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Abstract

Satisfiability Modulo Theories (SMT) refers to the problem of deciding the satis-
fiability of a first-order formula with respect to one or more first-order theories.
In many applications of hardware and software verification, SMT solvers are
employed as back-end engine to solve complex verification tasks that usually
combine multiple theories, such as the theory of fixed-size bit-vectors and the
theory of arrays. This thesis presents several advances in the design and imple-
mentation of theory solvers for the theory of arrays, uninterpreted functions and
quantified bit-vectors.

We introduce a decision procedure for non-recursive non-extensional first-order
lambda terms, which is implemented in our SMT solver Boolector to handle the
theory of arrays and uninterpreted functions. We discuss various implementation
aspects and algorithms as well as the advantage of using lambda terms for array
reasoning. We provide an extension of the lemmas on demand for lambdas
approach to handle extensional arrays and discuss an optimization that improves
the overall performance of Boolector.

We further investigate common array patterns in existing SMT benchmarks
that can be represented by means of more compact and succinct lambda terms.
We show that exploiting lambda terms for certain array patterns is beneficial
for lemma generation since it allows us to produce stronger and more succinct
lemmas, which improve the overall performance, particularly on instances from
symbolic execution. Our results suggest that a more expressive theory of arrays
might be desirable for users of SMT solvers in order to allow more succinct
encodings of common array operations.

We further propose a new approach for solving quantified SMT problems,
with a particular focus on the theory of fixed-size bit-vectors. Our approach
combines counterexample-guided quantifier instantiation with a syntax-guided
synthesis approach to synthesize interpretations for Skolem functions and terms
for quantifier instantiations. We discuss a simple yet effective approach that does
not rely on heuristic quantifier instantiation techniques, which are commonly
employed by current state-of-the-art SMT procedures for handling quantified
formulas. We show that our techniques are competitive compared to the state-of-
the-art in solving quantified bit-vectors and discuss extensions and optimizations
that improve the overall performance of our approach.
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Zusammenfassung

Das “Satisfiability Modulo Theories (SMT)” Problem beschéftigt sich mit der Er-
fiillbarkeit von Formeln in Pradikatenlogik erster Stufe unter Beriicksichtigung
einer oder mehrerer Theorien. In vielen Anwendungen im Bereich der Hardware
und Software Verifikation werden SMT Prozeduren (auch SMT Solver genannt)
als Backend verwendet um komplexe Verifikationsprobleme zu lsen, die iiblicher-
weise mehrere Theorien kombinieren, wie z.B. die Theorie der Bitvektoren mit
der Theorie der Arrays. Diese Dissertation beschéftigt sich mit Entscheidungs-
prozeduren fiir die Theorie der Arrays kombiniert mit nicht-interpretierten Funk-
tionen und fiir Bitvektoren in Kombination mit Quantoren.

Wir stellen eine Entscheidungsprozedur fiir nicht-rekursive, nicht-extensionale
Lambdaterme erster Stufe vor, welche in unserem SMT Solver Boolector fiir die
Theorie der Arrays kombiniert mit nicht-interpretierten Funktionen zum Ein-
satz kommt. Wir beschreiben unterschiedliche Implementierungsaspekte und
Algorithmen und diskutieren die Vorteile von Lambdatermen in Bezug auf die
Darstellung von Arrays. Zusétzlich stellen wir eine Erweiterung fiir unsere
Entscheidungsprozedur vor, die uns ermoglicht mit Gleichheit von Arrays, die
als Lambdaterme dargestellt werden, umzugehen und beschreiben eine Opti-
mierung, die im Allgemeinen die Laufzeit von Boolector verbessert.

Weiters beschéftigen wir uns mit unterschiedlichen Array Strukturen, die in
existierenden SM'T Benchmarks zum Einsatz kommen und die mit Lambdater-
men kompakter dargestellt werden konnen. Wir zeigen, dass die alternative
Darstellungsform mit Lambdatermen die Erzeugung von besseren und stérkeren
Lemmas in unserer Entscheidungsprozedur ermoglicht. Dies hat zur Folge, dass
die Performanz besonders auf Benchmarks, die durch symbolische Programmaus-
flihrung erzeugt wurden, wesentlich gesteigert werden kann.

Im letzten Teil dieser Dissertation beschéftigten wir uns mit einem neuen
Ansatz zum Losen von quantifizierten SMT Problemen mit Fokus auf quan-
tifizierten Bitvektoren. Unser Ansatz kombiniert eine Technik namens “counter-
example-guided quantifier instantiation” mit einer Technik aus dem Bereich der
Synthese um Interpretationen fiir Skolemfunktionen und Terme fiir die Instan-
tiierung von Quantoren zu synthetisieren. Unsere Ergebnisse zeigen, dass unser
Ansatz zum Lésen von quantifizierten Bitvektoren im Vergleich zum aktuellen
Stand der Technik kompetitiv ist. Weiters beschreiben wir eine Erweiterung und
einige Optimierung fiir unseren neuen Ansatz, der im Allgemeinen die Perfor-
manz wesentlich verbessert.
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Chapter 1

Introduction

In many applications in the field of formal methods for hardware and software
development it is required to reason about specific domains such as integers,
reals, bit-vectors or data structures. For example, one might ask if the statement
T+ 1y < 42 with £ > 42 and y > 42 is true. An likely immediate response would
be “no, this can not be true”. However, this entirely depends on the domain
of z, y and 42. If they are integers the statement is false. However, if they
are bit-vectors, the statement is true since bit-vector arithmetic has overflow
semantics and the result of arithmetic operations on bit-vectors of size n is always
modulo 2". For example, if a bit-vector addition of two bit-vectors exceeds the
maximum value that can be represented with the given size of the bit-vector,
the value “wraps around” and starts with value 0 again. Consequently, the
above statement is true in the domain of bit-vectors if x = 42 and y = 255 and
both are of size 8, which yields value 41. As this example shows, in order to
allow correct and meaningful reasoning within a domain it is important to define
precise semantics, which can be formalized as first-order theories.

The Satisfiability Modulo Theories (SMT) problem is to decide if a first-order
formula is satisfiable with respect to one or more of these first-order theories.
Combinations of theories very often include the theory of arrays since it provides
a natural way to model memory and actual array data structures. It defines two
operations to access and update the contents of an array at a given position and
allows reasoning on single array indices and elements. However, it lacks support
to succinctly model common array operations such as memset and memcpy as
defined in the standard C library, which modify multiple indices simultaneously.

In this thesis, we explore alternative ways to reason about arrays in SMT,
in particular by utilizing non-recursive first-order lambda terms. This allows us
to efficiently model array initialization and array update operations without the
need to introduce universal quantifiers. For example, if we want to initialize n
consecutive elements of array a with value ¢ starting from index ¢, there are two
obvious ways of modelling this. If size n is fixed, e.g., n = 4, we can assert
value ¢ for each element from index ¢ up to ¢ + 3:

alil =cAafi+1]=cAhali+2]=cAhali+3]=c

However, there are two issues with this representation. First, if n is a large
number, e.g., if the whole array should be initialized, it produces a large number
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of the constraints above. Second, if n is not fixed it is not possible to specify the
value for each index separately without using universal quantifiers. With quan-
tifiers, however, the update operation can be specified by means of a universally
quantified formula as follows.

Ve (i<z<i+n—alz]=c)

Lambda terms, on the other hand, enable us to use a functional representation for
arrays, which allows us to model the state of array a after the update operation
as follows.

Az .ite(i <z <i+n, c, alz])

The above lambda term yields value c if it is accessed within index range 7 and
i+ n, and an unmodified value a[z] otherwise. The advantage of using lambda
terms is their compact and succinct representations for various common array
operations without the need for quantifiers. However, to natively handle such
lambda terms, a specialized SMT procedure is required.

In this thesis, we present a new decision procedure based on lemmas on de-
mand as presented in [11], which is a lazy SMT approach that iteratively refines
an abstraction of the input formula with lemmas until convergence. Our proce-
dure lazily handles non-recursive non-extensional first-order lambda terms. We
discuss various implementation aspects and algorithms and show how lambda
terms can be used for representing arrays and provide an extension to handle
extensional arrays represented as lambda terms and discuss optimizations that
improve the overall performance of the procedure. We further investigate var-
ious array patterns that occur in existing SMT benchmarks and extract and
represent them as lambda terms. Extracting such patterns not only yields more
compact representations, but it enables us to generate stronger and more suc-
cinct lemmas. As a consequence, this considerably improves the performance of
our procedure. We describe several patterns that we found in existing bench-
marks and provide algorithms to detect these patterns. Our results suggest that
extending the theory of arrays with certain common array operations might be
desirable for users of SMT solvers since they provide more succinct encodings of
common array operations.

While non-recursive first-order lambda terms allow us to model various ar-
ray operations in a compact way, it is not possible to specify relations between
array elements since lambda terms can only be used to model the state of an
array after some operation. As a consequence, we can not model arrays with
properties such as sortedness that can be expressed by means of quantifiers. In
this thesis, we present a new approach for solving quantified SMT problems that
does not rely on current state-of-the-art techniques such as heuristic quantifier
instantiation. We combine counterexample-guided quantifier instantiation (CE-
QGI) with a syntax-guided synthesis approach to synthesize models and terms
for quantifier instantiation. As a result, our approach is able to answer both
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satisfiable and unsatisfiable in the presence of universally quantified formulas.
In our experiments, we show that our approach is competitive with the current
state-of-the-art in solving quantified bit-vectors. We further discuss an extension
of our approach that allows us to generalize concrete counterexamples of CEGQI
and synthesize terms that can be used as candidates for quantifier instantiation.

This thesis consists of two parts and is organized as follows. In Chapter [2]
we briefly introduce the background of this thesis. We introduce SMT, some
theories of interest and give an overview on the current state-of-the-art in solving
quantified SMT problems. In Chapters we revisit and discuss several new
contributions to the peer-reviewed papers that are included as Chapters [7}[9] in
the second part of this thesis.

1.1 Contributions

The second part of this thesis consists of three peer-reviewed papers [51},52.|53|
whose main author is the author of this thesis. The included papers contain
small modifications compared to the original publications such as fixed typos,
layout changes and some minor notation adjustments. However, none of these
modifications affect the content of the publications.

Paper A. |51] Lemmas on Demand for Lambdas with Aina Niemetz and
Armin Biere. In Proceedings of the 2nd International Workshop on Design and
Implementation of Formal Tools and Systems (DIFTS 2013), affiliated to the
13th International Conference on Formal Methods in Computer Aided Design
(FMCAD 2013), Portland, OR, USA, 2013.

Chapter [7] includes Paper A, where we decribe a lemmas on demand deci-
sion procedure for non-extensional non-recursive first-order lambda terms. The
incentive for lambda terms in Boolector was given by A. Biere. M. Preiner de-
veloped and implemented the lemmas on demand procedure with contributions
from A. Niemetz. The procedure in Paper A was described by M. Preiner with
contributions from A. Niemetz. The experimental analysis was performed by
M. Preiner and A. Niemetz. The co-authors further contributed with discus-
sions and proof reading Paper A.

Paper B. [52]| Better Lemmas with Lambda Extraction with Aina Niemetz and
Armin Biere. In Proceedings of the 15th International Conference on Formal
Methods in Computer Aided Design (FMCAD 2015), pages 128-135, Austin,
TX, USA, 2015.

Chapter [8| includes Paper B, where we focus on finding and extracting com-
mon array patterns that occur in existing SMT benchmarks to represent them
as lambda terms. The idea to extract array patterns as lambda terms was by
M. Preiner. The pattern extraction was developed and implemented in Boolec-
tor by M. Preiner. The techniques in Paper B were described by M. Preiner
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with contributions from A. Niemetz. The co-authors further contributed with
discussions and proof reading Paper B.

Paper C. |53] Counterexample-Guided Model Synthesis with Aina Niemetz
and Armin Biere. In Proceedings of the 23rd International Conference on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS 2017),
17 pages, to appear, Uppsala, Sweden, 2017.

Chapter [9] includes Paper C, where we present a new technique for solv-
ing quantified SMT formulas with a particular focus on quantified bit-vectors.
Our technique combines counterexample-guided quantifier instantiation with a
syntax-guided synthesis approach to synthesize models. The main idea of Pa-
per C was by M. Preiner, who also developed and implemented the described
techniques in Boolector. The techniques in Paper C were described by M. Preiner
with contributions from A. Niemetz. The co-authors further contributed with
discussions and proof reading Paper C.



Chapter 2

Background

The Satisfiability Modulo Theories (SMT') problem is to decide the satisfiability
of first-order formulas with respect to one or more first-order theories. Examples
for first-order theories include the theory of equality, of reals, of integers, of
floating points, of fixed-sized bit-vectors, and of arrays. First-order theories serve
two main purposes. First of all they allow reasoning about particular domains
such as integers and bit-vectors. Secondly, while the satisfiability problem of
first-order logic (FOL) is in general undecidable, the satisfiability problem for
many first-order theories or fragments of theories is decidable, which allows to
develop specialized and efficient decision procedures. In this thesis we adopt the
notions and terminology of FOL and first-order theories in [4,9] with a particular
interest in the theory of fixed-size bit-vectors and the theory of arrays.

A first-order theory T consists of a signature X and a set of axioms A. A
signature X is a (possibly infinite) set of constant, function, and predicate sym-
bols, whereas the set of axioms A is a set of closed FOL formulas, which define
the meaning of the symbols in . Each symbol in ¥ is associated with an ar-
ity > 0 and a sort. We refer to function symbols with arity 0 as constant symbols
and call symbols occurring in 3 interpreted and all other symbols uninterpreted.
A Y-formula is constructed from the symbols in ¥ using logical connectives
(=, A, V, ...), first-order variables and quantifiers. A ¥-formula ¢ is satisfiable
modulo a theory T (T-satisfiable) if there exists a T-model (or model), i.e., a
mapping from constant, predicate and function symbols in ¥ to domain values,
that satisfies ¢ under the interpretation of theory 7'

Procedures for solving SMT (also referred to as SMT solvers) can be divided
into eager approaches and lazy |57] approaches. Eager SMT approaches translate
a given Y-formula into an equisatisfiable propositional formula while applying
various simplification techniques in order to reduce the size of the resulting for-
mula. For example, bit-blasting is an eager SMT approach, which translates a
bit-vector formula into an equisatisfiable propositional formula. This formula is
then converted into conjunctive normal form (CNF) using Tseitin transforma-
tion [61] and given to a SAT solver, i.e., a decision procedure for the satisfiability
problem of propositional logic. Lazy SMT approaches, on the other hand, are
based on the integration of a SAT solver with one or more theory solvers. The
SAT solver enumerates truth assignments of the Boolean abstraction of the input
formula while the theory solvers check the consistency of the theory-specific parts
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of the formula w.r.t. the current truth assignment. The majority of the current
state-of-the-art SMT solvers employ lazy SMT approaches based on either the
DPLL(T) framework [47] or lemmas on demand [5,/18].

In this thesis we focus on lemmas on demand, which we briefly introduce in
Section[2.3] In Chapter[7]we discuss a new lemmas on demand decision procedure
for non-recursive first-order lambda terms.

2.1 Theory of Fixed-Size Bit-Vectors

The theory of fixed-size bit-vectors provides a natural way of encoding bit-precise
semantics to reason about circuits and programs in hardware and software veri-
fication. A fixed-size bit-vector is a fixed-length sequence of binary values (bits)
and can be interpreted as signed or unsigned value, i.e., as a negative or positive
number. For example, 0011 is a bit-vector of size 4 and represents the natu-
ral number 3. The signed representation of a bit-vector is expressed via two’s
complement, e.g., 1101 is the 4-bit representation of -3 in two’s complement.
The size of a bit-vector is a strictly positive natural number and different sizes
correspond to different bit-vector sorts. As a consequence, the signature of the
theory of fixed-size bit-vectors is infinite.

Table depicts the set of bit-vector predicate and function symbols for the
theory of fixed-size bit-vectors as defined by the SMT-LIBv2 standard [4]. Note

Operator Signature Name

bvult Spn) X S}y — Bool unsigned less than
bvneg Sin] = S two’s complement
bvnot Sin] = S[n] bit-wise negation
bvand Sin] X Sn) = Sy bit-wise and

bvadd Sin] X Spu] = Sy addition

bvmul Sin] XS] = Sy multiplication
bvudiv S[n] X Sn] = Sy unsigned division
bvurem Sin X Sn) = Sy unsigned remainder
bvshl Sin] X Sn) = Sy logical shift left
bvlshr Sin] X S = Spy logical shift right
concat Sin] X Sim] = Spntm) concatenation
extract|i:j] Sin] = Sli—j+1] extraction (0 < j <i<n)

Table 2.1: Set of bit-vector operations as defined for the theory of fixed-size
bit-vectors in the SMT-LIBv2 standard. S}, corresponds to a bit-vector sort of
size n.
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that the bit-vector predicate and function symbols defined in Table 2.1] can be
combined to express other bit-vector operations not listed in the table. A set
of extensions to the theory of fixed-size bit-vectors is defined in the QF BV
logic of SMT-LIBv2, which includes additional arithmetic and bit-wise opera-
tions. Bit-vector arithmetic has overflow semantics, which means that given an
arithmetic operation on bit-vectors with size n, the result of the operation is
always modulo 2". For example, the addition of bit-vector values 0011 (3) and
1110 (14) yields value 0001 (1) since 3 + 14 = 17 mod 2* = 1.

The current state-of-the-art for solving quantifier-free bit-vector problems re-
lies on bit-blasting. In [39] it was shown that the satisfiability problem for
quantifier-free fixed-size bit-vectors is in general NExpTime-complete if a log-
arithmic encoding for the size of the bit-vectors is used (which is the case for
bit-vectors in the SMT-LIBv2 standard). Until these complexity results it was
often assumed that the satisfiability problem for quantifier-free bit-vectors is
NP-complete, which only holds if the size of the bit-vectors is unary encoded.

2.2 Theory of Arrays

The theory of arrays provides a natural way to reason about memory in hardware
and actual array data structures in software. It defines two operations read
and write to access and update the contents of an array at a given position.
The syntax read(a, i) represents the element of array a at index i, whereas
write(a, i, e) represents an array that is identical to array a except that it stores
element e at index 4. In [43]|, McCarthy originally proposed the main read-over-
write axioms, which axiomatize the read and write operations as follows.

Ya,i,j,e.(i = j — read(write(a, i, €), j) = e)
Va,i,j,e.(i # j — read(write(a, i, €), j) = read(a, j))

The first axiom states that accessing a modified array at the updated index i
yields the written element e. The second axiom asserts that the unmodified
element of the original array a at index j is returned if the modified index 7 is
not accessed.

The theory of arrays can be extended to support equality over arrays also
denoted as the extensional theory of arrays [60]. In addition to the above read-
over-write axioms it defines an axiom of extensionality, which is defined as fol-
lows.

Va,b.(a =b <> Vi.(read(a, i) = read(b, )))

The extensionality axiom states that if two arrays a and b are equal, then a and
b must store the same element at each index i. Consequently, if each index i of
arrays a and b store the same element, then a and b are equal.
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Various algorithms have been developed to determine the satisfiability of
quantifier-free formulas (ground formulas) over the (extensional) theory of ar-
rays [10}/11,[31,/60]. One of the current state-of-the-art algorithms employs the
so-called lemmas on demand approach and is implemented in our SMT solver
Boolector. The original lemmas on demand approach as described in [11] and
implemented in Boolector until version 1.5 won the QF _AUFBV divisions (bit-
vectors combined with arrays and uninterpreted functions) at the SMT compe-
titions in 2008, 2009, 2011 and 2012. The current lemmas on demand approach
as introduced in Chapter [7] and implemented in Boolector since version 1.6, is
a generalization of [11] to handle non-recursive first-order lambda terms, which
won the QF _ABV divisions (bit-vectors combined with arrays) at the SMT com-
petitions in 2014, 2015 and 2016. In the next section we will give an overview of
the general idea of lemmas on demand.

