a Boolean function f . Cor-
responding to this circuit there is a Boolean expression BC(X,Y, Z) where
X are the input variables, Y are the internal variables, and Z are the out-
put variables of the circuit. Then BC(X, Y, Z) ⊃ (Z = f(X)). The formula
(BC(X, Y, Z) ∧ BD(X,W, V )) ⊃ Z = V is valid iff C and D are equivalent
circuits. To show that circuits C and D are equivalent, one negates the for-
mula (BC(X, Y, Z) ∧ BD(X,W, V )) ⊃ Z = V , converts it to conjunctive nor-
mal form, and shows that the resulting formula is unsatisfiable. A structure-
preserving translation is used to avoid an exponential increase in size due to
the conjunctive normal form translation. Also, n-ary conjunctions and disjunc-
tions are expressed in terms of binary conjunctions and disjunctions in order to
produce smaller clauses. The ordering of the variables in the resulting formula
is defined systematically in terms of a natural ordering on the input variables
for the problems “cmpadd,” “maxmin,” and “barrel”; in general, variables
that depend on larger input variables end up larger in the ordering.

In the following tables, for each problem, the maximum and average cost of
a cut is given, both with variables renumbered to reduce these costs and for
the original problem. The number of Boolean variables and the run times
for QsatCNF, the time taken by QsatCNF after renumbering the variables,
and the run times for GRASP, SATO, and BDD’s (2 versions) are also given.
BDD1 indicates the SMV tool[12] with BDD’s constructed using MTBDD’s
(multiterminal BDD’s) as intermediates, which is the default. This can be
time consuming, so BDD2 gives a version of SMV with another faster method
(SMVFlatten) for creating the Boolean function from which BDD’s are con-
structed. In the tables, QSAT indicates QsatCNF. For the IFIP problems,
only QsatCNF was run, and the g (GROW) parameter was varied in some
cases. This flag controls the maximum bound on lemma size. In these tables,
(nr) indicates that no variable reordering was done, and NA indicates that
a problem was not attempted. All problems were run on a Pentium II 450
running Linux, except that BDD’s were run on SMV on a Pentium III (Cop-
permine) 730 Mhz, running Linux. Default parameters for QsatCNF were used
on all problems, including the default reordering routine, except that in some
cases it was specified that no reordering should be done and in some cases the
GROW parameter was varied. Default parameters were also used for GRASP,
SATO, and BDD’s. Sometimes the cut costs are not affected by renumber-
ing (reordering) the variables, because if the renumbering is not giving small
cuts, the renumbering heuristic gives up quickly to save time and the original
variable ordering is used instead.
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max avg max avg

problem cut cut cut cut vbls

renumbered original

cmpadd8-src2 10 6 19 10 289

cmpadd16-src2 12 7 22 13 629

cmpadd32-src2 14 9 25 15 1345

cmpadd64-src2 18 11 28 18 2845

cmpadd64-src4 18 11 20 14 2841

maxmin16-mpc 56 31 114 64 666

maxmin20-mpc 67 35 142 79 838

maxmin24-mpc 76 40 170 95 1010

maxmin28-mpc 93 48 198 100 1182

maxmin29.cnf 344 200 344 200 4554

dpmaxmin10 6 4 6 4 62

dpmaxmin30 6 4 6 4 182

dpmaxmin50 6 4 6 4 302

dpmaxmin100 6 4 6 4 602

dpmaxmin200 6 4 6 4 1202

dpmaxmin300 6 4 6 4 1802

dpmaxmin400 6 4 6 4 2402

dpmaxmin500 6 4 6 4 3002

barrel8-sc 26 17 218 126 309

barrel16-sc 56 36 755 425 1006

barrel16-sc 56 36 755 425 1550

barrel32-sc 2336 1288 2336 1288 4639

barrel32-sc 2336 1288 2336 1288 4639

barrel64-sc

Table 1
Characteristics for several long thin problems.
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QSAT GRASP SATO BDD1 BDD2

problem total a. r.