2.3 Lemmas on Demand

Lemmas on demand as in [5/18] is a variant of lazy SMT, which iteratively refines
a Boolean abstraction of the input formula with propositional lemmas until con-
vergence. This abstraction refinement process is similar to the counterexample-
guided abstraction refinement (CEGAR) approach [15], where an abstraction
of a formula is refined based on the analysis of spurious counterexamples. The
lemmas on demand approach as described in [11] and the approach currently
implemented in Boolector supports the quantifier-free theory of fixed-size bit-
vectors combined with the extensional theory of arrays. However, in contrast to
the Boolean abstraction used in [5}/18], the approaches described in [11}31,[32]
and the approach introduced in Chapter [7| uses a bit-vector abstraction (also
called bit-vector skeleton) of the input formula, which is refined with theory
(bit-vector) lemmas.

Figure [2.1] depicts a high level view of the lemmas on demand decision proce-
dure DPy as described in |11], which we generalize to non-recursive first-order
lambda terms in Chapter [7] In the first step of DPy, preprocessing is applied
to input formula ¢, which adds additional constraints to the formula that make
it easier to keep track of array inequalities. Given the preprocessed formula 7,
DP produces a bit-vector skeleton ay(7) of formula 7 by introducing fresh bit-
vector variables for each read operation in the formula. In case of extensionality,
formula abstraction further introduces a fresh Boolean variable for each equality
between arrays. In each step of the refinement loop, a decision procedure DPgy
for bit-vectors is used to determine the satisfiability of the refined bit-vector
skeleton ay(m) AE. If DPp returns unsatisfiable, DPa can immediately conclude
with unsat since () is an over-approximation of formula ¢. However, if DPy
returns satisfiable, it returns a candidate model o () (7) A &), which is checked
for consistency w.r.t. formula 7. In the consistency checking phase, DPa checks
if each previously introduced bit-vector and Boolean variable corresponding to

10
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Preprocessing T FOHHulFL
Abstraction

¢

ax(m)
5|2 ax(m) A ¢
8|<
£ l
Check sat
Consistency | a(ax(m) A €) DPg
| E -
=R <
S|a é
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Figure 2.1: General workflow of the lemmas on demand approach as imple-
mented in Boolector.

a read operation or an array equality is consistent with the underlying array
terms. If o(ax(m) A €) is consistent DPa concludes with sat. Otherwise, the
candidate model is spurious and a lemma [ is added to the set of formula refine-
ments £. This process is repeated until either the refined bit-vector skeleton is
unsatisfiable or the candidate model is consistent w.r.t the theory of arrays.

2.4 Quantifiers

In many applications of hardware and software verification, quantifiers are re-
quired to specify various properties of circuits and programs. For example,
quantifiers can be useful for specifying universal safety properties, capturing
frame axioms in software, defining loop invariants, or defining theory axioms for
a theory of interest that is not natively supported by an SMT solver. While the
majority of SMT solvers are able to efficiently handle quantifier-free formulas,
only a few of them support reasoning with quantifiers. Several decidable frag-
ments of first-order theories have been investigated in the past |1,|10}33]. How-
ever, the main problem is that quantifiers in SMT are in general undecidable
and consequently, no general decision procedure exists. Current state-of-the-art
SMT solvers that support quantifiers usually employ quantifier instantiation and
model-based techniques. Quantifier instantiation techniques are useful for prov-
ing the unsatisfiability of a formula, where universally quantified variables are
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instantiated with ground terms to find conflicts at the ground level. However,
they do not guarantee to find a ground conflict since the challenging part is to
find the right instantiations. For example, E-matching |21] uses a heuristic that
tries to find ground terms that have the same structural characteristics as in the
quantified part of the formula. Quantifier instantiation techniques usually lack
the ability to determine if a formula is satisfiable.

In [33] a technique called complete instantiation was introduced that guaran-
tees completeness for certain restricted fragments of SMT for which it suffices to
show that a quantified formula is satisfiable w.r.t. a relevant domain. This tech-
nique is usually combined with model-based quantifier instantiation (MBQI) [33],
which allows to determine if a formula is satisfiable. The main idea of MBQI is
as follows. Given formula ¢ A Vay,...,z, . ¥[x1,...,2,] with a ground part of
the formula ¢ and a formula ¢ containing universal variables z1,...,z,. MBQI
first checks if the quantifier-free part ¢ is satisfiable. If it unsatisfiable, MBQI
concludes with unsatisfiable. Otherwise, a model M is constructed that con-
tains interpretations for all uninterpreted symbols in . A second check is used
to determine if model M is also a model for Vzi,...,zy, . ¢¥[x1,...,2,]. For this
purpose, a formula 1)’ is constructed by replacing all uninterpreted symbols in
1) with their interpretation in M. Then, universal variables z1,...,z, in ¢/ are
instantiated with fresh constants ay,...,a, and formula —¢[z1/aq, ..., z,/a,)
is checked if it is unsatisfiable. If this is the case, model M is valid and MBQI
concludes with satisfiable and returns the model. Otherwise, a counterexample
is generated for constants aq,...,a,, which serves as a candidate for quantifier
instantiation to create a new ground instance of V1, ..., x, . Y[z, ..., z,]. With
this approach it is possible to find ground instantiations that are not possible to
find with E-matching.

Another model-based technique that can be used to determine if a formula is
satisfiable in the presence of universal quantifiers is finite model finding [55| The
main idea of this approach is to generate finite candidate models that treat unin-
terpreted sorts as finite domains and exhaustively instantiate universal formulas
with the domain elements in order to determine if the formula is satisfiable. This
technique is only applicable if universal quantifiers range over uninterpreted sorts
or finite sorts such as bit-vectors and is particularly effective for problems that
have small models. However, in practice, finite model finding is efficient for a
wide range of problems that are of interest to applications in formal methods.

Certain classes of problems can be solved by a technique called quantifier
elimination |7,44]. The main idea of this technique is to construct a set of
quantifier-free formulas that are equivalent to the original quantified problem
and solve it by means of a theory solver for the quantifier-free fragment of the
theory.

In Chapter [9] we discuss a model-based technique for solving quantified bit-
vectors that is similar to MBQI, but uses a syntax-guided synthesis [2| approach
to synthesize candidate models.
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Chapter 3

Paper A. Lemmas on Demand
for Lambdas

The theory of arrays as axiomatized in Chapter [2] provides a natural way to
model memory (components) and array data structures in hardware and software
verification. However, it lacks support for compact representations of array
operations that update more than one index at the same time. Further, array
update operations with a symbolic index range can not be modelled by means
of single array read and write operations without using universal quantification.
In order to overcome these limitations, in |12] Seshia et al. suggested to model
array expressions, ordered data structures and partially interpreted functions as
non-recursive first-order lambda terms. This approach was implemented in the
SMT solver UCLID [58], and since UCLID implements an eager SMT approach,
it eliminates all lambda terms in the input formula as a preprocessing step.
This may in the worst-case result in an exponential blow-up in the size of the
formula [58].

In Paper [A] we describe a new decision procedure based on lemmas on de-
mand, which lazily handles non-recursive non-extensional first-order lambda
terms. Lemmas on demand is a CEGAR-based lazy SMT approach that it-
eratively refines an over-approximation of the input formula with lemmas until
either the over-approximation becomes unsatisfiable or its model can be extended
to satisfy the original input formula. We implemented our approach in our SMT
solver Boolector, which supports the theory of fixed-size bit-vectors in combi-
nation with arrays and uninterpreted functions. The new procedure allows us
to represent arrays and all array operations as lambda terms and uninterpreted
functions and is the current default approach for solving the theory of arrays
in Boolector. However, the original approach described in Paper [A] does not
support extensional lambda terms and consequently, can not handle extensional
arrays. At the SMT competition 2014, in the division for quantifier-free bit-
vectors with arrays (QF _ABV), for benchmarks that were still extensional after
rewriting, we had to rely on an older (internal) version of Boolector close to
version 1.5.118, which implemented the old lemmas on demand approach de-
scribed in |11]. In Section we describe an extension to our original lemmas
on demand for lambdas approach to handle equalities over lambda terms that
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3 Paper A. Lemmas on Demand for Lambdas

represent arrays and equalities over uninterpreted functions. This extension is
implemented since Boolector version 2.1 and is used since the SM'T competition
in 2015. Our lemmas on demand procedure generates one lemma per refine-
ment iteration, where each iteration produces some overhead. As a consequence,
generating a large number of lemmas can have a negative impact on the perfor-
mance of our procedure since every lemma triggers a new refinement iteration.
In Section (3.2 we discuss an optimization of our lemmas on demand procedure,
which reduces the overall number of required refinement iterations by using a
conflict restart strategy.

3.1 Extensionality on Array Lambda Terms

The non-extensional theory of arrays enables us to reason about array elements,
whereas the extensional theory of arrays also provides means to compare arrays
and consequently enables us to reason about arrays as a whole. This can be par-
ticularly useful in verification applications like equivalence checking of memory,
which verifies that two algorithms yield the same memory state after execution.

In the following, we discuss the modifications required to support extensional
arrays in our lemmas on demand decision procedure DP) as introduced in Pa-
per [A] Note that we use the functional terminology and notation for arrays as
introduced in Paper [A] where read operations are represented as function appli-
cations, write operations as lambda terms and array variables as uninterpreted
functions.

3.1.1 Adding Extensionality Support

In order to support extensional arrays in our lemmas on demand decision pro-
cedure DP) introduced in Paper [A] minor modifications to the preprocessing
and formula abstraction steps are required. Further, we need to extend the con-
sistency checking and refinement steps with an additional phase to handle the
axiom of extensionality as defined in Chapter 2] In the following, we will discuss
the required modifications and additions to DP) in more detail.

Preprocessing As in [11], for every array equality f, = fp in the input for-
mula, we introduce two fresh function applications f,(k) and f,(k) with a fresh
index k and add the following array inequality constraint to the top-level.

fa 7£ fb — Elkfa(k) 7& fb(k)

This constraint ensures that if f, and f; are not equal they differ at least in
one position k. If this is the case, function applications f,(k) and f;(k) act as
witnesses for the inequality. As a further preprocessing step, and as in |11], we
add for each lambda term g := Az.ite(x =14, e, f,(x)), which represents a write
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operation write(a, i, e), the following top-level constraint.
g(t) =e

This constraint enforces the consistency on write values for lambda terms that
represent array write operations. Note that in our implementation this constraint
is not added explicitly, but is handled implicitly during the initialization phase
of our algorithm. However, for the sake of simplicity, assume that this constraint
is added to the top-level.

Formula Abstraction In the formula abstraction step, a bit-vector skeleton
a)(m) of the preprocessed formula 7 is constructed. This is done by traversing
from the top-level constraints towards the inputs of the formula while introducing
a fresh bit-vector variable for each function application and a fresh Boolean
variable for each encountered array equality in formula 7. The abstraction of
array equalities as Boolean variables is done as in [11].

Consistency Checking The consistency checking step is extended with an
additional phase that checks whether all the array equalities assigned to true
in the bit-vector skeleton are consistent. Consistency checking now consists of
two phases: phase (1) for checking if all abstracted function applications are
consistent (as described in Section for DP}), and phase (2) for checking the
consistency of array equalities.

Refinement The refinement step is extended to generate instances of the ex-
tensionality axiom in case that array equality conflicts are detected. For each
array equality e := (f, = f3) a set of conflicting indices C'(e) is generated, which
is used to add the following lemma for each index i € C(e) as a refinement.

Ja=fo — fa(i) = fb(l)

This lemma enforces that if array f, and f, are equal then they also have to
store the same element at the conflicting index i.

The extended decision procedure DP), with support for extensional arrays
is depicted in Figure [3.I] in pseudo-code. The main difference to the original
approach DP) is the additional consistency checking and refinement phase for
array equalities (lines , which is highlighted in bold line numbers. Function
consistent, checks the extensionality axiom for each array equality e € 7 that
is assigned to true in the bit-vector skeleton and collects a set of conflicting
indices C' (line E[) If no conflict was found, i.e., if C' is empty, the model of the
bit-vector skeleton is consistent and DP . concludes with satisfiable. However, if
C is not empty, procedure lemmas, generates lemmas for all conflicting indices
in C, which are added to the set of refinements £ (line . In the following, we
discuss the notion of conflicting index and how the set of conflicting indices C
is determined in more detail.
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1 procedure DP). (¢)

2 7 = preprocesse (@)
3 E=T
4 loop
5 I'=ay(m) A&
6 r,o = DPg(I)
7 if r = unsatisfiable return unsatisfiable
8 if consistent)(m, o)
9 C' = consistent,(m, o)
10 if C=10
11 return satisfiable
12 else
13 € =& N aye(lemmas.(C))
14 else
15 € =& N aye(lemmay (7, 0))

Figure 3.1: Extension of the lemmas on demand for lambdas procedure DPy
with support for extensional arrays. Bold line numbers indicate the required
additions compared to the original procedure.

3.1.2 Consistency Checking of Array Equalities

The main idea of checking the consistency of array equalities is as follows. Given
an array equality e .= (f, = fp), we generate candidate models for arrays f, and
fp and compare them on each index. If the extensionality axiom is violated
the corresponding index is added to the set of conflicting indices C'(e). In or-
der to generate candidate models for arrays f, and fp, the consistency checking
phase for array equalities is executed after all abstracted function applications
are consistent, i.e., when procedure consistenty finishes without finding any con-
flicts. As described in Section [7.7} we maintain a hash table p, which maps each
lambda term and UF symbol to a set of function applications. The hash table
is initialized via initialization rule I (as defined in Section [7.7)), which adds each
function application f(...) to p(f). During the first consistency checking phase,
p is continuously extended via propagation rule P (as defined in Section . As
a result, the set of function applications p(f) for a function f consists of all func-
tion applications that (directly or indirectly) access function f under the current
candidate model of the bit-vector skeleton. After procedure consistent) finishes
without finding any conflicts, the function applications in p are consistent and
can be used to generate candidate models for arrays in procedure consistent,.
Note that function applications f(i) € p(f) are hashed by the current assign-
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1 procedure consistent, (7, o)

2 C=10

3 fore:=(fo=fy) en

4 if o(e) = L continue
5 M, = gen_model(f,)
6 My, = gen model(fp)
7 for i € M,

8 if i & My or o(M,[i]) # o(My[i])
9 C:=CU{(ei)}
10 for i € M,

11 if i & M,

12 C:=CUA{(e,i)}
13 return C

Figure 3.2: Consistency checking algorithm for array equalities.

ment of the resp. indices o (i), i.e., indices ¢ and j yield the same hash value if
o(i) = o(j)-

Figure 3.2 depicts procedure consistent,, which checks the consistency of array
equalities in formula 7 and generates the set of conflicting indices C'. Note
that in procedure consistent, we only need to consider array equalities that are
assigned to true in the bit-vector skeleton. All array equalities assigned to false
do not have to be considered since it is sufficient to provide witnesses for the
inequalities. These witnesses were added via the inequality constraints during
the preprocessing step and are consistent since procedure consistent) did not
find any conflicts. As a consequence, the corresponding arrays are not equal.
For every array equality f, = f» € m assigned to true, procedure consistent,
checks if the extensionality axiom is violated. For this reason, we need to check
if the computed models for f, and f; yield the same values on every index.
Since f, and f, may be arbitrary array terms, procedure gen model recursively
collects all consistent function applications for f, and f;, and their subterms in
p (lines . The result M, represents the current model of array f, w.r.t. the
current model of the bit-vector skeleton and maps indices to values.

The set of conflicting indices is determined in lines by comparing models
M, and M; on every index i. An index i is identified to be conflicting if M,
and My do not yield the same value on 4, or if ¢ occurs in M, but not in M,
and vice-versa. The first case is checked in line [§] with condition o(M,[i]) #
o(My[i]), where M,[i] and M[i] yield different values at the same index and
consequently, violate the extensionality axiom. The second case is checked with
i & My (resp. i ¢ M,) in line [§ (resp. line [11)). Index i is conflicting since the
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value of the element at index ¢ is undefined in M}, (resp. M,), but is required to
be the same as in M, (resp. Mp).

After procedure consistent, determined all conflicting indices for the current
candidate model of the bit-vector skeleton, the following lemmas are added as a
refinement step.

N\ fa=fo— fali) = fo0)
(fa=fp,1) €C

In the next refinement iteration all function applications including the ones
added via the extensionality lemmas are checked for consistency. This process
is repeated until either the bit-vector skeleton becomes unsatisfiable or none of
the consistency checking procedures detect any more conflicts.

Example 3.1. Consider formula ¢, with indices %g, i1, i2, values vy, v1, vo, and
write operations wyg, wi, we represented as lambda terms as follows.

w1

¢ = Ax.ite(x = ig, v, fo(x)) = Ax.ite(x = ig, vo, (Ay.ite(y = i1, v1, fo(y)))(x))

wo wa

In the first step, preprocessing generates an inequality constraint for array equal-
ity wg = we, and write value consistency constraints for wp, w1, and ws.

T = Wy = W2

A (wo # wg — wo(j) # w2(j))
A\ wo(io) =g N\ wl(il) = A ’LUQ(iQ) = Uy

Since array equality wg = wo is asserted at the top-level, the left-hand side of
the implication of the inequality constraint is always false and consequently, the
impliciation simplifies to true and can therefore be omitted, which yields the
following formula.

T = wy = wa N\ wo(io) =g N\ wl(il) =v1 A\ wg(ig) = V9

In the next step, formula abstraction introduces a fresh Boolean variable e for
array equality wg = wo, and fresh bit-vector variables ui{}o, ufjl, and u%, for
function applications wq(ip), w1(i1) and wa(iz), which results in the following
bit-vector skeleton.

Qxe(T) = e Nug = vo Ay, = v1 Augy, = v2

Assume that DPg produces a model o(a).(m)) for formula aj.(7) such that

o(e)=T o(uld) = o(vo) o(io) = o(iz) o(vo) # o(v2)
o(uih) =o(v) o(i1) # o(iz) o(vo) = o(v1)
o(uiz,) = o(v)
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Consistency checking of function applications wg(ip), wi(i1), wa(iz) w.r.t.
o(aye(m)) does not find any conflicts since all function applications are con-
sistent due to the write value consistency constraints added in the preprocessing
step. Procedure consistenty produces the following final state of p.

p(wo) = {wo(io)} p(fa) = {}
p(wr) = {w(i1)} p(fo) = {}
p(wz) = {wa(iz)}

Since no conflicts were found, we continue checking array equality e and generate
the models M,,, and M,,, for wy and ws.

M, = p(wo) U p(fa) = {wo(io)}

My, = p(w2) U p(wi) U p(fp) = {wa(iz), w1(i1)}
We identify index i to be conflicting since o(ip) = o(i2), but o(ul9 ) # o(ui2)),
and index i; to be conflicting since i; ¢ M,,,. As a consequence, we generate
the following two lemmas and add them to the set of refinements &.

f = (’LU() = wy — wo(io) = wz(io)) N (’wo = wy — wo(il) = wg(il))

Note that formula abstraction is applied to refinements &, which introduces new
bit-vector variables w9, u;l and u;}, for function applications wa(io), wo(i1)
and wa(71). In the next round, assume that DPg produces a model (e (mAE))

for formula (7 A §) such that

Consistency checking of all function applications does not find any conflicts and
yields the following state of p.

p(wo) = {wo(io), wo(i1)} p(fa) = {wo(i1)
p(wi) = {w1(i1), w2(io) } p(fo) = {w2(io)}
p(wz) = {wa(iz), wa(i1), w2(io) }

This time, generating models M,,, and M,,, yields p(wp) and p(w2), respectively.
Note that wy (1) does not occur in M,,, since wa(i1) € p(wz) has the same index
and takes precedence over wi(i1) while generating My, .

My, :
Moy, = p(

p(wo) U p(fa) = {wo(io), wo(i1)}
wa) U p(w1) U p(fp) = {w2(i2), wa(i1), wa(io) }
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We identify index iy as conflicting since ia &€ M,,,, and add the following lemma
as a refinement step.

f = f A (wo = wy — wO(’iQ) = wg(iQ))

In the final round, both consistency checking phases do not find any conflicts
and our decision procedure DP), concludes with satisfiable.

In contrast to the original algorithm proposed in [11], our approach for ex-
tensional arrays does not rely on upwards-propagation of read or write nodes.
This is due to the fact that upwards-propagation in the presence of lambda
terms is not as straightforward as in |11] since keeping track of the propagation
paths for lemma generation would involve much more implementation overhead.
Instead, we construct the current models of the corresponding arrays for each
array equality, compare them and in case of a conflict add an instantiation of
the array extensionality axiom as a lemma. As a consequence, the consistency
checking and lemma generation for array equalities is much simpler, requires less
implementation effort, and is still competitive to the original approach in [11],
as shown in our experiments.

Note that generating the corresponding models after the first consistency
checking phase is straightforward in the array case since this only requires to
recursively collect all relevant function applications in p. However, for the gen-
eral case, i.e., equality over arbitrary lambda terms, our approach does not work.
One possible solution is to introduce universal quantifiers and add an additional
constraint for each lambda term equality f = g in the formula as follows.

f=g—=Vi.f(z)=9()

However, this requires the solver to support universal quantifiers in combination
with lambda terms, which is left to future work.

Note that in Paper[A] we used lambda terms to represent if-then-else on arrays
and functions. In Boolector this turned out to be suboptimal in the extensional
array case since in certain cases not all relevant function applications were col-
lected via procedure gen _model due to some simplifications applied within these
if-then-else lambda terms. Adding support for these special cases would have
been too error-prone. As a consequence, we do not introduce lambda terms for
if-then-else terms on arrays and functions.
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3.1.3 Experiments

We extended the lemmas on demand for lambdas approach implemented in
Boolector to support extensional arrays as discussed above. Further, for compar-
ison purposes, we also implemented our approach in Boolector version 1.5.118,
which implements the array decision procedure described in [11]. Each imple-
mentation in the two versions required about 300 lines of code. We evaluated
our approach on all QF ABYV benchmarks of SMT-LIB [4] that contained array
equalities after rewriting. The compiled benchmark set contains 1772 bench-
marks in total, which are part of the brummayerbiere and dwp_formulas bench-
mark families. For this evaluation, we compared the following three configura-
tions of Boolector.

(1) Btor+e Current version of Boolector, which implements DP ..

(2) Btor15 An internal version of Boolector close to version 1.5.118,
which was used at the SM'T competition 2014 for extensional
benchmarks.

(3) Btorl5+e An extended version of Btorl5, which implements procedures
consistent, and lemmas, for extensional arrays as described
in the previous section.

All experiments were performed on a cluster with 30 nodes of 2.83GHz Intel
Core 2 Quad machines with 8GB of memory using Ubuntu 14.04.5 LTS. We
set the limits for each solver/benchmark pair to 7GB of memory and 1200 sec-
onds of CPU time. In case of a timeout, memory out, or an error, a penalty of
1200 seconds was added to the total CPU time.

Table summarizes the results of all configurations grouped by the bench-
mark families brummayerbiere and dwp_formulas. Configuration Btor+e con-
siderably outperforms the other two configurations. However, this is no sur-
prise since configuration Btor+e is the current version of Boolector that won
recent SMT competitions and its code base considerably changed since ver-
sion 1.5.118. Therefore, we also implemented our approach in the old ver-
sion of Boolector in order to provide a fair comparison. Configurations Btorl5
and Btorl5+e solve almost the same number of benchmarks. Overall, consid-

Btor+e Btorl5 Btorl5+e
Family Solved Time [s| | Solved Time [s] | Solved Time [s]
bbiere (195) 189 17751 179 31654 179 29922
dwp (1577) 1577 1528 | 1577 1268 1576 3779
Total (1772) 1766 19279 1756 32922 1755 33701

Table 3.1: Results for all configurations on the extensional QF ABV bench-
marks grouped by benchmark families with a CPU time limit of 1200 seconds.
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ering commonly solved instances only, configuration Btorl5 generates 83538
lemmas (bbiere: 57189, dwp: 26349), whereas configuration Btorl5+e generates
in total 177482 lemmas (bbiere: 53938, dwp: 123544) of which 60061 lemmas
(bbiere: 1532, dwp: 58529) are instantiations of the extensionality axiom. On
the bbiere benchmarks Btorl5+e requires about 3000 lemmas less compared to
Btor+e and consequently, solves the 179 benchmarks slightly faster. Note that
88% (bbiere: 8%, dwp: 90%) of the extensionality lemmas are generated since
an index occurs in only one of the array models. A reason for this might be that
our approach introduces two fresh function applications for each extensionality
lemma, which potentially increases the overall number of function applications
to be checked for consistency. Introducing an additional propagation strategy
for these indices instead of immediately generating a lemma might reduce the
number of conflicting indices.

3.1.4 Conclusion

We presented a simple extension of our decision procedure for lambdas that en-
ables us to handle extensional arrays represented as lambda terms. The same
extension can also be employed for the lemmas on demand decision procedure
originally implemented in Boolector for the theory of arrays, which was imple-
mented in Boolector until version 1.5.118. Compared to the original algorithm,
the implementation of our approach is rather simple (300 lines of code for each
version) since it involves no upwards-propagations, but is competitive as shown
in our experimental results. In our approach, lemma generation is not yet opti-
mized and in some cases produces a lot of instantiations of the array extension-
ality axiom that could be avoided by an additional propagation strategy. We
leave this enhancement to future work.

3.2 Eager Lemma Generation

Our lemmas on demand approach for lambdas DP employs a consistency check-
ing restart strategy, which restarts as soon as a conflict is detected. As a result,
our approach generates one lemma per refinement step until either all function
applications are consistent (no conflict can be found), or DPp reports unsatis-
fiable. Each refinement step produces some overhead in terms of DPg queries
and function application checks in the consistency checking phase. The overhead
caused by a single step is usually small, however, it can have a negative impact
on the overall runtime with an increasing number of conflicts.

Therefore, we extended DP) with a new restart strategy, which enables us to
generate multiple lemmas in one refinement step in order to reduce the overall
number of refinement iterations. As a result, this reduces the overall number of
DPg queries and function application checks, however, at the cost of generating
more lemmas. Since each lemma increases the size of the bit-vector skeleton
handed to the underlying SAT procedure DPp, generating a large number of
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lemmas in each refinement step can have a negative impact on its runtime.
Hence, it is important to find a good balance between the number of generated
lemmas per refinement step and the overall number of refinement iterations.
In the following, we discuss two strategies that generate multiple lemmas per
refinement iteration, but with different levels of eagerness.

Our initial (eager) strategy was to generate lemmas for all conflicts in the
current candidate model of the bit-vector skeleton prior to restarting. This was
the default strategy of Boolector since version 2.2 and was enabled at the SMT
competitions in 2015 and 2016. This approach significantly reduces the overall
number of refinement iterations, however, in some cases, the number of generated
lemmas had a negative impact on the overall runtime since too many lemmas
were generated, which considerably increased the size of the bit-vector skeleton.

Our new (lazy) strategy implemented in Boolector since version 2.4 tries to
address this issue by generating lemmas as long as the conflicts do not directly
influence each other. That is, if a conflicting function application is detected
and the value of one of its arguments already depends on a conflicting func-
tion application, we add all lemmas generated in the current round to the for-
mula and restart consistency checking. Given a conflicting function application
f(ay, ..., ayp), checking the restart criteria is realized as a depth-first-search
(DFS) traversal of arguments ay, ..., a,. If during the traversal, a function
application is encountered that produced a conflict in the current refinement it-
eration, consistency checking is restarted. The intuition for this criteria is that if
a conflicting function application is found during the traversal, at least one value
of arguments aq, ..., a, depends on a conflict and consequently, is inconsistent.
As a consequence, all lemmas generated in the current refinement iteration are
added to the formula and DPg is queried for a new candidate model. In order
to keep the overhead of the traversal as small as possible, we do not traverse
the complete subgraphs of a1, ..., a,, but stop the traversal at function appli-
cations. This turned out to be the best strategy since it provides a good balance
between restarts and lemmas generated per refinement step.

3.2.1 Experiments

We implemented our new restart strategy in our SMT solver Boolector and
evaluated it on all QF _ABV benchmarks (15091 in total) of SMT-LIB [4]. We
compared the following three configurations of Boolector.

(1) Btor Boolector with the original restart strategy that generates one
lemma per refinement iteration.

(2) Btor+el Boolector with the eager restart strategy that generates lemmas
for all conflicts in the current candidate model.

(3) Btor+ll  Boolector with the lazy restart strategy that generates lemmas
as long as the conflicts do not depend each other.
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Btor Btor+ll Btor+el
Family | Solved Time [s| | Solved Time [s] | Solved Time [s]
bench _ab (119) 119 06| 119 06| 119 0.6
bme (39) 39 313 39 293 39 290
bbiere (293) 266 46746 264 46595 264 46629
bbiere2 (22) 20 3903 20 3217 20 3215
bbiere3 (10) 10 0.5 10 0.5 10 0.6
btfnt (1) 1 49 1 42 1 35
calc2 (36) 36 1650 36 1652 36 1650
dwp (5765) 5763 5314 5763 4493 5763 4490
ecc (5b) o4 1262 o4 1266 54 1266
egt (7719) 7719 107 7719 107 7719 107
jager (2) 0 2400 0 2400 2 1555
klee (622) 622 124 622 115 622 115
pipe (1) 1 45 1 45 1 45
platania (275) 263 18197 268 12135 266 18398
sharing (40) 40 932 40 931 40 932
stp (40) 39 898 39 892 39 891
stp_samp (52) 52 2.0 52 2.1 52 2.0
Total (15091) | 15044 81903 | 15047 74144 | 15047 79579

Table 3.2: Results for all configurations grouped by benchmark families.

The experiments were performed with the same hardware setup and resource
limits (1200 seconds CPU time, 7GB memory) as in Section Note that
configuration Btor+el corresponds to the default strategy used in Boolector since
version 2.2 and was enabled for the SMT competitions in 2015 and 2016. The
new restart strategy enabled in configuration Btor+ll is the default strategy since
Boolector version 2.4.

Table summarizes the results of all configurations grouped by benchmark
families. Overall, generating multiple lemmas per refinement step is an advan-
tage for configurations Btor+ll and Btor+el and are able to solve more instances
in less time compared to Btor. However, configuration Btor+el requires consid-
erably more time than Btor+ll due to the fact that Btor+el generates lemmas
for all conflicts in the current candidate model and consequently, produces more
lemmas than Btor+ll. Since every lemma increases the size of the bit-vector
skeleton, the number of lemmas also affects the time required by DPg to solve
it. This effect is especially pronounced on the platania benchmark family, where
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3.2 Eager Lemma Generation

Btor Btor+ll | Btor+el

Time [s] 23973 20274 24056
DPg Time |s] 20730 18401 21967
DPg Queries 205898 71649 60628

Lemmas 252996 349280 414080

Checks | 117057731 | 34016349 | 63980400

Table 3.3: Lemmas on demand results on commonly solved instances.

on the commonly solved instances Btor+el produces almost twice as many lem-
mas (133k) than Btor+ll (71k) in total. As a consequence, the size of the bit-
blasted bit-vector skeleton contained twice as many CNF variables and CNF
clauses, which of course affected the runtime of the underlying SAT solver DPg.
For configuration Btor+el DPg required 5026 seconds, whereas for configuration
Btor+ll only 1453 seconds were spent in DPp, which is an improvement by a
factor of 3.5.

Table [3.3] summarizes the overall runtime, the runtime of DPp, the number
of DPp queries (which corresponds to the number of refinement iterations), the
number of generated lemmas, and the number of function applications checks on
the 15040 benchmarks commonly solved by all configurations. As expected, con-
figuration Btor generates the smallest number of lemmas and the highest number
of DPg queries. This is due to the fact that Btor restarts after each conflict and
consequently, fixes conflicts consecutively, which produces less unnecessary lem-
mas, however, at the cost of increasing the overall number of DPg queries. Note
that for configuration Btor the difference between the number of DPg queries
and the number of generated lemmas is due the fact that Btor still generates
multiple lemmas per refinement step for extensionality conflicts. Otherwise, the
numbers would not differ. On the contrary, configuration Btor+el, which gener-
ates lemmas for all conflicts in the current candidate model, produces the high-
est number of lemmas and the smallest number of DPg queries. The additional
overhead in terms of lemmas and as a result the increase in formula size has a
negative effect on the solving time of DPg. Configuration Btor+ll significantly
outperforms the other two configurations and requires 15% less runtime to solve
all 15040 common benchmarks. The significant difference in function application
checks compared to Btor+el is due to the no_init multi delete benchmarks in
the platania benchmark family, which contain many function applications. Con-
figuration Btor+ll solves these instances 10 times faster and requires only 25%
of the refinement iterations of Btor+el.
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3 Paper A. Lemmas on Demand for Lambdas

3.3 Discussion

Our lemmas on demand approach for non-recursive first-order lambda terms al-
lows us to represent arrays and array operations by means of lambda terms and
uninterpreted functions. As shown in Paper [B] this can be particularly beneficial
if multiple array operations can be represented by more compact lambda terms.
However, in the general case, where array operations can not be represented
more succinctly, lambda terms produce some overhead in terms of memory con-
sumption and runtime. For example, in Boolector, during construction of the
formula each array write operation write(a, ¢, €) is translated to a lambda term
Az.ite(x = i, e, a[z]) on-the-fly, which introduces four additional terms. Fur-
ther, consistency checking lambda terms requires to apply beta reduction, which
is more expensive in terms of runtime compared to checking write operations.
The best but also more complex approach would be to support both, where
lambda terms are only used to combine multiple array operations. This requires
that consistency checking and lemma generation support handling of both array
operations and lambda terms, which is more involved compared to using only
one kind of representation. However, we believe that this would be the optimal
solution, which combines the best of both approaches.
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Chapter 4

Paper B. Better Lemmas with
Lambda Extraction

In Paper [A] we explore an alternative representation of arrays and array oper-
ations and employ non-recursive first-order lambda terms, which allows us to
model common array operations not natively supported by the theory of arrays.
As a simple example, consider the initialization of an entire array a with a con-
stant c¢. If the domain of the index sort is finite, e.g., a bit-vector of size n, there
are two obvious ways of representing this without quantifiers. First, we can use
a sequence of 2" write operations, where the top-most write operation represents
array a.

write(. .. write(write(b, 0, ¢), 1, ¢) ..., 2" — 1, ¢)

Second, we can specify a conjunction of 2" equalities over read operations to
assert that the value at each index of array a is c.

read(a, 0) = c¢ A read(a, 1) =c A ... Aread(a, 2" — 1) =c¢

However, both approaches do not scale well for large domains of the index sort,
since they produce too many read and write operations. Further, if the domain
of the index sort is infinite, it is not possible to represent array initialization
with the approaches mentioned above. As an alternative, we can use quantifiers,
which allows a much more succinct representation.

Vz.read(a, x) = ¢

However, this approach requires support for universal quantifiers and does not
even scale for a simple array initialization pattern, as we will show in Section
Our lambda approach, on the other hand, handles finite and infinite index sort
domains, where the initialized array above can be represented as follows.

A\x.c

In Paper |B| we focus on finding and extracting array patterns from existing SMT
benchmarks to represent them as more compact lambda terms. We further de-
scribe a complementary technique denoted as lambda merging, which combines
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4 Paper B. Better Lemmas with Lambda Extraction

multiple array operations into one lambda term. In combination with our lem-
mas on demand for lambdas approach, both techniques allow us to generate
stronger and more succinct lemmas, which consequently prunes the search. We
describe several array patterns and provide algorithms to detect and extract
these patterns. We show that both techniques considerably improve the solver
performance. Our results suggest that for certain array patterns (such as array
initialization operations) it might be desirable to extend the theory of arrays in
order to provide more succinct encodings and allow specialized SMT procedures
that efficiently handle these operations.

4.1 Discussion

Using more compact and succinct representations for array operations does not
only reduce the size of the input formula, but more importantly, considerably
improves lemma generation of our lemmas on demand procedure. It allows us
to generate lemmas that cover a range of indices instead of single indices, which
significantly improves the overall performance. This is particularly useful on
benchmarks from symbolic execution such as the klee benchmark family of the
QF _ABYV benchmark set. These benchmarks heavily rely on patterns that ini-
tialize large parts of an array with concrete values. As a result, on this benchmark
set with lambda extraction we achieve an overall speed-up by a factor of 77.

Merging multiple array operations into one lambda term usually does not yield
as compact lambda terms as lambda extraction, but it enables us to apply further
simplifications. This is, e.g., useful for benchmarks that use sequences of write
operations to initialize an array at symbolic indices. Consider, e.g., a sequence
of write operations write(write(write(a, ¢, €), j, €), k, ), which corresponds to
Azx.ite(x = k, e, read(A\y.ite(y = j, e, read(\z.ite(z = i, e, read(a, 2)), y)), ©)).
Applying lambda merging yields

Azx.ite(x = k, e, ite(x = j, e, ite(z = 1, e, read(a, x)))),
which can then be simplified to
Arite(z =kVa=jVae=i, e, read(a, z)).

In Paper [B] we investigated quantifier-free benchmarks and tried to represent
multiple read and write operations by means of more compact lambda terms.
However, we did not investigate patterns represented with quantifiers. Consider,
e.g., the following patterns, which can be represented by means of quantifiers
and lambda terms.

e Initializations
Initialize entire arrays with either parallel updates or loops, e.g.,
V. (read(a, x) = ¢), Vo . (read(a, ) = x), Vo . (read(a, z) =z + 1)
Ax.c, \x.x, Adx.x+1
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e Parallel updates

Update n elements of array a with value ¢ starting from index ¢, which yields
a new array b, e.g.,

b = memset(a,i,n,c)

V. (read(b, x) = ite(i < x < i+ n, ¢, read(a, z)))

Az . ite(i <z <i+mn, c read(a, x))

e Copy operations

Copy n elements of array a starting from index ¢ to array b at index j, which
yields a new array b, e.g.,

b' = memepy(a,b,i,j,n)
V. (read(V/, z) = ite(j < x < j +n, read(a, i + x — j), read(b, x)))
Az . ite(j < x < j+n, read(a, i + x — j), read(b, x))

The most intuitive approach for specifying the array operations above is us-
ing quantifiers, since this is directly supported by the SMT-LIBv2 standard.
However, current state-of-the-art SMT solvers that support quantifiers lack the
ability to efficiently handle these patterns. This can be illustrated with a sim-
ple array initialization pattern Vz . (read(a, z) = 0), which initializes an entire
array a with the constant value 0. For this purpose, we compiled a set of bench-
marks ABV-init (15091 in total), where we initialized the first array in every
benchmark of the QF ABV benchmark set of SMT-LIB with the pattern above.
Note that this modification may change the status of some benchmarks from sat-
isfiable to unsatisfiable. However, this is of no consequence for our experiment
since we are mainly interested in identifying the overall effects of adding array
initialization patterns. Note that due to the initialization pattern, more than
one third of the benchmarks in QF ABYV changed the status from satisfiable
to unsatisfiable, As a consequence, the majority of benchmarks in ABV-init is
unsatisfiable.

For our experiment, we extended the current version 2.4 of our SMT solver
Boolector and implemented a rewriting rule that transforms the initialization
pattern for array a into the lambda term Ax.0 and adds a top-level equality
a = Az.0. We evaluated Boolector, CVC4|I| and Zﬂ on benchmark sets QF  ABV
and ABV-init. Note that CVC4 and Z3 natively support quantifiers and do not
extract lambda terms for the initialization pattern. A comparison of Boolector
with quantifier support as introduced in Paper [C] is not included since it does
not yet support the combination of quantified bit-vectors with lambda terms.

We set the resource limits for each solver/benchmark pair to 1200 seconds
CPU time and 7GB of memory. In case of a timeout, memory out, error or an
unknown result, a penalty of 1200 seconds was added to the total CPU time.