times in seconds

cmpadd8-src2 .23 0.19 0.19 0.05 0.01 0.01

cmpadd16-src2 1.57 1.38 2.05 1.09 0.01 0.02

cmpadd32-src2 2.35 1.58 58.76 NA 0.02 0.03

cmpadd64-src2 5.90 2.70 640.32 NA 0.09 0.06

cmpadd64-src4 4.23 2.41 NA NA NA NA

maxmin16-mpc 1.01 0.81 0.12 14.30 0.01 0.01

maxmin20-mpc 1.45 1.14 0.21 88.78 0.01 0.01

maxmin24-mpc 3.45 3.04 0.26 NA 0.02 0.02

maxmin28-mpc 4.76 4.24 0.46 NA 0.02 0.02

maxmin29.cnf 7.04 4.04 1.65 NA NA NA

dpmaxmin10 0.01 0.01 0.01 0.01 0.01 0.01

dpmaxmin30 0.17 0.15 0.19 0.49 0.02 0.03

dpmaxmin50 0.25 0.19 0.67 5.18 0.06 0.07

dpmaxmin100 0.45 0.34 5.57 74.95 0.22 0.28

dpmaxmin200 0.87 0.54 56.66 NA 1.24 1.61

dpmaxmin300 1.40 0.67 210.59 NA 4.27 5.54

dpmaxmin400 2.14 0.90 505.97 NA 10.95 13.6

dpmaxmin500 3.04 1.17 NA NA 22.81 28.8

barrel8-sc 0.11 0.02 0.02 0.01 0.01 0.01

barrel16-sc 1.12 0.21 0.18 0.11 0.03 0.07

barrel16-sc 0.18(nr)

barrel32-sc 6.73 2.23 1.53 2.90 0.27 0.53

barrel32-sc 2.10(nr)

barrel64-sc NA NA NA NA 81.67 3.91

Table 2
Results for several long thin problems.
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max avg max avg QSAT QSAT QSAT

problem cut cut cut cut vbls g=250 g=100 g=10

renumbered original times in seconds

add4.11.clause 12 7 53 33 163 0.29 NA NA

add4.10.clause 15 10 49 30 150 0.30 NA NA

add4.9.clause 16 10 45 28 137 0.27 NA NA

add4.8.clause 12 8 41 25 124 0.21 NA NA

add4.7.clause 13 8 37 23 109 0.10 NA NA

add4.6.clause 13 8 33 20 96 0.13 NA NA

The rest are all under 0.5 seconds, too.

addsub.14.clause 10 6 44 24 113 0.13 NA NA

addsub.13.clause etc. all under 0.5 seconds, too

mul7.9.clause 17 10 24 14 64 0.07 NA 0.04(nr)

mul7.8.clause 19 11 32 18 94 0.85 NA 0.13(nr)

mul7.7.clause 22 13 42 24 130 16.05 4.05(nr) 0.55(nr)

mul7.6.clause 23 15 50 28 164 NA NA 1.66(nr)

mul7.5.clause 22 16 56 31 194 NA NA 3.45(nr)

mul7.4.clause 25 17 60 33 218 NA 181.4(nr) 5.13(nr)

mul7.3.clause 25 17 63 35 236 NA NA 4.99(nr)

mul7.2.clause 23 17 65 36 248 NA NA 2.90(nr)

mul7.1.clause 24 17 66 37 254 8.98 NA 1.67(nr)

mul7.0.clause 24 17 66 37 254 0.99 NA 0.55(nr)

mul8.0.clause 27 19 84 47 338 10.45 NA 2.02(nr)

mul8.1.clause 27 19 84 47 338 > 48 sec NA 9.63(nr)

mul8.2.clause 26 19 83 46 332 NA NA 17.93(nr)