Lcommit 0dd2aa21f35b221ea96d277e9ea7chbc816{fe83c
2commit 40177f7bac4ab9615a327281546fd1fa6c8fcf9
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4 Paper B. Better Lemmas with Lambda Extraction

QF ABV (15091) ABV-init (15091)
Solved  Sat Unsat Time [s| | Solved Sat Unsat Time |[s]
Boolector | 15047 10403 4644 75109 | 15075 4693 10382 31895
CvC4 14634 10067 4567 642777 | 10239 0 10239 5839596
Z3 14937 10340 4597 234606 | 13781 3714 10067 1734356

Table 4.1: Results of all solvers for benchmarks without (QF ABV) and with
array initialization (ABV-init) including penalties.
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Figure 4.1: Runtime comparison of Boolector and CVC4 on benchmark sets
QF ABYV and ABV-init.
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Figure 4.2: Runtime comparison of Boolector and Z3 on benchmark sets
QF ABV and ABV-init.
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4.1 Discussion

Table (.1 summarizes the results for all solvers on benchmark sets QF _ABV
and ABV-init. Adding the array initialization for one array already has a sig-
nificant negative impact on the performance of CVC4 and Z3. Interestingly,
CVC(4 is not able to solve a single satisfiable instance, however, it outperforms
Z3 on the number of unsatisfiable instances. Overall, CVC4 times out on 482
benchmarks, hits the memory limit on 12 benchmarks and reports unknown on
4358 benchmarks, and Z3 times out on 1126 benchmarks, hits the memory limit
on 23 benchmarks and reports unknown in 161 cases. Boolector, on the other
hand, is able to solve almost all of the benchmarks from the ABV-init bench-
mark set (11 timeout, 5 memory out). In fact, representing the initialized array
as a lambda term enables Boolector to apply additional rewriting, which makes
many benchmarks easier to solve. For CVC4 and Z3, depending on the internal
solver architecture, a tighter integration between the array engine and the quan-
tifier engine might yield similar results for this kind of patterns. Since the array
engine is able to provide all relevant indices required for a complete instantiation
of the quantifier in the initialization pattern, it should be possible to report sat-
isfiable on these instances. Our propagation-based lemmas on demand approach
as implemented in Boolector propagates read operations until fixpoint. As a re-
sult, all relevant read operations that access the initialized arrays are checked for
consistency and fixed via lemmas in case of a conflict. The same idea could be
used in combination with quantifier instantiation, where the array engine would
instantiate quantifiers with indices on demand. This is similar to the approach
for deciding the array property fragment [10], however, with the difference that
quantifiers are instantiated lazily and lemmas are generated on demand.

As an interesting observation, Z3 was not able to solve 216 unsatisfiable bench-
marks in the ABV-init set that were already determined to be unsatisfiable by Z3
without the array initialization (QF ABV). Note that 183 of these 216 bench-
marks in set QF ABV were solved by Z3 in less than 100 seconds each. For
CVC4 this behavior occurred only on 9 unsatisfiable instances of set ABV-init.

Figure [4.1] compares the runtime of Boolector and CVC4 on the QF_ABV
and ABV-init benchmark set and shows a significant performance drop of CVC4
as soon as quantifiers are used for initializing arrays. On benchmark set ABV-
init, CVC4 is not able to solve a single satisfiable instance but reports unknown,
which is probably due to missing support for ABV in the model finding pro-
cedure. Considering unsatisfiable instances only, Boolector significantly outper-
forms CVC4. On the commonly solved instances (10238 in total) Boolector is
over 23 times faster than CVC4 (733 vs. 17191 seconds). As a comparison, for
the 4565 commonly solved unsatisfiable benchmarks of the QF _ABV benchmark
set, Boolector requires 7219 seconds and CVC4 17604 seconds.

Figure compares the runtime of Boolector and Z3 on both benchmark sets.
Similar to CVC4, as soon as quantifiers for initializing arrays are involved, the
performance of Z3 significantly drops. However, in contrast to CVC4, which is
not able to solve a single satisfiable instance, Z3 solves 3714 satisfiable bench-
marks. On the 13779 commonly solved instances, Boolector outperforms Z3 by
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a factor of 33 and requires 4482 seconds in total, whereas Z3 requires 162325
seconds. Considering commonly solved unsatisfiable (satisfiable) instances only,
Boolector requires 3091 (1792) seconds for solving 10067 (3712) benchmarks,
whereas Z3 requires 44789 (117535) seconds in total.

Our experiment shows how a seemingly simple array initialization pattern in-
volving quantifiers can have a considerable impact on the performance of state-
of-the-art SMT solvers. With our specialized lemmas on demand for lambdas
approach many of these patterns can be handled efficiently without affecting
the performance of Boolector. However, we believe that similar results can be
achieved with a tighter integration of the array and the quantifier engine, which
is an interesting direction for future work. One possible approach to realize such
a tighter integration would be a specialized procedure for the array property
fragment [10] that combines our lemmas on demand approach with a lazy quan-
tifier instantiation technique. This would allow to efficiently handle the array
patterns discussed above, and further enables us to prove array properties such
as sortedness, which can not be formulated with our lambda term approach.

4.2 Correction

The script that computed the results for commonly solved instances had a bug,
which had the effect that it also included instances that hit a resource limit. As
a result, for the commonly solved instances of configurations Btor and Btor+xm
the numbers for the generated lemmas, reduction of CNF size and the time
spent in the underlying SAT solver were incorrect. On the 13242 commonly
solved QF _ABV benchmarks, configuration Btor generated 699027 (instead of
872913) and configuration Btor+xm 88762 lemmas (instead of 158175), which is
a reduction by a factor of 7.9 (instead of 5.5). The size of the CNF is reduced
by 24% on average (instead of 25%). Further, the time spent in the underlying
SAT solver is reduced from 18175 to 13653 seconds (instead of 59638 to 40101
seconds), which is an improvement of 25% (instead of 33%).
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Chapter 5

Paper C.
Counterexample-Guided Model
Synthesis

As discussed in Chapter [d] with non-recursive first-order lambda terms we can
not express array properties that state, e.g., that an array is sorted or that
all elements are within certain bounds. Further, our lemmas on demand for
lambdas approach as introduced in Chapter [3| only handles extensionality of
lambda terms that represent arrays and does not support equality over general
lambda terms. When introducing quantifiers we are able to overcome these
limitations. Consider, e.g., an array a that is sorted from index ¢ to index j
with ¢ < j. We can express this sortedness of array a as Vz,y.(i <z <y <
Jj — alz] < aly]). Equality of two arbitrary lambda terms f and g, on the other
hand, can be asserted with Va1, ..., x, . f(z1, ..., zp) = g(z1, ..., Tpn).

In Paper [C] we present a new approach called counterexample-guided model
synthesis (CEGMS) for solving quantified SMT formulas with a particular in-
terest in quantified bit-vectors. Our approach does not rely on current state-
of-the-art techniques such as heuristic quantifier instantiation. It combines
counterexample-guided quantifier instantiation with a syntax-guided synthesis
approach called enumerative learning in order to synthesize interpretations for
Skolem functions. Based on a set of ground instances, our approach tries to
synthesize a candidate model for all Skolem functions. If the candidate model
is valid our approach reports satisfiable and returns the model. Otherwise, a
counterexample is generated, which is used for creating a new ground instance
of the formula. These steps are repeated until either a ground conflict is found
or a valid candidate model is synthesized. In Paper [C] we further introduce a
dual CEGMS approach, which applies CEGMS to the negation of the formula in
a parallel setting in order to synthesize quantifier instantiations that prove the
unsatisfiability of the original formula. In our experiments, we compare CEGMS
and its dual version to the state-of-the-art in solving quantified bit-vectors and
show that it is competitive even though it does not employ any quantifier specific
simplification techniques.
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In Section [5.1] we discuss an extension of our CEGMS technique to generalize
concrete counterexamples by means of synthesis. In Section [5.2] we evaluate the
performance impact on CEGMS if quantifier specific simplifications are applied.

5.1 Synthesis of Quantifier Instantiations

As discussed in Paper [C] our dual CEGMS approach is used to synthesize quan-
tifier instantiations. However, we only utilize the final result of applying CEGMS
to the dual formula and consequently, do not exchange intermediate results be-
tween the original and the dual formula. If dual CEGMS concludes with unsatis-
fiable on the dual formula (i.e., the original formula is satisfiable), our approach
currently does not provide a model for the original formula. Further, if the in-
put formula contains uninterpreted functions, dual CEGMS can not exploit the
duality of the formula (as described in Paper |C|) and is therefore not applicable.

Our CEGMS technique is a model finding procedure that iteratively refines a
set of ground instances of the input formula until either a valid model is synthe-
sized or the set of ground instances becomes unsatisfiable. In each refinement
step, based on the set of ground instances a candidate model is synthesized and
checked for validity. If the candidate model is valid, the CEGMS procedure
returns satisfiable. Otherwise, a counterexample is generated, which is used to
create a new ground instance of the formula. A counterexample corresponds to a
concrete assignment to universal variables for which the current candidate model
does not hold. In the following, we extend our CEGMS technique to generalize
these counterexamples by means of synthesis in order to find more general can-
didates for quantifier instantiation. We add an additional synthesis step to the
refinement loop of our CEGMS procedure, which allows us to directly utilize the
counterexamples generated in each refinement iteration to synthesize quantifier
instantiations. This extension is a first step to combine the strengths of CEGMS
and dual CEGMS into one procedure in order to overcome the limitations of
dual CEGMS mentioned above.

Figure [5.1] shows the extended version of our CEGMS algorithm. Bold line
numbers indicate the modified parts of the algorithm in comparison to the
CEGMS procedure introduced in Paper [C] Since quantifier instantiations are
synthesized in each refinement step w.r.t. the counterexamples generated so far,
we maintain a global set of counterexamples C. In each refinement step, if the
current candidate model is not valid, the generated counterexample M¢ (line
is added to set C' (line[13)). Based on the current set of counterexamples C, a set
of quantifier instantiation candidates M¢y is synthesized, which maps universal
variables to synthesized terms (line . Set Mg is then used to create a new
ground instance of formula pg by substituting the universal variables u with the
corresponding quantifier instantiation candidates in Mgy (line . Note that if
procedure synthesize is not able to synthesize any terms, it returns an empty set
for Mg;. In this case, only the instance created via CEGQI is added to the set
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1 function CEGMSqy; (p)
2 G:=T,x:=vary(p), C:={}

3 @sk = skolemize(preprocess(y)) // apply Skolemization
4 f := symg(@sk) // Skolem symbols
5 oa = psk[u/x] // ground @y with fresh u
6 while true
7 r, Mg = sat(G) // check set of ground instances
8 if » = unsat return unsat // found ground conflict
9 Mg := synthesize(f, G, Mg, vq) // synthesize candidate model
10 r, Mc = sat(—pq[Ms(f)/f]) // check candidate model
11 if 7 = unsat return sat // candidate model is valid
12 G =G N pg[Mc(u)/u] // new ground inst. via CEGQI
13 C:=CU{Mc¢} // save counterexample
14 Mgqr = synthesize(u, ~¢q, C,¢c) // synthesize quantifier inst.
15 if Mor#0
16 G =G Npg[Mgr(u)/ul // new ground inst. via Mgy

Figure 5.1: Extended version of our CEGMS algorithm [9.2| with quantifier
instantiation synthesis. The bold line numbers indicate the modified parts of
the original algorithm.

of ground instances G.

The main idea of maintaining a set of counterexamples C' is to simulate model
Mg for ground instances G of the dual CEGMS procedure. For example, given
a formula VxJy.p[x,y] and its dual version IxVy.—¢[x,y], in the dual case,
set G consists of ground instances g1 A g2 A ... A g, with g; being of the form
—¢[x, Mc(y)/y]. The model Mg is used to synthesize terms for variables x,
which correspond to quantifier instantiations in the original formula. In our
new approach, we utilize the counterexamples generated in each refinement step
(which satisfy —pg[Mg(f)/f]) to synthesize quantifier instantiation candidates.
This has the advantage that we do not have to maintain an additional set of
negated ground instances to generate a model in each refinement step for the
synthesis of quantifier instantiations.

For this purpose, we need to modify procedure synthesize (line to also
support the synthesis of terms for universal variables. First, the input selec-
tion of procedure synthesize (Section needs to be extended to also consider
the universal case, where all existential variables on which a universal variable
depends are selected as inputs. Further, as described in Section [0.5] for the ex-
istential case, the signature computation of the enumerative learning algorithm
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(procedure enumlearn uses the set of ground instances G and the current
model Mg to generate a signature for a term ¢ synthesized for f. A signature of ¢
is a tuple of Boolean values, where the i-th value corresponds to the evaluation
MTg;] of the i-th ground instance g; € G[t/f] under current model Mg. For
a universal variable u and the corresponding synthesized term ¢, the signature
is computed by evaluating —pg[t/u] for every counterexample M¢ € C, which
yields tuple (Mc[-eqlt/u]] | Mo € C).

Note that our counterexample generalization differs from our dual CEGMS
approach in several ways. First of all, it does not exploit the concept of duality
as dual CEGMS. Thus, it is possible to employ our approach in the presence
of uninterpreted functions. However, due to the duality of the input formula,
dual CEGMS is able to report satisfiable if the dual formula is unsatisfiable (but
can not provide a model for the original formula). With counterexample gener-
alization, we can not detect this case. Further, counterexample generalization
generates quantifier instantiations in each refinement step, whereas dual CEGMS
provides one “final” quantifier instantiation that immediately produces a ground
conflict. However, in some cases it may be easier to find ground conflicts if
multiple terms are used as candidates for quantifier instantiation.

5.1.1 Experiments

We implemented the extended version of our CEGMS approach in our SMT
solver Boolector and evaluated it on benchmark sets BV and BV nraA with the
same hardware setup and resource limits as in Paper [C| (1200 seconds CPU time,
7GB memory). For the evaluation we added the following two new configura-
tions of Boolector and compared them to the configurations used in Paper [C]

(1) Btor+sg  Boolector with CEGMS (configuration Btor+s in Paper |C)
and counterexample generalization enabled.

(2) Btor+dsg Boolector with dual CEGMS (configuration Btor+ds in Pa-
per and counterexample generalization enabled.

Table summarizes the results of configurations Btor+sg and Btor+dsg
compared to the Boolector configurations evaluated in Paper [C] On the BV
benchmark set, counterexample generalization barely improves the overall per-
formance of configurations Btor+sg and Btor+dsg. However, on benchmark set
BVgBvLniRA, both Btor+sg and Btor+dsg solve considerably more benchmarks
compared to Btor+s and Btor+ds, where the majority is unsatisfiable. This
is expected since counterexample generalization helps to find unsatisfiable in-
stances due to the additional synthesis of quantifier instantiations. Configura-
tion Btor+sg solves 190 additional instances of which 188 are unsatisfiable and
now even outperforms Btor+ds by 12 instances. Further, with a CPU time limit
of 1200 seconds, configuration Btor+sg solves the most unsatisfiable instances
of all configurations. The difference of solved unsatisfiable instances between
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BV (191) BVinira (4838)
Slvd Sat Unsat Time [s] Uniq | Slvd Sat Unsat Time [s| Uniq
Btor 142 51 91 59529 4527 465 4062 389123
Btor+s 164 72 92 32996 4526 467 4059 390661
Btor+d 162 67 95 35877 4572 518 4054 342412
Btor+ds 172 77 95 24163 4704 517 4187 187411
Btor+sg 163 71 92 34162 4716 469 4247 164274
Btor+dsg | 173 78 95 23789 4761 519 4242 122174

S OO O O O
W oI =~ = W

Table 5.1: Results for all configurations on the BV and BV Nra benchmarks.

Btor+sg and Btor+dsg is due to the fact that for configuration Btor+dsg the
effective CPU time limit per thread is 600 seconds, but these benchmarks re-
quire more than 600 seconds to be solved by Btor+sg. With a CPU time limit
of 1200 seconds per thread, Btor+dsg is also able to solve these benchmarks.
An interesting observation is that Btor+dsg solves one more instance on the
BV benchmark set compared to Btor+ds, but solves 6 instances that can not
be solved by other configurations. This is due to the fact that counterexample
generalization introduces additional overhead in each refinement iteration while
synthesizing quantifier instantiations. As a consequence, while Btor+dsg is able
to solve 6 more instances, it loses 5 other instances due to the overhead. Further,
on benchmark set BVNra, configuration Btor+sg solves the most number of
unsatisfiable instances. However, compared to configuration Btor+dsg it solves
50 satisfiable instances less. This is due to the fact that in these cases, dual
CEGMS determines that the dual formula is unsatisfiable and consequently,
concludes with satisfiable. On the BV benchmark set, this is the case for 7 out
of the additional 10 satisfiable instances solved by Btor+dsg.

Figure illustrates the distribution of refinement iterations required by con-
figuration Btor+sg for the solved instances of benchmark sets BV and BVNIRA-
On the BV benchmark set, at least one refinement iteration was required to solve
an instance. For the majority of solved benchmarks (161 out of 163) Btor+sg
required at most two refinement iterations. The remaining two instances were
solved within 4 and 5 iterations respectively. On the BVinira benchmark set
half of the solved instances were either solved by rewriting (2328 instances) or
the simplified formula did not contain any universal quantifiers (104 instances).
The majority of the remaining instances (41%) were solved within one refine-
ment iteration. For the other solved instances at least two refinement iterations
were required. The maximum number of refinement iterations required was 98
(one instance).

Figures and illustrate the effect of counterexample generalization on
the runtime of configurations Btor+sg and Btor+dsg, respectively. For configu-
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Figure 5.2: Distribution of refinement iterations required on benchmark sets
BV (left) and BV nira (right) with configuration Btor+sg. The dark gray color
corresponds to satisfiable instances, the light gray color to unsatisfiable instances.

ration Btor+sg, on the solved instances of the BV benchmark set the overhead
of counterexample generalization is negligible, whereas on the BV nira bench-
mark set it amounts to 8% of the overall runtime. The three (satisfiable) outliers
on the BV benchmark set are due to counterexample generalization producing
additional ground instances, which are passed down to the SAT solver. These
benchmarks are part of the ranking benchmark family and were very unstable
in our experiments if the set of ground instances changed. Investigating this
behavior is left to future work. The overhead for configuration Btor+dsg on the
BViNIRA is similar to Btor+sg with 8%. On the BV benchmark set, however,
the overhead amounts to 25% of the total runtime.

Table summarizes the results of configurations Btor+sg and Btor+dsg com-
pared to CVC4, Q3B, and Z3, which we also evaluated in Paper [C| On the BV
benchmark set Q3B still solves the highest number of benchmarks. However, on
the BVynirRA benchmark set configuration Btor+dsg now solves more instances
than Z3 and the highest number of satisfiable instances. Still, Z3 solves the high-
est number of unsatisfiable instances (9 more than Btor+sg), which we assume
is due to its heuristic quantifier instantiation techniques.

Figure [5.5] depicts a cactus plot over the runtime of configurations Btor+sg
and Btor+dsg compared to CVC4, Q3B, and Z3 on benchmark BVyNra. Even
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BV (191) BVinra (4838)
Slvd Sat Unsat Time [s] Uniq | Slvd Sat Unsat Time [s] Uniq

4716 469 4247 164274 1
4761 519 4242 122174 1

Btor+sg 163 71 92 34162
Btor+dsg | 173 78 95 23789

Btor+ds 172 77 95 24163 0| 4704 517 4187 187411 4
CvC4 145 64 81 57652 0] 4362 339 4023 580402 2
Q3B 187 93 94 9086 9| 4367 327 4040 581252 4
Z3 161 69 92 36593 0| 4732 476 4256 130405 10
0
0

Table 5.2: Results for all solvers on the BV and BV nira benchmarks with a
CPU time limit of 1200 seconds.
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Figure 5.5: Cactus plot of runtime of all solvers on benchmark set BVniRrA
with a CPU time limit of 1200 seconds.
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though Btor+dsg solves the highest number of instances, Z3 solves many bench-
marks in less time. This is on the one hand due to the synthesis overhead
produced in every refinement step and on the other hand due to the lack of
quantifier specific simplifications as discussed in Paper [C} Employing simplifica-
tions that potentially eliminate existential and universal variables also reduces
the synthesis work since we have to synthesize terms for less variables. Further,
reducing the scopes of the variables may also have an impact on synthesis since
it reduces the number of inputs for each variable and consequently reduces the
number of enumerated expressions.

In general, counterexample generalization adds additional overhead in terms
of runtime, however, it considerably increases the overall number of solved in-
stances for both configurations Btor+sg and Btor+dsg with the majority being
unsatisfiable. In our experiments, we identified the signature computation as the
main cause for the synthesis overhead, which affects counterexample generaliza-
tion as well as CEGMS (and its dual version). The signature computation can
be expensive since it has to be done for every enumerated expression in order
to check if the current expression satisfies all ground instances and if it has the
same signature as an already enumerated expression. Improving the synthesis
procedure is one of our top-priority directions for future work as it will improve
CEGMS, dual CEGMS and the counterexample generalization approach at the
same time.

5.2 Quantifier Specific Simplifications

In this section we investigate quantifier specific simplification techniques and
evaluate their effectiveness in combination with our extended CEGMS approach
as introduced in Section [5.1] For our evaluation we implemented the following
three simplification techniques in Boolector.

Miniscoping |56] is a technique to minimize the scope of a quantifier by ap-
plying the following rules.

Var.(pla] Ala]) ~ (Va.plal) A (Vapla]) (MS1)
S (ple] V $la]) ~ (Ga.pla]) V (G ) (MS2)
Qu.(pla] 0 v) ~ (Qa.pla]) o ¥ (MS3)

with Q € {V,3}, o € {A,V}

In our case, we employ a lightweight version of miniscoping, which only ap-
plies rule since it does not introduce additional quantifiers. Introducing
additional universal and existential quantifiers may result in more overhead
when synthesizing candidate models and quantifier instantiations. Implementing
rules [MST] and [MS2] and evaluating the additional synthesis overhead against
the benefit of having smaller scopes is left to future work. In general, minimizing
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the scope of quantifiers is beneficial for our CEGMS approach since it reduces
the set of inputs used for synthesizing candidate models and quantifier instanti-
ations. As discussed in Paper [C| the set of inputs used to synthesize a term for
a variable z is selected w.r.t. the variables on which x depends. Consequently,
reducing the number of inputs also reduces the number of expressions to be
enumerated.

The second technique eliminates universal quantifiers from a formula by ap-
plying the following equality substitution rule (e.g., [48])

Vo, y.(z =t — e[z, y]) ~ (Vy.plz/t,y]), (DER)

where x does not occur in ¢t. This technique is sometimes also referred to as
destructive equality resolution (DER). Eliminating universal variables helps our
CEGMS approach in two ways. First of all, it reduces the number of variables
for which we need to synthesize quantifier instantiations. Second, since we ap-
ply Skolemization as the last step in our simplifications, DER also reduces the
number of inputs used for synthesis.

The third technique eliminates existential quantifiers from a formula by ap-
plying the following equality substitution rule (e.g., [48])

Jz,y.(x =t Aplz,y]) ~ Fy-ple/t, y)), (CER)

where x does not occur in ¢t. This technique is sometimes referred to as construc-
tive equality resolution (CER) [38]. CER is the dual case of DER and eliminates
existential variables, which helps to improve the synthesis of candidate models
as well as quantifier instantiations. In Boolector, we employ a technique called
variable substitution, which is similar to CER and works on ground formulas.
Variable substitution finds top-level equalities of the form v = t with v being
a constant and ¢t being an arbitrary term. If v does not occur in ¢, it gets
substituted with term ¢ in the formula.

We implemented above simplification techniques in Boolector and repeated
the experiments of Section with configurations Btor+sg and Btor+dsg on
benchmark sets BV and BVynira. We used the same hardware setup and re-
source limits (1200 seconds CPU time, 7GB memory, 1200 seconds penalty) as
in Section .11

Table summarizes the results for configurations Btor+sg and Btor+dsg on
benchmark set BV, where we compared every combination of the simplification
techniques. Enabling miniscoping (ms) improves the performance of configu-
rations Btor+sg and Btor+dsg, where the number of inputs for an existential
variable is reduced by 80% on average for each benchmark. This is particularly
useful since reducing the number of inputs also reduces the number of expres-
sions that need to be enumerated during synthesis. The number of inputs for the
universal variables is unaffected since the quantifier prefix for each benchmark in
the fixpoint family is V4. On the benchmarks of the ranking family miniscoping
was not able to reduce any quantifier scopes. However, all benchmarks have
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Btor+sg Btor+dsg
Slvd Sat Unsat Time [s] | Slvd Sat Unsat Time [s]
default | 163 71 92 34166 | 173 78 95 23538
ms | 168 74 94 28452 | 175 80 95 20651
cer | 162 72 90 35380 | 171 78 93 25260
der | 165 73 92 32388 | 169 75 94 28060
cer+der | 170 80 90 26157 | 177 82 95 18913
ms+cer | 177 82 95 17984 | 177 82 95 19154
ms+der | 167 73 94 29416 | 171 77 94 26074
ms+cer+der | 175 81 94 20300 | 176 81 95 19849

Table 5.3: Results for configurations Btor+sg and Btor+dsg on benchmark set
BV (191 benchmarks in total) with different simplification techniques enabled

an 3V quantifier prefix and consequently, the inputs for existential variables can
not be further reduced. Enabling only DER (der) or CER (cer) is less effective
and does not achieve any improvements compared to the default version except
for Btor+sg with DER. In most cases configurations with DER or CER enabled
solve even less instances, which is due to the fact that the theory solvers used
for finding and checking a candidate model receive a different formula. This
may produce different models and counterexamples, which in some cases may
direct the search into different directions. With DER the number of univer-
sal variables is reduced by 63% on average, whereas with CER no reduction
was achieved. However, by combining CER and DER (cer+der) configurations
Btor+sg and Btor+dsg solve 7 and 4 more instances. For configuration Btor+dsg
the combination of CER and DER achieves the best results on the BV bench-
mark set. This combination reduces the number of existential variables for only
10 benchmarks (small-equiv-fixpoint-* benchmarks). However, on these bench-
marks the reduction of existential variables is on average 55%, which is the reason
for the increase in the number of solved instances. The small-equiv-fixpoint-*
benchmarks can be considerably simplified with CER when combined with ei-
ther DER or miniscoping. The combination of miniscoping with CER (ms+cer)
solves the most instances for both Btor+sg and Btor+dsg, whereas ms+der seems
less effective. Combination ms+cer eliminates on average 39% of the existential
variables. The reduction of universal variables for combination ms+der is with
28% on average less compared to DER only. This is due to the fact that in some
cases miniscoping pushes universal quantifiers all the way down to inequalities
(Vx.x # t), for which the DER rule is not applicable anymore. However, these
cases would be eliminated with additional rewriting since Vz.x # ¢ simplifies to
false if the domain of x contains more than one value, which is always the case
for bit-vectors (smallest bit-vector size is 1 with domain values {0, 1}). Interest-
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Btor+sg Btor+dsg

Slvd Sat Unsat Time [s] Slvd Sat Unsat Time [s]
default 4715 469 4246 165096 | 4760 520 4240 123698

ms 4713 469 4244 168876 4754 515 4239 131026

cer 4708 464 4244 173230 4757 517 4240 127100

der 4709 465 4244 171189 4757 517 4240 126765
certder | 4715 469 4246 164842 4758 518 4240 124500
ms+cer 4708 466 4242 172446 4752 513 4239 127812
ms+der 4707 465 4242 172888 4753 514 4239 128810
ms+cer+der 4712 468 4244 168607 4753 514 4239 131086

Table 5.4: Results for configurations Btor+sg and Btor+dsg on benchmark set
BVinmra (4838 benchmarks in total) with different simplification techniques
enabled

ingly, the combination of miniscoping and CER on configuration Btor+sg even
outperforms the best configuration of Btor+dsg in terms of runtime. Enabling
all simplification techniques (ms+cer+der) does not yield the best performance
on the BV benchmark set, however, it is still close to the best combinations.
This combination reduces the number of existential variables by 41% and the
number of universal variables by 28% on average.

Table [5.4) summarizes the results for configurations Btor+sg and Btor+dsg on
benchmark set BVynira with all combinations of simplification techniques. In-
terestingly, on this benchmark set none of the simplification techniques achieved
any improvement.

Figures[5.6]and [5.7] compare different combinations of simplification techniques
for configuration Btor+sg on the BV and BVgyinira benchmark sets. The plots
for configuration Btor+dsg are not included since they exhibit a behavior similar
to configuration Btor+sg.

By enabling simplifications Btor+sg improves considerably compared the con-
figuration without simplifications and is able to solve 14 more instances in almost
half of the runtime. For configuration Btor+dsg the improvement is at most 4
instances, however, the default version of Btor+dsg already solves 10 more in-
stances compared to the default version of Btor+sg, which leaves less room for
improvement. The majority of the additionally solved instances were satisfi-
able. These results suggest that sufficiently reducing the number of existential
variables is always beneficial for our CEGMS approach.
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Figure 5.6: Comparison of configuration Btor+sg with different simplification
technique on the BV nirA benchmark set.
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Figure 5.7: Comparison of configuration Btor+sg with different simplification

technique on the BVynmra benchmark set.
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5.3 Discussion

5.3 Discussion

In Section [5.1] we discussed an extension to our original CEGMS technique,
which allows us to synthesize quantifier instantiations in each refinement iter-
ation based on a set of concrete counterexamples. As a result, this consider-
ably improved the number of solved unsatisfiable instances for both techniques
CEGMS and dual CEGMS, where dual CEGMS was even able to outperform
all other solvers on the BVynra benchmark set. The gap between CEGMS and
dual CEGMS became smaller, however, employing the dual CEGMS approach
is still beneficial. In Section [5.2] we investigated the impact of some quantifier
specific simplification techniques on our CEGMS technique. The results of our
experiments are mixed. Depending on the benchmark set the employed simpli-
fication techniques can either improve or worsen the performance of CEGMS.
However, the fact that CEGMS and dual CEGMS are competitive with the
state-of-the-art without any simplification techniques is very promising since for
other approaches [38}/63] simplification techniques are crucial.

Our dual CEGMS approach is currently not applicable in the presence of
uninterpreted function symbols. In this case we can not exploit the duality
concept as described in Paper [C] Finding a solution for this problem is left to
future work. A more interesting question is, however, if we can improve CEGMS
combined with counterexample generalization in order to make dual CEGMS
obsolete.

We further plan to extend CEGMS in Boolector to also support the combina-
tion with uninterpreted functions, arrays and lambda terms. This would allow
us to handle various array properties such as sortedness (as discussed in Sec-
tion as well as extensional lambda terms. Applying our CEGMS approach
to other theories such as linear integer arithmetic (LIA) or linear real arithmetic
(LRA) is another interesting direction for future work.
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Chapter 6

Conclusion

In this thesis, we explored an alternative approach to reason about arrays in
SMT by means of non-recursive first-order lambda terms and presented a new
decision procedure to lazily handle these lambda terms. We discussed various
scenarios where lambda terms are beneficial when used for representing array
operations. Further, we presented a technique called counterexample-guided
model synthesis (CEGMS) for solving quantified SMT problems, with a partic-
ular focus on quantified bit-vectors. This approach does not rely on techniques
commonly used in current state-of-the-art SMT solvers such as heuristic quan-
tifier instantiation or finite model finding. Instead, it employs a combination of
counterexample-guided quantifier instantiation with a syntax-guided synthesis
approach to synthesize models and quantifier instantiations. Our experimen-
tal results showed that our technique is competitive with the state-of-the-art in
solving quantifier bit-vectors even though we did not employ any quantifier spe-
cific simplification techniques. The initial work on these topics were part of the
peer-reviewed papers [A] [B] and [C] which were included as Chapters [7[J in the
second part of this thesis. In the first part, we revisited the topics of Papers[A}[C]
and discussed several new contributions that extend and improve our presented
techniques.

In Chapter 3] we presented a simple extension to the lemmas on demand
procedure introduced in Paper [A] to handle extensional lambda terms that rep-
resent arrays. In our experiments, we showed that our approach for handling
extensionality is competitive with the lemmas on demand procedure originally
implemented in Boolector for the theory of arrays [11]. We further discussed an
optimization of our lemmas on demand approach that allows us to generate lem-
mas more eagerly, which improves the overall performance of the procedure. We
revisited the approach on how lambdas are treated in our SMT solver Boolec-
tor and proposed a more refined approach, which only employs lambda terms if
multiple array operations can be combined. We leave this enhancement and the
other discussed optimizations to future work.

In Chapter [4] we revisited the work presented in Paper[B|and discussed various
array patterns, which can be represented by lambda terms and quantifiers. We
evaluated both approaches based on a simple array initialization pattern. Our
experiment showed that using quantifiers for this kind of patterns can have a
considerable negative impact on the performance of state-of-the-art SM'T solvers.
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6 Conclusion

However, this is mainly due to the lack of a specialized procedure that is able
to efficiently handle such array patterns in combination with quantifiers. We
briefly discussed an idea for a specialized theory solvers that combines a lemmas
on demand approach for the theory of arrays with a lazy quantifier instantiation
technique, which may achieve results similar to our lambda approach. We leave
the development of such a specialized theory solver to future work.

In Chapter we described an extension for our CEGMS approach intro-
duced in Paper [C]to generalize concrete counterexamples by means of synthesis.
The proposed technique considerably improves the performance of our CEGMS
approach (and its dual version), particularly on unsatisfiable benchmarks. Im-
proving our new technique in order to render dual CEGMS obsolete is left to
future work. In Paper [C] we did not employ any quantifier specific simplifi-
cations. Hence, in Chapter [5 we investigated the effect of the simplification
techniques miniscoping, destructive and constructive equality resolution on our
CEGMS approach. In some cases, we were able to solve more instances due to
simplifications, but most of the time there was no or little performance gain.
However, (dual) CEGMS was already competitive without employing quantifier
specific simplification techniques, which usually are crucial for other state-of-
the-art approaches for solving quantified SMT problems. Improving the overall
CEGMS procedure and applying it to more theories (e.g, LIA and LRA) is an
another interesting direction for future work.

The work presented in Papers [A] and [B] and parts of Chapter [3] contributed
to Boolector winning the QF ABYV division at the SMT competitions in 2014,
2015 and 2016, and the QF UFBV division in 2015 and 2016. The work in
Paper [C| and its extension introduced in Chapter 5] are a promising alternative
approach for solving quantified SMT problems and we believe that there is still
a lot of room for improving these techniques.
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Chapter 7

Paper A. Lemmas on Demand
for Lambdas

Published In Proceedings of the 2nd International Workshop on Design and
Implementation of Formal Tools and Systems (DIFTS 2013), affiliated to the
13th International Conference on Formal Methods in Computer Aided Design
(FMCAD 2013), Portland, OR, USA, 2013.

Authors Mathias Preiner, Aina Niemetz and Armin Biere.

Modifications Sequences z1,...,2z, now start with 1 instead of 0. Instead
of A term (f-reduction) we now write lambda term (beta reduction). Solver
configurations in experiments use uniform naming scheme.

Abstract We generalize the lemmas on demand decision procedure for array
logic as implemented in Boolector to handle non-recursive and non-extensional
lambda terms. We focus on the implementation aspects of our new approach
and discuss the involved algorithms and optimizations in more detail. Further,
we show how arrays, array operations and SMT-LIBv2 macros are represented
as lambda terms and lazily handled with lemmas on demand. We provide ex-
perimental results that demonstrate the effect of native lambda support within
an SMT solver and give an outlook on future work.
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7.1 Introduction

The theory of arrays as axiomatized by McCarthy [43] enables us to reason
about memory (components) in software and hardware verification, and is par-
ticularly important in the context of deciding satisfiability of first-order formulas
w.r.t. first-order theories, also known as Satisfiability Modulo Theories (SMT).
However, it is restricted to array operations on single array indices and lacks
support for efficiently modeling operations such as memory initialization and
parallel updates (memset and memcpy in the standard C library).

In 2002, Seshia et al. [12] introduced an approach to overcome these limitations
by using restricted lambda terms to model array expressions (such as memset
and memcpy), ordered data structures and partially interpreted functions within
the SMT solver UCLID [58]. The SMT solver UCLID employs an eager SMT
solving approach and therefore eliminates all lambda terms through beta reduc-
tion, which replaces each argument variable with the corresponding argument
term as a preliminary rewriting step. Other SMT solvers that employ a lazy
SMT solving approach and natively support lambda terms such as CVC4 |3|
or Yices [25] also treat them eagerly, similarly to UCLID, and eliminate all oc-
currences of lambda terms by substituting them with their instantiated function
body (cf. C-style macros). Eagerly eliminating lambda terms via beta reduction,
however, may result in an exponential blow-up in the size of the formula [58].
Recently, an extension of the theory of arrays was proposed [27|, which uses
lambda terms similarly to UCLID. This extension provides support for model-
ing memset, memcpy and loop summarizations. However, it does not make use of
native support of lambda terms provided by an SMT solver. Instead, it reduces
instances in the theory of arrays with lambda terms to a theory combination
supported by solvers such as Boolector |11] (without native support for lambda
terms), CVC4, STP [32], and Z3 [17].

In this paper, we generalize the decision procedure for the theory of arrays
with bit-vectors as introduced in [11] to lazily handle non-recursive and non-
extensional lambda terms. We show how arrays, array operations and SMT-
LIBv2 macros are represented in Boolector as lambda terms and introduce a
lemmas on demand procedure for lazily handling lambda terms in Boolector in
detail. We summarize an experimental evaluation and compare our results to
solvers with SMT-LIBv2 macro support (CVC4, MathSAT [14], SONOLAR |[42]
and Z3) and finally, give an outlook on future work.

7.2 Preliminaries
We assume the usual notions and terminology of first-order logic and are mainly
interested in many-sorted languages, where bit-vectors of different bit width

correspond to different sorts and array sorts correspond to a mapping (7; = 7¢)
from index sort 7; to element sort 7.. Our approach is focused primarily on the
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quantifier-free first-order theories of fixed size bit-vectors, arrays and equality
with uninterpreted functions, but not restricted to the above.

We call 0-arity function symbols constant symbols and a, b, i, j, and e denote
constants, where a and b are used for array constants, ¢ and j for array indices,
and e for an array value. For each bit-vector of size n, the equality =, is
interpreted as the identity relation over bit-vectors of size n. We further interpret
the if-then-else bit-vector term ite,, as ite(T, ¢, €) =, t and ite(L, ¢, e) =, e. As
a notational convention, the subscript might be omitted in the following. We
identify read and write as basic operations on array elements, where read(a, i)
denotes the value of array a at index 4, and write(a, i, €) denotes the modified
array a overwritten at position 7 with value e. The theory of arrays (without
extensionality) is axiomatized by the following axioms, originally introduced by
McCarthy in [43]:

i = j — read(a, i) = read(a, j) (A1)
i = j — read(write(a, i, €), j) =e (A2)
i # j — read(write(a, i, €), j) = read(a, j) (A3)

The array congruence axiom asserts that accessing array a at two equal in-
dices i and j produces the same element. The read-over-write axioms[A2] and [A3]
ensure a basic characteristic of arrays: asserts that accessing a modification
to an array a at the index it has most recently been updated (), produces the
value it has been updated with (e). captures the case when a modification to
an array a is accessed at an index other than the one it has most recently been
updated at (j), which produces the unchanged value of the original array a at
position j. Note that we assume that all variables a, 7, j and e in axioms [AT]
and [A3] are universally quantified.

From the theory of equality with uninterpreted functions we primarily focus
on the following axiom:

vz, g. [\ zi=vi = f(T) = (@) (EUF)
=1

The function congruence axiom asserts that a function evaluates to the
same value for the same argument values.