rip6.all.clause 9 5 24 13 43 0.21 NA NA

rip8.all.clause 10 6 31 17 55 0.18 NA NA

add3.all.clause 21 14 42 25 135 1.67 NA NA

mul4.all.clause 23 15 27 18 96 0.17 NA NA

bf1355-315.cnf 269 204 269 204 2287 1.21 NA NA

ssa0432-001.cnf 47 30 108 72 435 0.15 NA NA

Table 3
Results for IFIP and other problems 35



11.1 Statistics for QsatCNF

The cmpadd8-src2, cmpadd16-src2, . . . problems involve showing that a ripple-
carry adder with some number of bits (8, 16, . . .) is equivalent to a carry look-
ahead adder. The cmpadd8-src4, cmpadd16-src4, . . . problems are similar but
with a different variable ordering. Both series of problems use a structure-
preserving translation so that the maximum number of variables per clause is
three. The test results for these problems are given in Table 1 and Table 2. It
is interesting that cmpadd64 with a good renumbering can have an average
cost of cut of only 11; some of our other renumberings reduced this value to
8. This suggests that problems on which BDDs are fast are typically very thin
with a proper variable ordering. QsatCNF has a much slower rate of growth
than SATO or GRASP on these problems, and takes only a few seconds, but
is still slower than BDD’s.

The “maxmin” problems have been described above. The “mpc” versions have
large costs of cuts, but many of them are solved quickly anyway because
QsatCNF essentially calls SATO once on the whole problem or a large portion
of it. SATO is slower here largely because its default value for the GROW
parameter is small.

The “dpmaxmin” problems are the maxmin problems with the ordering given
in section 9. These problems have a maximum clause size of four. The cuts
have very small cost, indicating the importance of the problem formulation
and the ordering. The test results for the maxmin and dpmaxmin problems
can also be found in Table 1 and Table 2. Here again QsatCNF far outperforms
SATO and GRASP, and gives small solution times. In this case, QsatCNF is
even faster than BDD’s for very large problems..

The “barrel-sc” problems formalize a barrel shifter and specify that one bit
of the X register is shifted properly for all values of the S register. These
examples are solved fast by QsatCNF, GRASP, and SATO, though the cut
costs before renumbering are very large. This is because QsatCNF simply
calls SATO on the whole problem, and the basic Davis and Putnam procedure
works well on these problems. Though BDD’s perform well, they begin to blow
up for the 64 bit case, at least when MTBDD’s are used as intermediates..
Note how dramatically the reordering heuristic reduces the cut costs.

The add4, addsub, mul7, mul8, and rip problems are all taken from the IFIP
benchmarks [19]. The clause form of these problems was provided by Stickel
and Uribe. Without knowing a good ordering on the input variables, it was dif-
ficult to order the variables, but the problems are generally easy nonetheless.
Many of these problems have small cut widths using our renumbering. Some-
times, as in the mul7 and mul8 problems, the performance depends highly on
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the lemma size bound g. However, this does not reveal anything particular to
QsatCNF, but rather general properties of the Davis and Putnam algorithm,
because SATO is called once on essentially the whole problem, due to the
large costs of the cuts. These test results are found in Table 3. These tests
show that for a satisfiability checker to perform well on problems suited to
BDD’s, sometimes it is necessary to choose the g parameter carefully. Perhaps
choosing g small when cut costs are small is a good general heuristic.

We also tried a couple of randomly chosen problems from the DIMACS set
[24]. These had large cut costs, but in both cases QsatCNF essentially called
SATO on the whole problem and in this way solved both problems quickly.
Note however that the “ssa” problem with reordering of variables, has small
cut costs. These problems are also given in Table 3.

The renumberings used for the IFIP and DIMACS examples were often done
without considering a good ordering on the input variables of the circuit. This
information could lead to better variable orderings and better performance for
QsatCNF. Since BDDs make use of variable orderings, this information could
easily be supplied to QsatCNF as well.