We only consider a non-recursive lambda calculus, assuming the usual nota-
tion and terminology, including the notion of function application, currying and
beta reduction. In general, we denote a lambda term A\, as Ax.t(z), where x is
a variable bound by A\, and t(z) is a term in which x may or might not occur.
We interpret t(x) as defining the scope of bound variable z. Without loss of
generality, the number of bound variables per lambda term is restricted to ex-
actly one. Functions with more than one parameter are transformed into a chain
of nested lambda terms by means of currying (e.g. f(x,y) = x + y is rewritten
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as \x.\y.x +y). As a notational convention, we will use A\; as a shorthand for
Az .. Azgt(xy, ..., o) for k> 1. We identify the function application as an
explicit operation on lambda terms and interpret it as instantiating a bound
variable (all bound variables) of a lambda term (a curried lambda chain). We
interpret beta reduction as a form of function application, where all formal pa-
rameter variables (bound variables) are substituted with their actual parameter

terms. We will use A\z[z1\ai, ..., z,\ay,] to indicate beta reduction of a lambda
term Az, where the formal parameters z1, ..., x, are substituted with the actual
argument terms aj, ..., Qp.

7.3 Lambda terms in Boolector

In contrast to lambda term handling in other SMT solvers such as e.g. UCLID
or CVC4, where lambda terms are eagerly eliminated, in Boolector we provide a
lazy lambda term handling with lemmas on demand. We generalized the lemmas
on demand decision procedure for the extensional theory of arrays introduced
in [11] to handle lemmas on demand for lambda terms as follows.

In order to provide a uniform handling of arrays and lambda terms within
Boolector, we generalized all arrays (and array operations) to lambda terms (and
operations on lambda terms) by representing array variables as uninterpreted
functions (UF), read operations as function applications, and write and if-then-
else operations on arrays as lambda terms. We further interpret macros (as
provided by the command define-fun in the SMT-LIBv2 format) as (curried)
lambda terms. Note that in contrast to [11], our implementation currently does
not support extensionality (equality) over arrays (lambda terms).

We represent an array as exactly one lambda term with exactly one bound
variable (parameter) and define its representation as A\j.t(j). Given an array of
sort (1; = 7.) and its lambda term representation Aj.t(j), we require that bound
variable j is of sort index 7; and term t(j) is of sort element 7.. Term ¢(j) is
not required to contain j and if it does not contain j, it represents a constant
lambda term (e.g. Aj.0). In contrast to SMT-LIBv2 macros, it is not required to
represent arrays with curried lambda chains, as arrays are accessed at one single
index at a time (cf. read and write operations on arrays).

We treat array variables as UF with exactly one argument and represent them
as f, for array variable a.

We interpret read operations as function applications on either UF or lambda
terms with read index i as argument and represent them as read(a, i) = f,(4)
and read(Aj.t(j), i) = (\j.t(5))(4), respectively.

We interpret write operations as lambda terms modeling the result of the
write operation on array a at index ¢ with value e, and represent them as
write(a, i, €) = Aj.ite(i = j, e, f,(j)). A function application on a lambda term
Aw representing a write operation yields value e if j is equal to the modified index
i, and the unmodified value f,(j), otherwise. Note that applying beta reduction
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to a lambda term )\, yields the same behavior described by array axioms and
Consider a function application on A, (k), where k represents the position to
be read from. If k =4 , beta reduction yields the written value e, whereas if
k#i , beta reduction returns the unmodified value of array a at position k
represented by f,(k). Hence, these axioms do not need to be explicitly checked
during consistency checking. This is in essence the approach to handle arrays
taken by UCLID |[58].

We interpret if-then-else operations on arrays a and b as lambda terms, and
represent them as ite(c, a, b) = N\j.ite(e, fo(J), fo(j)). Condition ¢ yields either
function application f,(j) or fy(7), which represent the values of arrays a and b
at index j, respectively.

In addition to the base array operations introduced above, lambda terms en-
able us to succinctly model array operations like e.g. memcpy and memset from
the standard C library, which we previously were not able to efficiently express
by means of read, write and ite operations on arrays. In particular, both mem-
cpy and memset could only be represented by a fixed sequence of read and write
operations within a constant index range, such as copying exactly 5 words etc.
It was not possible to express a variable range, e.g. copying n words, where n is
a symbolic (bit-vector) variable.

With lambda terms however, we do not require a sequence of array operations
as it usually suffices to model a parallel array operation by means of exactly one
lambda term. Further, the index range does not have to be fixed and can there-
fore be within a variable range. This type of high level modeling turned out to be
useful for applications in software model checking [27]. See also [58] for more ex-
amples. For instance, the memset with signature memset(a, i, n, €), which sets
each element of array a within the range [, i+n[ to value e, can be represented as
Ajite(i < jAj<i+mn, e, fa(j)). Note, n can be symbolic, and does not have
to be a constant. In the same way, memcpy with signature memcpy (a,b,i,k,n),
which copies all elements of array a within the range [i,7+n[ to array b, starting
from index k, is represented as Aj.ite(k < jAj<k+mn, fo(i +75—k), fu(4)).
As a special case of memset, we represent array initialization operations, where
all elements of an array are initialized with some (constant or symbolic) value e,
as \j.e.

Introducing lambda terms does not only enable us to model arrays and ar-
ray operations, but further provides support for arbitrary functions (macros)
by means of currying, with the following restrictions: (1) functions may not be
recursive and (2) arguments to functions may not be functions. The first restric-
tion enables keeping the implementation of lambda term handling in Boolector
as simple as possible, whereas the second restriction limits lambda term handling
in Boolector to non-higher order functions. Relaxing these restrictions will turn
the considered lambda calculus to be Turing-complete and in general render the
decision problem to be undecidable. As future work it might be interesting to
consider some relaxations.

In contrast to treating SMT-LIBv2 macros as C-style macros, i.e, substituting
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every function application with the instantiated function body, in Boolector,
we directly translate SMT-LIBv2 macros into lambda terms, which are then
handled lazily via lemmas on demand. Formulas are represented as directed
acyclic graphs (DAG) of bit-vector and array expressions. Further, in this paper,
we propose to treat arrays and array operations as lambda terms and operations
on lambda terms, which results in an expression graph with no expressions of sort
array (7; = 7). Instead, we introduce the following four additional expression
types of sort bit-vector:

e a param expression serves as a placeholder variable for a variable bound
by a lambda term

e a lambda expression binds exactly one param expression, which may occur
in a bit-vector expression that represents the body of the lambda term

e an args expression is a list of function arguments

e an apply expression represents a function application that applies argu-
ments args to a lambda expression

Figure 7.1: DAG representation of formula ;.
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Example 7.1. Consider 1 = f(i) = f(j) A i # j with functions f(x) := ite(z <
0, g(z), x), g(y) = —y as depicted in Figure . Both functions are represented
as lambda terms, where function g(y) returns the negation of y and is used in
function f(z), which computes the absolute value of x. Dotted nodes indicate
parameterized expressions, i.e., expressions that depend on param expressions,
and serve as templates that are instantiated as soon as beta reduction is applied.

In order to lazily evaluate lambda terms in Boolector we implemented two beta
reduction approaches, which we will discuss in the next section in more detail.

7.4 Beta reduction

In this section we discuss how concepts from the lambda calculus have been
adapted and implemented in our SMT solver Boolector. We focus on reduction
algorithms for the non-recursive lambda calculus, which is rather atypical for the
(vast) literature on lambda calculus. In the context of Boolector, we distinguish
between full and partial beta reduction. They mainly differ in their application
and the depth up to which lambda terms are expanded. In essence, given a
function application \z(a1, ..., a,) partial beta reduction reduces only the top-
most lambda term Az, whereas full beta reduction reduces Az and every lambda
term in the scope of \z.

Full beta reduction of a function application on lambda term Az consists of
a series of beta reductions, where lambda term Az and every lambda term Ay
within the scope of Az are instantiated, substituting all formal parameters with
actual parameter terms. Since we do not allow partial function applications, full
beta reduction guarantees to yield a term which is free of lambda terms. Given
a formula with lambda terms, we usually employ full beta reduction in order to
eliminate all lambda terms by substituting every function application with the
term obtained by applying full beta reduction on that function application. In
the worst case, full beta reduction results in an exponential blow-up. However, in
practice, it is often beneficial to employ full beta reduction, since it usually leads
to significant simplifications through rewriting. In Boolector, we incorporate this
method as an optional rewriting step. We will use Az[z1\a1, ..., zn\ay]; as a
shorthand for applying full beta reduction to Az with arguments aq, ..., a,.

Partial beta reduction of a lambda term Az, on the other hand, essentially
works in the same way as what is referred to as beta reduction in the lambda cal-
culus. Given a function application Az(a1, ..., a,), partial beta reduction substi-
tutes formal parameters x1, ..., x, with the actual argument terms aq, ..., a,
without applying beta reduction to other lambda terms within the scope of \z.
This has the effect that lambda terms are expanded function-wise, which we re-
quire for consistency checking. In the following, we use A\z[z1\a1, ..., ,\ay] p o
denote the application of partial beta reduction to Az with arguments aq, ..., ay.
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7.4.1 Full beta reduction

Given a function application Az(aq, ..., a,) and a DAG representation of Az.
Full beta reduction of Az consecutively substitutes formal parameters with actual
argument terms while traversing and rebuilding the DAG in depth-first-search
(DFS) post-order as follows.

1. Initially, we instantiate Az by assigning arguments a, ..., a, to the formal
parameters x1, ..., Tn.

2. While traversing down, for any lambda term Ay in the scope of Az, we need
special handling for each function application \y(b1, ..., by,) as follows.

a) Visit arguments by, ..., by, first, and obtain rebuilt arguments

/ /
17...,bm.

b) Assign rebuilt arguments b}, ..., b}, to Ay and apply beta reduction
to )\g( /1, ooy b;n)

This ensures a bottom-up construction of the beta reduced DAG (see step
), since all arguments b}, ..., b, passed to a lambda term )y are beta
reduced and rebuilt prior to applying beta reduction to Ay.

3. During up-traversal of the DAG we rebuild all visited expressions bottom-
up and require special handling for the following expressions:

e param: substitute param expression y; with current instantiation b

e apply: substitute expression Ag(b1, ..., by) with
Aglyn\by, - ym\by ]

We further employ following optimizations to improve the performance of the
full beta reduction algorithm.

o Skip expressions that do not need rebuilding
Given an expression e within the scope of a lambda term Az. If e is not
parameterized and does not contain any lambda term, e is not dependent
on arguments passed to Az and may therefore be skipped.

e Lambda scope caching
We cache rebuilt expressions in a lambda scope to prevent rebuilding pa-
rameterized expressions several times.

Example 7.2. Given a formula ¢9 = f(i,j) = f(k,1) and two functions g(x) =
ite(z =1, e, 2+xz) and f(z,y) = ite(y < z, g(z), g(y)) as depicted in Figure[7.2a]
Applying full beta reduction to formula vy yields formula v} as illustrated in
Figure Function application f(i,j) has been reduced to ite(j > i Ai #
J, 2% 74, e) and f(k,l) to ite(l < k, ite(k =1, e, 2% k), ite(l =1, e, 2% 1)).
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/T \ ........

i (lambda) i

const

(b) Formula 1) after full beta reduction of ts.

Figure 7.2: Full beta reduction of formula 1)s.
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7.4.2 Partial beta reduction

Given a function application Az(ai, ..., a,) and a DAG representation of Az.
The scope of a partial beta reduction [3,(\z) is defined as the sub-DAG obtained
by cutting off all lambda terms in the scope of Az. Assume that we have an

assignment for arguments a1, ..., a,, and for all non-parameterized expressions
in the scope of ,(Az). The partial beta reduction algorithm substitutes param
expressions i, ..., Ty with a1, ..., a, and rebuilds Az. Similar to full beta

reduction, we perform a DFS post-order traversal of the DAG as follows.

1. Initially, we instantiate Az by assigning arguments a1, ..., a, to the formal
parameters i, ..., Tp.

2. While traversing down the DAG, we require special handling for the fol-
lowing expressions:

e function applications Ay(b1, ..., by)
a) Visit arguments by, ..., by, obtain rebuilt arguments b}, ..., b/,.
b) Do not assign rebuilt arguments b}, ..., b/, to Ay and stop down-

traversal at Aj.

e ite(c, t, to)
Since we have an assignment for all non-parameterized expressions
within the scope of 3,(Az), we are able to evaluate condition c. Based
on that we either select t; or to to further traverse down (the other
branch is omitted).

3. During up-traversal of the DAG we rebuild all visited expressions bottom-
up and require special handling for the following expressions:

e param: substitute param expression y; with current instantiation b

e if-then-else: substitute expression ite(c, t1, t2) with ¢; if ¢ = T, and
to otherwise

For partial beta reduction, we have to modify the first of the two optimizations
introduced for full beta reduction.

o Skip expressions that do not need rebuilding
Given an expression e in the scope of partial beta reduction f,(Az). If
e is not parameterized, in the context of partial beta reduction, e is not
dependent on arguments passed to Az and may be skipped.

Example 7.3. Consider 15 from Ex. Applying partial beta reduction to
1o yields the formula depicted in Figure where function application f(, j)
has been reduced to ite(j < i,e,9(j)) and f(k,1) to ite(l < k, g(k), g(1)).
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Figure 7.3: Partial beta reduction of formula 5.

7.5 Decision Procedure

The idea of lemmas on demand goes back to [20] and actually represents one
extreme variant of the lazy SMT approach [57]. Around the same time, a related
technique was developed in the context of bounded model checking [26]|, which
lazily encodes all-different constraints over bit-vectors (see also [6]). In constraint
programming the related technique of lazy clause generation [49] is effective too.

In this section, we introduce lemmas on demand for non-recursive lambda
terms based on the algorithm introduced in [11]. A top-level view of our lemmas
on demand decision procedure for lambda terms (DP)) is illustrated in Figure
and proceeds as follows. Given a formula ¢, DP) uses a bit-vector skeleton of
the preprocessed formula 7 as formula abstraction (7). In each iteration, an
underlying decision procedure DPg determines the satisfiability of the formula
abstraction refined by formula refinement &, i.e., in DPg, we eagerly encode the
refined formula abstraction I' to SAT and determine its satisfiability by means
of a SAT solver. As I' is an over-approximation of ¢, we immediately conclude
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procedure DP) (¢)

7 = preprocess(¢)

E=T

loop
I'=ay(m) NE
r,o = DPg(I)

if » = unsatisfiable return unsatisfiable
if consistent) (7, o) return satisfiable

¢ =& A ay(lemmay (7, o))

Figure 7.4: Lemmas on demand for lambda terms DP,.

with unsatisfiable if T' is unsatisfiable. If I is satisfiable, we have to check if the
current satisfying assignment o (as provided by procedure DPp) is consistent
w.r.t. preprocessed formula 7. If o is consistent, i.e., if it can be extended to
a valid satisfying assignment for the preprocessed formula 7w, we immediately
conclude with satisfiable. Otherwise, assignment o is spurious, consistenty (7, o)
identifies a violation of the function congruence axiom [EUF] and we generate
a symbolic lemma lemmay (7, o), which is added to formula refinement ¢ in its
abstracted form a(lemmay (7, 0)).

Note that in ¢, in contrast to the decision procedure introduced in [11], all
array variables and array operations in the original input have been abstracted
away and replaced by corresponding lambda terms and operations on lambda
terms. Hence, various integral components of the original procedure (ay, con-
sistenty, lemmay ) have been adapted to handle lambda terms as follows.

7.6 Formula Abstraction

In this section, we introduce a partial formula abstraction function o) as a gen-
eralization of the abstraction approach presented in [11]. Analogous to [11], we
replace function applications by fresh bit-vector variables and generate a bit-
vector skeleton as formula abstraction. Given 7 as the preprocessed input for-
mula ¢, our abstraction function «) traverses down the DAG structure starting
from the roots, and generates an over-approximation of 7 as follows.

1. Each bit-vector variable and symbolic constant is mapped to itself.

2. Each function application A\z(aq, ..., a,) is mapped to a fresh bit-vector
variable.
3. Each bit-vector term t(y, ..., ym) is mapped to t(ax(y1), ..., ax(Ym))-
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Note that by introducing fresh variables for function applications, we essentially
cut off lambda terms and UF and therefore yield a pure bit-vector skeleton,
which is subsequently eagerly encoded to SAT.

Example 7.4. Consider formula v; from Ex. which has two roots. The
abstraction function «a) performs a consecutive down-traversal of the DAG from
both roots. The resulting abstraction is a mapping of all bit-vector terms en-
countered during traversal, according to the rules 1-3 above. For function ap-
plications (e.g. apply;) fresh bit-vector variables (e.g. ax(apply;)) are introduced,
where the remaining sub-DAGs are therefore cut off. The resulting abstraction

ax (1) is given in Figure

°
2 2
r \ )

va ar
: i ax(apply; ax(apply;)

Figure 7.5: Formula abstraction a(¢1).

7.7 Consistency Checking

In this section, we introduce a consistency checking algorithm consistent), as a
generalization of the consistency checking approach presented in [11]. However,
in contrast to [11], we do not propagate so-called access nodes but function ap-
plications and further check axiom (while applying partial beta reduction
to evaluate function applications under a current assignment) instead of check-
ing array axioms [AT]and [A2] Given a satisfiable over-approximated and refined
formula I', procedure consistenty determines whether a current satisfying assign-
ment o (as provided by the underlying decision procedure DPg) is spurious, or
if it can be extended to a valid satisfying assignment for the preprocessed input
formula 7. Therefore, for each function application in 7, we have to check both
if the assignment of the corresponding abstraction variable is consistent with the
value obtained by applying partial beta reduction, and if axiom [EUF]is violated.
If consistenty does not find any conflict, we immediately conclude that formula m
is satisfiable. However, if current assignment ¢ is spurious w.r.t. preprocessed
formula 7, either axiom [EUF]is violated or partial beta reduction yields a con-
flicting value for some function application in 7. In both cases, we generate
a lemma as formula refinement. In the following we will equally use function
symbols f, g, and h for UF symbols and lambda terms.
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In order to check axiom [EUF] for each lambda term and UF symbol we main-
tain a hash table p, which maps lambda terms and UF symbols to function
applications. We check consistency w.r.t. m by applying the following rules.

I: For each f(a), if a is not parameterized, add f(a) to p(f)

C: For any pair s := g(a), t :== h(b) € p(f) check

n

N o(@x(@i) = olax(b) = o(an(s)) = o(ax(t)

=1

B: For any s = Ag(ay, ..., an) € p(Az) with ¢ := Az[z1\a1, ..., zn\an),,
check rule P, if P fails, check eval(t) = o(ax(s))

P: For any s = A\g(ai, ..., an) € p(Az) with
ti=g(b, ..., bp) = Aglz1\ar, ..., zp\an],

n
if n=m A /\ a; = b;, propagate s to p(g)
i=1

Given a lambda term (UF symbol) f and a corresponding hash table p(f). Rule I,
the initialization rule, initializes p(f) with all non-parameterized function appli-
cations on f. Rule C corresponds to the function congruence axiom and is applied
whenever we add a function application g(ay, ..., a,) to p(f). Rule B is a con-
sistency check w.r.t. the current assignment o, i.e., for every function application
sin p(f), we check if the assignment of o(a)(s)) corresponds to the assignment
evaluated by the partially beta reduced term Az[z1\ai, ..., mn\an]p. Finally,
rule P represents a crucial optimization of consistenty, as it avoids unnecessary
conflicts while checking rule B. If rule P applies, both function applications s and
t have the same arguments. As function application s € p(Az), rule C implies
that s = Az(a1, ..., ap). Therefore, function applications s and ¢ must produce
the same function value as ¢ := Az[z1\a1, ..., @p\an], = Aglzi\ar, ..., 2p\an),,
i.e., function application ¢ must be equal to the result of applying partial beta
reduction to function application s. Assume we encode t and add it to the for-
mula. If DPp guesses an assignment s.t. o(ax(t)) # o(ayx(s)) holds, we have
a conflict and need to add a lemma. However, this conflict is unnecessary, as
we know from the start that both function applications must map to the same
function value in order to be consistent. We avoid this conflict by propagating
s to p(g).

Figure illustrates our consistency checking algorithm consistenty, which
takes the preprocessed input formula 7 and a current assignment o as arguments,
and proceeds as follows. First, we initialize stack S with all non-parameterized
function applications in formula 7 (cf. nonparam apps(7)) and order them top-
down, according to their appearance in the DAG representation of w. The top-
most function application then represents the top of stack S, which consists of
tuples (g, f(a1, ..., a,)), where f and g are initially equal and f(aq, ..., an)
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procedure consistenty (7, o)
S := nonparam__apps(7)
while S # 0
g, f(ax, ..., an) = pop(S)
encode(f(ay, ..., an))
if not congruent(g, f(a1, ..., a,)) // check rule C
return L
add(f(ar, ..., an), pl9))
if is_ UF(g) continue
encode(g)
t=glzi\a1, ..., zn\anl,
if assigned(t)
if o(t) # o(ax(f(al, ..., an))) // check rule B
return L
elif t = h(ay, ..., an) // check rule P
push(S, (h, f(a1, ..., an)))
continue
else
apps = fresh _apps(t)
for a € apps
encode(a)
if eval(t) # o(ax(f(a1, ..., ay))) // check rule B
return L
for h(by, ..., by) € apps
push(S, (h, h(b1, ..., bm)))
return T

Figure 7.6: Procedure consistent) in pseudo-code.
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denotes the function application propagated to function g. In the main consis-
tency checking loop, we check rules C and B for each tuple as follows. First we
check if f(ai, ..., ay) violates the function congruence axiom w.r.t. func-
tion g and return L if this is the case. Note that for checking rule C, we require
an assignment for arguments ay, ..., a,, hence we encode them on-the-fly. If
rule C is not violated and function f is an uninterpreted function, we continue
to check the next tuple on stack S. However, if f is a lambda term we still need
to check rule B, i.e., we need to check if the assignment o(ayx(f(ai, ..., an)))
is consistent with the value produced by g[zi\ai, ..., xn\an]p. Therefore, we
first encode all non-parameterized expressions in the scope of partial beta reduc-
tion Sp(g) (cf. encode(g)) before applying partial beta reduction with arguments
ai, ..., an, which yields term t. If term ¢ has an assignment, we can immedi-
ately check if it differs from assignment o(a)(f(a1, ..., a,))) and return L if
this is the case. However, if term ¢ does not have an assignment, which is the
case when ¢ has been instantiated from a parameterized expression, we have to
compute the value for term ¢. Note that we could also encode term t to get
an assignment o(t), but this might add a considerable amount of superfluous
clauses to the SAT solver. Before computing a value for ¢ we check if rule P
applies and propagate f(ai, ..., a,) to h if applicable. Otherwise, we need to
compute a value for ¢ and check if ¢ contains any function applications that were
instantiated and not yet encoded (cf. fresh apps(t)) and encode them if nec-
essary. Finally, we compute the value for ¢ (cf. eval(t)) and compare it to the
assignment of a(f(a1, ..., a,)). If the values differ, we found an inconsistency
and return L. Otherwise, we continue consistency checking the newly encoded
function applications apps. We conclude with T, if all function applications have
been checked successfully and no inconsistencies have been found.

7.7.1 Lemma generation

Following |11], we introduce a lemma generation procedure lemmay, which gen-
erates a symbolic lemma whenever our consistency checker detects an inconsis-
tency. Depending on whether rule C or B was violated, we generate a symbolic
lemma as follows. Assume that rule C was violated by function applications
s = g(ai, ..., an), t == h(b1, ..., by) € p(f). We first collect all conditions
that lead to the conflict as follows.

1. Find the shortest possible propagation path p® (p') from function applica-
tion s (¢) to function f.

2. Collect all ite conditions cf, ..., c; (ch,...,c}) on path p* (p') that were T
under given assignment o.

3. Collect all ite conditions ¢f,...,ci (c,...,c,) on path p* (p') that were
L under liven assignment o.
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We generate the following (in general symbolic) lemma:

J k l m n
/\cf /\/\ﬂcf /\/\cf /\/\—|c§ /\/\ai:bz-—>s:t
i=1 i=1 i=1 i=1 i=1

Assume that rule B was violated by a function application s := Ag(a1, ..., ap) €
p(Az). We obtained t := \z[z1\ay, ..., xn\an]p and collect all conditions that
lead to the conflict as follows.

1. Collect ite conditions cf, ..., ¢ and cf, ..., ¢ for s as in steps 1-3 above.

2. Collect all ite conditions cf, ... ,c’lf that evaluated to T under current as-
signment o when partially beta reducing Az to obtain t.

3. Collect all ite conditions c},...,c!, that evaluated to L under current

assignment o when partially beta reducing Az to obtain t.

We generate the following (in general symbolic) lemma:

J

k l m
/\Cf /\/\—wf /\/\cf /\/\ﬁcg—>s:t
i=1 =1 =1

=1

Example 7.5. Consider formula ¢ and its preprocessed formula abstraction
a(¢1) from Ex. [7.1] For the sake of better readability, we will use A, and Ay to
denote functions f and g, and further use a; and a; as a shorthand for ay(apply;)
and ay(applyj). Assume we run DPg on ay(¢1) and it returns a satisfying
assignment o such that (i) # o(j), o(a;) = o(a;), 0(i) < 0 and o(a;) # o(—1).
First, we check consistency for A\, (i) and check rule C, which is not violated as
o(i) # o(j), and continue with checking rule B. We apply partial beta reduction
and obtain term ¢ = \;[z/i]p = Ay(i) (since o(i) < 0) for which rule P is
applicable. We propagate A, (i) to A,, check if \;(¢) is consistent w.r.t. Ay,
apply partial beta reduction, obtain ¢ := A\y[y/i]p = —i and find an inconsistency
according to rule B: o(a;) # o(—i) but we obtained o(a;) = o(—i). We generate
lemma 7 < 0 — a; = —i. Assume that in the next iteration DBp returns
a new satisfying assignment o such that o(i) # o(j), o(a;) = o(a;), o(i) <0,
o(a;) = o(—i) and o(j) > o(—i). We first check consistency for A, (i), which is
consistent due to the lemma we previously generated. Next, we check rule C for
Az(j), which is not violated since (i) # o(j), and continue with checking rule B.
We apply partial beta reduction and obtain term t := A\;[x/j]p = j (since o(j) >
o(—i) and o(i) < 0) and find an inconsistency as o(a;) = o(—1), o(a;) = o(a;)
and o(j) > o(—1i), but o(a;) = o(j). We then generate lemma j > 0 — a; = j.
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7.8 Experiments

We applied our lemmas on demand approach for lambda terms on three differ-
ent benchmark categories: (1) crafted, (2) SMT’12, and (3) application. For the
crafted category, we generated benchmarks using SMT-LIBv2 macros, where the
instances of the first benchmark set (macro blow-up) tend to blow up in formula
size if SMT-LIBv2 macros are treated as C-style macros. The benchmark sets
fisher-yates SAT and fisher-yates UNSAT encode an incorrect and correct but
naive implementation of the Fisher-Yates shuffle algorithm [30|, where the in-
stances of the fisher-yates SAT also tend to blow up in the size of the formula
if SMT-LIBv2 macros are treated as C-style macros. The SMT’12 category
consists of all non-extensional QF  AUFBV benchmarks used in the SMT com-
petition 2012. For the application category, we considered the instantiation
benchmarkﬂ generated with LLBMC as presented in [27]. The authors also kindly
provided the same benchmark family using lambda terms as arrays, which is
denoted as lambda.

We performed all experiments on 2.83GHz Intel Core 2 Quad machines with
8GB of memory running Ubuntu 12.04.2 setting a memory limit of 7GB and a
time limit for the crafted and the SMT’12 benchmarks of 1200 seconds. For the
application benchmarks, as in [27] we used a time limit of 60 seconds. We evalu-
ated four different versions of Boolector: (1) our lemmas on demand for lambda
terms approach DPy (Btor), (2) DP) without optimization rule P (Btor-p), (3)
DP, with full beta reduction (Btor+b), and (4) the version submitted to the
SMT competition 2012 (Btorg.j2). For comparison we used the following SMT
solvers: CVC4 1.2, MathSAT 5.2.6, SONOLAR 2013-05-15, STP 1673 (svn re-
vision), and Z3 4.3.1. Note that we limited the set of solvers to those which
currently support SMT-LIBv2 macros and the theory of fixed-size bit-vectors.
As a consequence, we did not compare our approach to UCLID (no bit-vector
support) and Yices, which both have native lambda term support, but lack sup-
port for the SMT-LIBv2 standard.

As indicated in Tables and we measured the number of solved
instances (Solved), timeouts (TO), memory outs (MO), total CPU time (Time),
and total memory consumption (Space) required by each solver for solving an
instance. If a solver ran into a timeout, 1200 seconds (60 seconds for category
application) were added to the total time as a penalty. In case of a memory out,
1200 seconds (60 seconds for application) and 7TGB were added to the total CPU
time and total memory consumption, respectively.

Table summarizes the results of the crafted benchmark category. On the
macro blow-up benchmarks, Btor and Btor-p benefit from lazy lambda term
handling and thus, outperform all those solvers which try to eagerly eliminate
SMT-LIBv2 macros with a very high memory consumption as a result. The
only solver not having memory problems on this benchmark set is SONOLAR.

"http://11bmc.org/files/downloads/vstte-2013.tgz
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macro blow-up (100)

Solved TO MO Time [10%s] Space [GB]
Btor 100 0 0 24.2 9.4
Btor-p 100 0 0 18.2 8.4
Btor+b 28 49 23 91.5 160.0
CcvcC4 21 0 79 95.7 551.6
MathSAT o1 2 47 64.6 395.0
SONOLAR 26 74 0 90.2 1.7
Z3 21 0 79 95.0 552.2

fisher-yates SAT (18)

Solved TO MO Time [10%s] Space [GB]
Btor 7 10 1 14.0 7.5
Btor-p 4 13 1 17.3 7.0
Btor+b 6 1 11 15.0 76.4
CvVC4 ) 1 12 15.7 83.6
MathSAT 6 10 2 14.7 17.3
SONOLAR 3 U 1 18.1 6.9
Z3 6 12 0 14.8 0.2

fisher-yates UNSAT (19)

Solved TO MO Time [10%s] Space [GB]
Btor 5 13 1 17.4 7.1
Btor-p 4 14 1 18.2 6.9
Btor+b 9 10 12.1 72.0
CvC4 3 12 19.2 82.1
MathSAT 6 11 2 15.9 14.7
SONOLAR 3 15 1 19.2 6.8
Z3 10 9 0 11.2 2.2

Table 7.1: Results crafted benchmark.
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SMT’12 (149)
Solved TO MO Time [10%s] Space [GB]

Btor 139 10 0 19.9 14.8
Btor-p 134 15 0 26.3 14.5
Btor+b 137 11 1 21.5 22.7
Btorgci2 140 9 0 15.9 10.3

Table 7.2: Results SMT’12 benchmark.

However, it is not clear how SONOLAR handles SMT-LIBv2 macros. Surpris-
ingly, on these benchmarks Btor-p performs better than Btor with optimization
rule P, which needs further investigation. On the fisher-yates SAT benchmarks
Btor not only solves the most instances, but requires 107 seconds for the first 6
instances, for which Btor+b, MathSAT and Z3 need more than 300 seconds each.
Btor-p does not perform as well as Btor due to the fact that on these benchmarks
optimization rule P is heavily applied. In fact, on these benchmarks, rule P ap-
plies to approx. 90% of all propagated function applications on average. On
the fisher-yates UNSAT benchmarks Z3 and Btor+b solve the most instances,
whereas Btor and Btor-p do not perform so well. This is mostly due to the fact
that these benchmarks can be simplified significantly when macros are eagerly
eliminated, whereas partial beta reduction does not yield as much simplifications.
We measured overhead of beta reduction in Btor on these benchmarks and it
turned out that for the macro blow-up and fisher-yates UNSAT instances the
overhead is negligible (max. 3% of total runtime), whereas for the fisher-yates
SAT instances beta reduction requires over 50% of total runtime.

Table summarizes the results of running all four Btor versions on the
SMT’12 benchmark set. We compared our three approaches Btor, Btor-p, and
Btor+b to Btorg.12, which won the QF AUFBYV track in the SMT competition
2012. In comparison to Btor+b, Btor solves 5 unique instances, whereas Btor+b
solves 3 unique instances. In comparison to Btorg.i2, both solvers combined
solve 2 unique instances. Overall, on the SMT’12 benchmarks Btorg.io still
outperforms the other approaches. However, our results still look promising
since none of the approaches Btor, Btor-p and Btor+b are heavily optimized
yet. On these benchmarks, the overhead of beta reduction in Btor is around 7%
of the total runtime.

Finally, Table summarizes the results of the application category. We
used the benchmarks obtained from the instantiation-based reduction approach
presented in |27] (instantiation benchmarks) and compared our new approaches
to STP, the same version of the solver that outperformed all other solvers on
these benchmarks in the experimental evaluation of |27]. On the instantiation
benchmarks Btor+b and STP solve the same number of instances in roughly the
same time. However, Btor+b requires less memory for solving those instances.
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instantiation (45)
Solved TO MO Time [s] Space [MB]
Btor 37 8 0 576 235
Btor-p 35 10 0 673 196
Btor+b 44 0 138 961
Btorgci2 39 6 0 535 308
STP 44 0 141 3814

lambda (45)
Solved TO MO Time [s| Space [MB]
Btor 37 8 0 594 236
Btor-p 35 10 0 709 166
Btor+b 45 0 0 52 676
Btorsci2 - - - - -
STP - - - - -

Table 7.3: Results application benchmarks.

Btor, Btor-p and Btorg.12 did not perform so well on these benchmarks because
in contrast to Btor+b and STP, they do not eagerly eliminate read operations,
which is beneficial on these benchmarks. The lambda benchmarks consist of the
same problems as instantiation, using lambda terms for representing arrays. On
these benchmarks, Btor+b clearly outperforms Btor and Btor-p and solves all
45 instances within a fraction of time. Btorg.12 and STP do not support lambda
terms as arrays and therefore were not able to participate on this benchmark set.
By exploiting the native lambda term support for arrays in Btor+b, in compar-
ison to the instantiation benchmarks we achieve even better results. Note that
on the lambda (instantiation) benchmarks, the overhead in Btor+b for applying
full beta reduction was around 15% (less than 2%) of the total runtime.

Benchmarks, binaries of Boolector and all log files of our experiments can be
found at: http://fmv.jku.at/difts-rev-13/1loddiftsl13.tar.gz.

7.9 Conclusion

In this paper, we introduced a new decision procedure for handling non-recursive
and non-extensional lambda terms as a generalization of the array decision proce-
dure presented in [11]. We showed how arrays, array operations and SMT-LIBv2
macros are represented in Boolector and evaluated our new approach with 3 dif-
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ferent benchmark categories: crafted, SMT’12 and application. The crafted cate-
gory showed the benefit of lazily handling SMT-LIBv2 macros where eager macro
elimination tends to blow-up the formula in size. We further compared our new
implementation to the version of Boolector that won the QF AUFBYV track in
the SMT competition 2012. With the application benchmarks, we demonstrated
the potential of native lambda term support within an SMT solver. Our exper-
iments look promising even though we employ a rather naive implementation
of beta reduction in Boolector and also do not incorporate any lambda term
specific rewriting rules except full beta reduction.

In future work we will address the performance bottleneck of the beta reduc-
tion implementation and will further add lambda term specific rewriting rules.
We will analyze the impact of various beta reduction strategies on our lemmas on
demand procedure and will further add support for extensionality over lambda
terms. Finally, with the recent and ongoing discussion within the SMT-LIB
community to add support for recursive functions, we consider extending our
approach to recursive lambda terms.
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Abstract In Satisfiability Modulo Theories (SMT), the theory of arrays pro-
vides operations to access and modify an array at a given index, e.g., read and
write. However, common operations to modify multiple indices at once, e.g.,
memset or memcpy of the standard C library, are not supported. We describe
algorithms to identify and extract array patterns representing such operations,
including memset and memcpy. We represent these patterns in our SMT solver
Boolector by means of compact and succinct lambda terms, which yields bet-
ter lemmas and increases overall performance. We describe how extraction and
merging of lambda terms affects lemma generation, and provide an extensive
experimental evaluation of the presented techniques. It shows a considerable
improvement in terms of solver performance, particularly on instances from sym-
bolic execution.
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8.1 Introduction

The theory of arrays, which for instance has been axiomatized by McCarthy [43],
enables reasoning about “memory” in both software and hardware verification.
It provides two operations read and write for accessing and modifying arrays on
single array indices. While these two operations can be used to capture many
aspects of modeling memory, they are not sufficient to succinctly encode array
operations over multiple indices or a range of indices, e.g., memset or memcpy
from the standard C library. Such array operations can therefore only be repre-
sented verbosely by means of a constant number of read and write operations. It
is further impossible to reason about a variable number of indices e.g., a memset
operation of variable size (without introducing quantifiers).

To overcome these limitations, Seshia et. al. [12] introduced an approach to
model arrays by means of restricted lambda terms. This also enabled their
SMT solver UCLID [58|] to reason about ordered data structures and partially
interpreted functions. However, UCLID employs the eager SMT approach and
thus eliminates all lambda terms as a rewriting step prior to bit-blasting the
formula to SAT, which might result in an exponential blow-up in the size of the
formula [58].

An extension to the theory of arrays by Sinz et.al. [27] uses lambda terms
similarly to UCLID in order to model memset and memcpy operations as well
as loop summarizations, which in essence are initialization loops for arrays. As
UCLID, this approach suffers from the problem of exponential explosion through
eager lambda elimination.

To avoid exponential lambda elimination, in [51] we introduced a new decision
procedure, which lazily handles non-recursive and non-extensional lambda terms.
That decision procedure enabled us to succinctly represent array operations such
as memset and memcpy as well as other array initialization patterns by means
of lambda terms within our SMT solver Boolector. Lambda terms also allow to
reason about variable ranges of indices without the need for quantifiers.

In this paper, we continue this thread of research and describe various pat-
terns of operations on arrays occurring in benchmarks from SMT-LIB [4]. We
provide algorithms to identify these patterns, and to extract succinct lambda
terms from them. Extraction leads to stronger, as well as fewer lemmas. This
improves performance by orders of magnitude on certain benchmarks, particu-
larly on instances from symbolic execution [13|. We further describe a technique
called lambda merging. Our extensive experimental evaluation shows that both
techniques considerably improve the performance of Boolector, the winner of the
QF ABYV track of the SMT competition 2014.
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8.2 Preliminaries

We assume the usual notions and terminology of first-order logic and are mainly
interested in many-sorted languages, where bit vectors of different bit width
correspond to different sorts, and array sorts correspond to a mapping (7; = 7¢)
from index sort 7; to element sort 7.. We primarily focus on the quantifier-
free theories of fixed size bit vectors and arrays. However, our approach is not
restricted to the above.

In general, we refer to O-arity function symbols as constant symbols. Symbols
a, b, i, j, and e denote constants, where a and b are used for array constants, 7 and
j for array indices, and e for an array element. We denote an if-then-else over bit
vector terms with condition ¢, then branch t1, and else branch 9 as ite(c, t1, t2),
which is interpreted as ite(T, t1, t2) = t1 and ite(L, t1, t2) = to. We identify
operations read and write as basic array operations (cf. select and store in SMT-
LIBv2 notation) for accessing and modifying arrays. A read operation read(a, 7)
denotes the element of array a at index ¢, whereas a write operation write(a, i, €)
represents the modified array a with element e written to index ¢. The non-
extensional theory of arrays is axiomatized by the following axioms originally
introduced by McCarthy in [43]:

i = j — read(a, i) = read(a, j) (A1)
i = j — read(write(a, i, €), j) =€ (A2)
i # j — read(write(a, i, €), j) = read(a, j) (A3)

Axiom asserts that accessing array a at two indices that are equal always
yields the same element. Axiom [A2] asserts that accessing a modified array on
the updated index i yields the written element e, whereas axiom ensures
that the unmodified element of the original array a at index j is returned if the
modified index % is not accessed.

A write sequence of n (consecutive) write operations of the form a; = write(ay,
i1, €1),...,an = Write(an—1, in, ) is denoted as (ay, = write(ar—1, ix, €x))r_y
with array ag as the base array of the write sequence. In the following we use
a, = write(a, i, €) as shorthand for write sequences.