In general, QsatCNF appears to be sufficiently fast on all examples tried where
BDDs are fast. The run times were at most a few seconds. Thus DPLL type
methods (including QsatCNF) appear to be competitive with BDDs on a few
problems typical of those encountered in hardware verification. QsatCNF is
often much faster than SATO and GRASP on long thin problems, and some-
times even faster than BDD’s. It is also of interest to note that many of these
problems have small cut costs, especially when the variables are reordered,
indicating that methods specialized for small cut costs may have significant
applicability. Futhermore, even our simple heuristic for minimizing cut costs
was able to find orderings giving small cut costs in a few seconds at most; this
suggests that finding a good variable ordering is not a significant difficulty. Of
course, much better variable ordering routines may exist, such as that used in
[18], further reducing the costs of the cuts and increasing the applicability of
QsatCNF.

12 Other methods

We now discuss the augmented sum method presented by Truemper in Chapter
11 of his book [25]. This method is expressed in matrix terms, but solves a
satisfiability problem essentially by eliminating variables and clauses from a
set of clauses and adding a set of constraints to express the effect of the
eliminated variables and clauses. This gives a reduced problem which can be
solved directly or in the same way, by additional augmented sum solutions.
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The differences between the augmented sum method and QsatCNF are the
following:

(1) The augmented sum method eliminates both clauses and variables, while
QsatCNF eliminates only variables. Hence we will consider the version of
the augmented sum method that eliminates only variables.

(2) The augmented sum method eliminates all clauses containing eliminated
variables and adds new variables corresponding to the subsets of clauses
consisting of eliminated variables. One such new variable is added per
clause. In contrast, QsatCNF adds no new variables.

(3) The augmented sum method adds new clauses relating the new variables
to the remaining variables. QsatCNF adds new clauses but they only
mention remaining (non-eliminated) variables.

Since the reduced problem in the augmented sum method might actually have
more clauses than the original problem, the method is not applied to cuts
that would lead to this result. However, QsatCNF may be applied even when
the number of clauses increases dramatically during the elimination of some
variables. There are some other differences between the two methods relating
to the manner in which backtracking is done and the manner in which new
clauses are expressed. However, the basic philosophy of the two methods is
similar.

There is another method which can be polynomial on thin systems, namely,
the strategy0 option of SATO. We now discuss this option and prove that if
lemmas are generated properly, it runs in polynomial time on log width sets
of clauses. As in theorem 8, this shows that this option can be exponentially
faster than OBDDs on some problems. However, in practice, this setting is
sometimes exponential for SATO, and we discuss the reasons for this. The
strategy0 option is the one in which variables in DPLL are chosen for splitting
in their numerical order. Recall that the (cut) width of a set S of clauses is
the maximum cost of an ordered cut of S.

For this analysis we give a simplified version of the DPLL[7] algorithm, but
the same analysis applies in general to DPLL. Recall that DPLL is the method
in which case analysis is used to eliminate variables that cannot be removed
by other methods; in the original Davis and Putnam paper [6] resolution was
used for this purpose. In our simplified version of the DPLL algorithm, we use
a LIFO stack s to hold a sequence of literals representing the current inter-
pretation. Whenever DPLL is called, a literal is pushed onto s, and whenever
DPLL returns, a literal is popped off s. The sequence of calls to DPLL can be
thought of as constructing a binary tree of partial interpretations and search-
ing it depth-first. A stack s can also be thought of as a node in this binary
tree. At the top level, DPLL is called with an empty stack.
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Let I(s) be the (partial) interpretation making all literals on the stack true.
Thus a variable x is satisfied by I(s) if x is on s, x is falsified by I(s) if −x is
on s, and neither is true otherwise. We say that a set S of clauses is falsified
by I(s) if for some clause C in S, every literal L in C appears negated on s.
This is also written “S|I(s) contains the empty clause.” If this is true we call s
a conflict node for S. We also say that I(s) falsifies C in this case. When this
happens, DPLL backtracks and tries another possibility. We call push(x,s)
and push(¬x, s) children of s if neither x nor ¬x appear on s. We also call
push(x, s) and push(¬x, s) siblings of each other.

We assume there is a lemma generation procedure lemma(s, S) which if S|I(s)
is unsatisfiable returns a clause such that:

if S is falsified by I(s)

then lemma(s, S) is a clause C in S that is falsified by I(s), else

if x is not in lemma(push(x, s),S)

then lemma(s, S) = lemma(push(x, s),S) else

if ¬x is not in lemma(push(¬x, s),S)

then lemma(s, S) = lemma(push(¬x, s),S) else

lemma(s, S) = (lemma(push(x, s),S) - {x}) ∪ (lemma(push(¬x, s),S) - {¬x}).

We note that

(1) lemma(s, S) is a logical consequence of S
(2) lemma(s, S) is falsified by I(s)
(3) for every literal L in lemma(s, S) there is a clause C in S containing L

such that the variable in top(s) or some larger variable appears in C.
(4) if S is falsified by I(s) then lemma(s, S) is a clause C in S

Note also that the only time a new lemma is derived is when S is not falsified
by I(s) and x is in lemma(push(x, s),S) and ¬x is in lemma(push(¬x, s)).

We also assume that the variables are linearly ordered and that S is of width
w with respect to this ordering, that is, if a clause C in S contains both the
ith and jth variable in this ordering, then |i − j| ≤ w. It follows from the
third item above that lemma(s, S) has at most w literals in it. The procedure
DPLL(s, S) is as follows:
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procedure DPLL(s, S) [[ test if S|I(s) is satisfiable ]]

if S|I(s) contains the empty clause then return false else

if(all variables in S appear on s) then return true else {

let x be the smallest variable in S that does not appear on s;

if DPLL(push(x, s),S) then return true else

if x is not in lemma(push(x, s),S) then return false else

if DPLL(push(¬x, s),S) then return true else

{if ¬x is in lemma(push(¬x, s) then S ← S∪ {lemma(s, S) };

return false};

}

end DPLL;

Note that a lemma can be added to S at most once. This is because after a
lemma C is added to S, if I(s) falsifies C, then DPLL(s, S) will determine that
S|I(s) contains the empty clause and in this case no new lemmas are added to
S. Furthermore, whenever a lemma C is added to S, it must be the case that
I(s) falsifies C.

Theorem 9 If S is of width w then the run time for DPLL(λ,S) with lemma
generation on S as described above is O(ncw) where n is the number of vari-
ables in S and c is a constant and λ is the empty stack.

Proof. Let us say that (s, S) is top-free if lemma(s, S) does not contain the
complement of top(s). Now, if S|I(s) contains the empty clause, then (s, S) is
not top-free because in this case every literal in lemma(s, S) appears comple-
mented on s, and if (s, S) were top-free then DPLL would have backtracked
before reaching s. Furthermore, if (push(x, s),S) and (push(¬x, s),S) are both
not top-free, then lemma(s, S) is a new lemma that is added to S. Therefore
if push(x, s) and push(¬x, s) are both conflict nodes for S, then lemma(s, S)
is a new lemma.

It follows that if S has width w, then the number of s for which push(x, s)
and push(¬x, s) are both conflict nodes for S, is bounded by 3w. If we think of
the DPLL search as a binary tree, then push(x, s) and push(¬x, s) are sibling
nodes that are both leaves of the tree. One can show that the number of nodes
in a binary tree of height h having at most k such sibling leaf nodes is O(hk).
Therefore the number of calls to DPLL is O(n3w) where n is the number of
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variables. q.e.d.

Corollary 12.1 If the set of clauses has O(log(n)) width then DPLL with
lemma generation as described runs in polynomial time.

To obtain this result it is only necessary to generate new lemmas when both
S|I(push(x,s)) and S|I(push(¬x,s)) contain the empty clause. Some of our test re-
sults (not included) showed that SATO is not polynomial with the strategy0
option; this suggests that SATO’s lemma mechanism differs from that de-
scribed above. Therefore modifying SATO to achieve the polynomial time
bound could already introduce a slowdown into SATO because of the extra
work to generate this kind of lemma, and because of the additional lemmas
that would be generated. This modified version of DPLL would have all lem-
mas from all levels stored together, further increasing the number of lemmas.
QsatCNF often does 30 or more variable elimination rounds. Thus DPLL with
the strategy0 flag and lemma generation as indicated above would have per-
haps 30 times as many lemmas as QsatCNF, probably a lot more because it
would also be necessary to modify SATO’s lemma mechanism. SATO has to
go through all lemmas and clauses containing a given variable a number of
times on every step, so these extra lemmas might slow it down. Also, all these
lemmas could make this version of DPLL use a lot more storage. These extra
lemmas might make the cache behavior much worse as well; QsatCNF only
works on a small number of variables at a time, and might have better cache
performance. Still, the strategy0 option deserves looking into.

We now discuss some other related papers. A discussion of the efficiency of
the original version of Davis and Putnam’s method (which essentially performs
ordered resolution) can be found in [26]. The authors show that this method
is efficient for long, thin circuits and give some complexity bounds. In fact,
the complexity bounds given for QsatCNF also apply to ordered resolution
(with 2w replaced by aw for some constant a). The authors also show how to
construct a model of the set of clauses if it is satisfiable. The authors give a
number of heuristics for choosing a variable ordering in order to make ordered
resolution efficient. In addition, they consider two combinations of Davis and
Putnam’s method with resolution. The first one simply bounds the size of the
resolvents that are kept, and is incomplete. The second one involves finding
a cut set, a set of variables that disconnects the problem into two parts, and
considering truth assignments to the cut variables. For each such assignment,
resolution can be done on the two remaining parts, or they can be split again.
This combination is complete. Neither approach is the same as QsatCNF,
although QsatCNF does have some similarities to ordered resolution.

The paper [27] presents a satisfiability tester for unquantified Boolean formulae
similar to Stalmarck’s method. This method is not similar to QsatCNF either,
but the paper is interesting and gives some cases where satisfiability testers far

41



outperform BDDs. QsatCNF would probably do very well on such problems
compared to BDDs, too.

Another approach to handling quantified Boolean formulae is the Q-resolution
of Kleine-Buening [28]. This is a version of resolution that operates on clauses
whose literals can be quantified Boolean formulae. It permits the removal of
universally quantified Boolean variables during the resolution operation. This
would not apply to Qsat on clause form formulae because all variables are
either existentially quantified (the variables Y ) or free variables (X) whose
universal quantifier is outside the scope of the resolution operations. Also,
Qsat has a global approach to choosing which resolutions are necessary.

Another variant of BDDs are the zero-suppressed OBDDs (ZBDDs) [29] in
which a value of zero is assumed as the default and the characteristic function
of the non-zero set is described. In [30], ZBDDs are used to represent very
large sets of clauses. It is shown that the original Davis and Putnam method
(ordered resolution) can sometimes be very efficient when ZBDDs are used to
represent the set of clauses obtained after each group of ordered resolutions
on a maximal variable. This method can work very well when the original set
of clauses has a simple structure, permitting sets of ordered resolvents to be
represented by small ZBDDs. On such sets, this approach can far outperform
the DPLL method.

The paper [31] gives comparisons between DPLL and BDDs on the IFIP
benchmarks. However, most of these problems are very easy for QsatCNF.

13 Discussion

Some theoretical results show that Qsat is efficient on a class of quantified
Boolean formulae related to symbolic model checking. Both theoretical and
empirical results show the superiority of QsatCNF over DPLL and BDD’s on
some problems. The theoretical results show that QsatCNF has a smaller worst
case bound than DPLL and BDD’s on “long and thin” problems. An example
was given on which BDD’s are exponentially slower than QsatCNF. The em-
pirical results show that the QsatCNF implementation is often dramatically
faster than GRASP and SATO on long, thin problems, and sometimes faster
than BDD’s. It is also well known that DPLL itself is often much faster than
BDD’s on problems with large cut widths; QsatCNF would have a similar be-
havior on these problems because it would just call DPLL once on the whole
problem.

The fact that many of the problems examined have small cut costs suggests
that such problems may be common. The fact that even our variable reordering
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routine was often able to find good orderings suggests that in many cases,
finding a good variable ordering is not a problem. Even in the paper [18],
many of the problems considered had a small cut width and finding a good
variable ordering was not difficult. Furthermore, if one has a knowledge of
the overall structure of a problem, one can often devise a significantly better
variable ordering.

One advantage of Qsat is that one has some a priori measure of how well
Qsat will perform on a quantified Boolean formula, given by the minimum k
for which the formula is k width bounded. This means that one can attempt to
preprocess the formula to reduce k and make Qsat more efficient, or not use
Qsat on unsuitable formulae. In the same way, the cut width of a clause form
formula gives an a priori measure of the efficiency of QsatCNF. One need not
even use QsatCNF on formulae or variable orderings that are unsuitable, and
the suitability of a formula or variable ordering can be precalculated without
human guidance. By the same reasoning, one can generate many variable or-
derings by different techniques and pick the “best” one systematically. Perhaps
it is not so simple to compute a suitability measure for BDD’s in advance, to
help in the choice of formulae or variable orderings to use.

A question that remains is how “thin” does a formula have to be for Qsat

and QsatCNF to be efficient. The “dpmaxmin” examples are extreme, in that
the average cut width is only 4, and there are thousands of variables. Even
if QsatCNF is superior on such problems, there may not be many problems
having such an extreme structure. On the other hand, the QsatCNF imple-
mentation makes heavy use of file i/o to communicate between the rounds.
If this were eliminated, and the implementation optimized in other ways, it
might be competitive even on problems whose cut width was not so small.

Undoubtedly there will continue to be improvements in the basic DPLL proce-
dure, and some of these new procedures may be as fast or faster than QsatCNF

on long and thin formulae. However, QsatCNF can be implemented on top of
any DPLL procedure, and so it can be made more efficient at the same time.
Furthermore, assuming these faster DPLL procedures still have an exponen-
tial worst-case bound, QsatCNF will still have a better worst case bound on
long and thin formulae.

14 Conclusions

The Qsat algorithm for testing satisfiability of quantified Boolean formulae
has been presented and analyzed on a class of quantified Boolean formulae
related to symbolic model checking. A specialization QsatCNF of this algo-
rithm to clause form formulae has been given and analyzed theoretically. This
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method eliminates variables from a set of clauses using a DPLL - like method
[7]. A theoretical result showing that QsatCNF can be exponentially faster
than BDDs is also given. The same result applies to ordered resolution [6],
but QsatCNF is much faster than ordered resolution on some problems be-
cause it is based on DPLL which is often much faster than ordered resolution.
The strategy0 option of SATO is analyzed theoretically and shown to be poly-
nomial on log width circuits if lemma generation is done properly. In fact, the
complexity bounds for QsatCNF also apply to the strategy0 option of SATO
if lemma generation is done properly. This implies that the strategy0 option
of SATO can be exponentially faster than BDD’s on some examples, if lemma
generation is done properly. However, modifying SATO in this way might incur
a time or space penalty.

Though the results of this paper are mainly theoretical, test results of an imple-
mentation suggest that QsatCNF may be fast enough to be practical on clause
form formulae obtained from problems for which BDDs are fast. QsatCNF is
often dramatically faster than GRASP and SATO on the problems tested,
and sometimes even faster than BDD’s. There may be many problems on
which QsatCNF is superior to both DPLL and BDD’s, because most tests
were done on problems that are ideal for BDDs. Some suggestions for improv-
ing the QsatCNF implementation are given; a better implementation may be
significantly faster.

A number of related previous works are discussed, and none appear to be
identical to QsatCNF. The closest is the augmented sum method presented
by Truemper [25]. Applications of Qsat and QsatCNF to symbolic model
checking are given, and it is possible that these procedures could also be of
practical use on problems from this domain.
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