In [51] we use uninterpreted functions (UF) and lambda terms to represent
array variables and array operations, respectively. Consequently, a read on an
array of sort 7; = 7 is represented as a function application f(i) on either an UF
f or alambda term f = Aj.t, where function f maps terms of sort 7; to terms of
sort 7.. Furthermore, write operations write(a, i, e) are represented as lambda
terms Aj.ite(i = j, e, a(j)), where given an array a, a function application yields
element e if j is equal to the modified index i and the unchanged element a(j),
otherwise. Lambda terms allow us to succinctly model array operations such as
memset and memcpy from the standard C library, or arrays initialized with a
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constant value. For example, memset with signature memset(a, ¢, n, e), which
sets each element of array a to e within the range [i,7+n[, can be represented as
Ajite(i < j <i+mn, e, a(y)). In this paper, we use read operations and function
applications interchangeably.

8.3 Extracting Lambdas

Currently, the SMT-LIBv2 standard only supports write operations for mod-
ifying the contents of an array at one index at a time. Hence, quasi-parallel
array operations like memset or memcpy usually have to be represented as a
fixed sequence of consecutive write operations, where copying or setting n in-
dices always requires n write operations. Further, modeling such array opera-
tions with a variable range is not possible (without quantifiers), since it would
require a variable number of write operations. Lambda terms, however, pro-
vide means to succinctly represent parallel array operations, and further al-
low to model these operations with wvariable ranges. For example, modeling
memset(a, i, n, e) with a sequence of writes for some fixed n produces n nested
write operations write(write(. .. (write(a, i, €), i+ 1, €)...), i + n — 1, e) which
could be represented in a more compact way by means of a single lambda term
Ajite(i < j < i+n,e, a(j)).

In the following, we describe several array operation patterns we identified
by analyzing QF ABV benchmarks in the SMT-LIB benchmark library. These
patterns can not be captured compactly by means of write and read operations
alone, but they can be succinctly represented using lambda terms. For each
pattern identified in a formula, lambda terms are extracted and used instead of
the original array operations, which are defined as follows.

8.3.1 Memset Pattern

The probably most common pattern is the memset pattern modeling the
memset(a, i, n, ) operation, which updates n elements of array a within range
[i,74+n[ to a value e starting from address 7. This is the pattern already described
above, and it is represented by the lambda term

Amset = Aj.ite(i < j <i+n, e, a(j)).

Lambda term \,s¢; yields value e if index j is within the range [i,i + n[, and
the unmodified value from array a at position j otherwise. Note that in actual
benchmarks, e.g., those from SMT-LIB, the upper bound n is constant, while
indices, as well as values are usually symbolic.

8.3.2 Memcpy Pattern

The memcpy pattern models the memcpy(a, b, i, k, n) operation, which copies
n elements from source array a starting at address ¢ to destination array b at
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address k. If arrays a and b are syntactically distinct, or if the source and
destination addresses do not overlap, i.e., (i +n < k) or (k +n < i), memcpy
can be represented as

Amepy = Ajite(k < j < k+n, a(i +j — k), b(4)).

Lambda term Ay, returns the value copied from source array a if it is accessed
within the copied range [k, k + n[, and the value from destination array b at
position j otherwise.

Assume arrays a and b are syntactically equal, then aliasing occurs. Writing
to array b at overlapping memory regions modifies elements in a to be copied to
the destination address. This is not captured by lambda term Ay,cpy, since Apepy
behaves like a memmove operation. It ensures that elements of a at the overlap-
ping memory region are copied before being overwritten. The following lambda
term Apepyo can be used to model memcpy applied to potentially overlapping
memory regions.

Amepyo = Aj.ite(k < j < k+mn,
ite(i < k <i+n,
ali + ((j — ) mod (k — 1))),
ali+ - ),
b)).

If condition ¢ < k < 7 + n holds, source and destination memory regions overlap
and consequently, the elements of the overlapping memory region always contain
the repeated sequence of the elements of array a in range [i, k[. This corresponds
to the value a(i + (j — k) mod (k — 1)), where k — i represents the size of the
non-overlapping memory region and thus, the number of elements that occur
repeatedly. If the memory regions do not overlap, the behavior of lambda terms
Amepyo and Apepy is equivalent. For the rest of this paper, we focus on memcpy
with non-overlapping memory regions.

8.3.3 Loop Initialization Pattern

The loop initialization pattern models array initialization operations that can be
expressed with the following loop

for (j =1i;j <i+mn;j=j+inc){alj] = e},

where, starting from index 4, the loop counter is incremented by a constant inc
greater than one. Consequently, every inc-th element of an array a is modified
within the range [i,7 + n[. The above loop pattern corresponds to the lambda
term

Aise = Ajite(i < jAj<i+n Al(inc| (j—1)), e alj)).
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The memset pattern is actually a special case of this pattern with inc = 1.
Further, the divisibility condition inc | (j — i) makes sure that there exists a ¢
such that index j =i+ ¢ inc or equivalently ((j — 7) mod inc = 0).

It is also possible that the value written on an index ¢ depends on 7 itself.
We found two such patterns in benchmarks. They can be expressed with the
following loops

for (j =i j <i+n: j = j+inc) {alj] = j},
for (j =4;j <i+mn;j=j+inc){alj] =7+ 1}
or equivalently with the following lambda terms
Aiyi = Ajite(i <jAj<i+n A(inc|(j—1)), 7, a(j))
Aisit1 = Ajdte(i <jAj<i+n A(inc|(j—1)),7+1, a(y)).

Note that with inc = 1, the condition inc | (7 — i) is redundant and can be
omitted. Further, this set of patterns is of course just a subset of all possi-
ble structures in benchmarks for which lambdas can be extracted. The ones
discussed in this paper are those that we observed in actual benchmarks, and
which turn out to be useful in our experiments.

8.3.4 Lemma Generation

Extracting lambda terms from write sequences does not only yield more compact
array representations but improves the lemmas generated during search. As an
example, consider a memset operation with range [i,7 + n[ and value e, which is
represented as a sequence of write operations

b == write(write(. .. (write(a, i, €), i+ 1,€)...), i +n—1, e).

A read operation on array b at index j may produce a conflict on index i, where
read(b, j) # e. As a consequence, the following lemma is generated.

n—1

(NJj#i+k) Aj=i—read(d, j)=e

k=1
In the worst case, this might be repeated for all the indices i 4+ k with k € [1,n],
which also results in n lemmas of the above form. However, if we use a lambda
term to represent memset, then a conflict produces a single lemma of the form

i <jNj<i+n—read(b, j) =e,

which is more succinct and stronger as it covers an index range instead of single
indices. This effect can be observed in our experiments in Sect. as well. If
applicable, the number of generated lemmas is reduced. This improves runtime
and more instances are solved.
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1 procedure extract lambdas (¢)

2 for write sequence a,, = write(a, i, €) € ¢
3 and iy, ..., 1, are distinct

4 Pi—e = index_value _map(a,)

5 Pset = find _mset patterns(p;_.)

6 Depy = find_mcopy _ patterns(p;_e)

7 Ploop = find _lp_ patterns(p;—.e)

8 b:=ag

9 for p € poes

10 b = mk memset(b, p.i, p.n, p.e)

11 for p € pepy

12 b := mk memcopy(p.a, b, p.i, p.k, p.n)
13 for p € pioop

14 b:=mk loop init(b, p.i, p.n, p.inc)
15 for (i, €) € pise

16 b= mk_write(b, i, €)

17 ¢ = ¢lan/b]

Figure 8.1: Main lambda extraction algorithm in pseudo-code.

8.3.5 Algorithms

Figure depicts the main lambda extraction algorithm extract lambdas. The
purpose of this procedure is to initially identify and extract array patterns from
each sequence of write operations in formula ¢ (lines. The identified patterns
are then used to create lambda terms on top of each other resulting in a new
lambda term b, which is equisatisfiable to the original write sequence a,, (lines
, and is used to substitute a, in ¢. Figures , and depict the
algorithms for identifying and extracting the actual array patterns. In essence,
they all can be split into the following three steps. Given a sequence of write
operations,

1. group write indices w.r.t. the corresponding pattern,
2. identify index sequences in these grouped write indices,
3. and create new pattern for identified index sequence.

In the following we describe the algorithms for identifying and extracting ar-
ray patterns in more detail. A high level view of the main lambda extrac-
tion algorithm extract lambdas is given in Figure Given a formula ¢,
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1 procedure find mset patterns (pi—e)

2 patterns = [|, pe—i = {}

3 for (index, value) € p;ie

4 Pe—i|value|.add(index)

5 for (value, indices) € pe—;

6 indices := sort(indices)

7 l=0,u:=0

8 while u < len(indices)

9 while © + 1 < len(indices) and indices[u + 1] — indices[u] = 1
10 u+=1

11 if | £u

12 Pattern p

13 p.i = indices][(]

14 p.n = indices[u] — indices|[l] + 1

15 p.e = value

16 patterns.add(p)

17 Pise = pise \ {indices[i] | Vi € [l,u]}
18 l=u+1 // next sequence
19 u+=1
20 return patterns

Figure 8.2: Memset pattern extraction algorithm in pseudo-code.

for any write sequence a, = write(a, 7, €) with distinct indices i1,...,i,, ex-
tract lambdas initially generates a map p;—., which maps indices i1,..., iy,
to values ey, ..., e, (line , and is then used to extract memset (pse), mem-
cpy (Pepy), and loop initialization patterns (pioop) (lines . Note that pro-
cedures find mset patterns, find mcopy patterns, and find lp patterns re-
move all index/value pairs included in extracted patterns from p;_. As a con-
sequence, at line |8, map p;_. contains all index/value pairs for which no pattern
was extracted. The actual memset, memcpy, and loop initialization lambda
terms are then created on top of each other with base array ag of write sequence
an as the initial base array (lines . For the remaining index/value pairs
in p;_e, lambda terms representing write operations are created on top of the
previously generated lambda terms, and the resulting term b is then used to
substitute the original write sequence a,. Note that indices i1,...,1, are re-
quired to be distinct constants (line |3)) as otherwise, reordering write sequence
an does not result in an equisatisfiable sequence. As an example, assume in-
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8.3 Extracting Lambdas

1 procedure find mcopy patterns (p;—e)

2 patterns := [|, offset groups = {}
3 for (index, value) € p;,. and index = dst + o and value = a(src + o)
4 offset groups|dst, a, src].add(o)
5 for (dst, a, src) € offset _groups
6 indices := sort(offset groups[dst, a, src])
7 u:=0,1=0
8 while u < len(indices)
9 while u 4+ 1 < len(indices)
10 and indices[u + 1] — indices[u] = 1
11 u+=1
12 if l£u
13 Pattern p
14 p.a:=a
15 p.i == src + indices]!]
16 p.k = dst + indices]l]
17 p.n = indices[u] — indices[l] + 1
18 patterns.add(p)
19 Pise = pie \ {indices[i] | Vi € [I,u]}
20 l=u+1 // next sequence
21 u+=1
22 return patterns

Figure 8.3: Memcopy pattern extraction algorithm in pseudo-code.

dices ¢ and j are equal and values e; and e; are distinct. Accessing sequence
a;j = write(write(a, 7, €;), j, €j) at index j yields value e;. However, accessing
sequence aj; = write(write(a, j, €;), i, €;) at index j yields e; since i = j. Thus,
aj; is not equisatisfiable to a;;.

Figures[8.2] and [8.4]illustrate the algorithms for the actual pattern extrac-
tion, which we describe in more detail in the following. Procedure
find_mset_ patterns as in Figure [8.2] extracts memset patterns, i.e., in essence,
it identifies index sequences that map to the same value. Given map p;_,., the
procedure initially generates a reverse map pe_,;, which maps values to indices
and therefore groups indices that map to the same value (lines |3{4). For each
index group indices in pe—;, find mset patterns sorts indices in ascending or-
der (line [6) and identifies index sequences s = (ix)}i_; with it = ix_1 4 1 within
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lower bound [ (i; := indices[l]) and upper bound u (i, := indices[u]) (lines [7{L8).
If sequence s includes at least two indices (i.e., u # [), a new memset pattern p
with start address p.i, size p.n and value p.e is created and added to list pat-
terns (lines . All indices included in sequence s are removed from map
Pi—e (line , since these indices are covered by a detected pattern. If all index
groups have been processed, procedure find mset patterns returns the list of
detected memset patterns.

Figure [8.3] illustrates procedure find_mcopy _patterns for extracting mem-
cpy patterns. Assume that write operation write(b, dst + o, a(src + 0)) rep-
resents a single memcpy operation memcpy(a, b, sre, dst, n) with offset o and
sre < o < src+mn, which copies one element from source address src + o of array
a to destination address dst + o of array b. Consequently, p;_. maps indices
of the form dst + o to values of the form a(src + o). Initially, the procedure
collects all offsets o from the indices in p;—, and groups them by destination
address dst, source array a, and source address src (lines . Note that a
group of offsets corresponds to the memory regions copied from source address
of array a to destination address of array b. For each offset group indices in off-
set_groups, find_mcopy _ patterns identifies index sequences s := (ix)}'_; similar
to procedure find mset patterns (lines . If a sequence with at least two
indices is found, a new memcpy pattern with source array p.a, source address
p.t, destination address p.k, and size p.n is created and added to the patterns list
(lines . As for find mset patterns, indices included in a sequence s are
removed from p;_. (line . If all offset groups have been processed, procedure
find mcopy patterns returns the list of detected memcpy patterns.

Figure illustrates procedure find Ip patterns for extracting loop initial-
ization patterns. Initially, all indices in map p;—,. are categorized w.r.t. the
three loop initialization patterns defined above, which correspond to the map
Pe—si, and the lists p;—; and p;—;11. Map pe—; groups indices that map to the
same value, list p;_,; contains indices that map to themselves, and list p;—;1
contains all indices ¢ that map to i 4+ 1 (lines . For index groups p;—i+1 and
Pi—i+1, and for each index group in p._,;, procedure find lpp aux identifies
sequences s = (iy)}'_; with i} = ip_1 + inc and inc > 1 within lower bound !
(4; = indices[l]) and upper bound u (i, := indices[u]) (lines [I0{13)). Identifying
index sequences in find _lpp aux is similar to find mset patterns, except that
increment inc can be greater than one. For each sequence, inc is initially set to
indices[u+1]—indices[u] (lines[19}20)), which defines the increment value between
neighbouring indices, e.g., (I, + inc,l + 2 - inc,l + 3 - inc,...,u). If a sequence
with at least two indices is found, a new loop initialization pattern with lower
bound p.i, size p.n, and increment p.inc is created and added to the patterns
list. Index sequences found in pe_,; correspond to A;_. patterns. These require
a p.e value, which is saved in addition (but remains unused for sequences p;_;
and p;;11). As before, indices included in a detected sequence s are removed
from map p;_. (line . If index group indices has been processed, procedure
find Ipp aux returns the list of detected loop initialization patterns.
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procedure find lp patterns (p;—e)
patterns == [|, pe—; = {}
pisi = [l, pimit1 =]
for (index, value) € p;_¢
Pe—i|value|.add (index)
if value = index
pi—si-add(index)
elif value = index + 1
Pi—si+1-add(index)
for (value, indices) € pe_y;
patterns.add(find_lpp aux(pi—e, pe—i))
patterns.add(find _lpp aux(pie, pi—i))
patterns.add(find lpp aux(pi—e, pi—sit1))

return patterns

procedure find lpp aux (p;—., indices)
patterns = [], indices = sort(indices)
l=0,u:=0
while u < len(indices)
if u+ 1 < len(indices)

inc = indices[u 4 1] — indices|u]

while u + 1 < len(indices) and indices[u + 1] — indices[u] = inc

u+=1
if | £u

Pattern p

p.i == indices[(]

p.n = indices[u] — indices|l] + 1

p.e = value

p.inc = inc

patterns.add(p)

Pie = Pise \ {indices[i] | Vi € [I,u]}

l=u+1 // next sequence
u+=1

return patterns

Figure 8.4: Loop initialization pattern extraction algorithm in pseudo-code.

89



8 FMCAD 15

In case that write expressions in a write sequence are shared, i.e., they also
appear in the formula outside of the sequence, we still extract patterns for the
whole sequence. This may duplicate parts, which is not a problem since the
extracted lambda terms are succinct and the “duplication” only affects the index
range check of a lambda and is therefore negligible.

There are two common approaches for representing the initialization of an
array variable a with n concrete values: with (1) write sequences of size n with
array a as base array, or (2) n read operations on array a by asserting for each
index i € 11,...,1, that read(a, i) = e. In case (1), we are able to directly
represent such array initializations by means of lambda terms. However, in
case (2), we first have to translate the read operations into sequences of write
operations. For example, given an array a that is initialized with some values e
on indices 1 — 4, we could either represent this as a sequence of write operations
with a fresh array variable b as base array

a = write(write(write(write(b, 1, e), 2, e), 3, e), 4, e),
or with the following four equalities asserted to be true
read(a, 1) = e, read(a, 2) = e, read(a, 3) = ¢, read(a, 4) = e.

However, the initialization with read/value equalities can also be represented as
lambda term
a = N\j.ite(1 < j <4, e, b(y)),

where array b is a fresh array variable. In order to extract lambda terms from
these equalities, we translate them into sequences of write operations and apply
the lambda extraction algorithms to it. The only requirement is that, for the
same reason as for the write sequence case, the read indices have to be distinct.

8.4 Merging Lambdas

Lambda terms extracted from a sequence of write operations often do not cover
all indices in the sequence. Some might be left over. In order to preserve equisat-
isfiability, we use the uncovered write operations to create a new write sequence
on top of the extracted lambda terms (cf. lines in Figure . Note that
as we represent write operations as lambda terms, we actually generate a se-
quence of lambda terms (representing write operations) on top of the extracted
terms. Given a sequence of lambda terms of size n, however, we can apply a
rewriting technique we refer to as lambda merging, which inlines the function
bodies of lambda terms Ay, ..., Ap,_1. The result is a single lambda term with a
function body consisting of the function bodies of lambda terms A1, ..., A,. This
technique may not yield representations as compact as lambda extraction, but
merging function bodies of consecutive lambdas often enables additional simpli-
fications. As an example consider write sequence a,, := write(a, 4, €) of size n,
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where e1,...,e, are equal. It corresponds to the following lambda sequence.

An = Njn-ite(fn = in, €, An—1(Jn)),

A1 = Njpite(j1 = i1, e, ap(51))

If we apply lambda merging to A,,..., A1 and inline function bodies, we obtain
the following lambda term

At = Njn.ite(jn = in, €,

ite(jn = i1, €, ao(jn)) )

Note that A, can be further simplified by merging the if-then-else terms into
one (since the if-branch of each if-then-else contains value e), which results in
lambda term A,,».

Aprr = )\jn-ite(jn =ip V...V jn =11, €, aO(]n))

8.4.1 Lemma Generation

Merged lambdas can be more compact than write sequences and may even be
beneficial for lemma generation. For example, a read operation on \,» at index
j may produce a conflict on index i1, where read(\,,, j) # e. As a consequence,
the following lemma is generated.

j:in\/...\/j:il%I‘ead()\n//’j):e‘

The resulting lemma covers all cases where read(\,,~, j) could produce a conflict
on indices i2,...,%,. In the original write sequence version, however, it might
need n lemmas.

8.4.2 Algorithm

Figure [8.5] illustrates procedures merge_lambdas and rec_merge for merging
lambda sequences. Given formula ¢, for every lambda sequence A, procedure
merge lambdas recursively merges the lambda terms in A, into lambda term b,
which is then used to substitute lambda sequence A, in formula ¢ (line .
Procedure rec_merge recursively traverses the lambda sequence starting at the
top most lambda term A,, and substitutes every bound variable j; by the variable
Jn, which is bound by the top most lambda term \,. In the base case (i = 0),
the procedure returns a fresh read operation on base array ag at index j, (which
substitutes variable ji). Else, it performs a recursive call on \;_1, which yields
term t;_1. For every lambda term \; with ¢ < n, rec_merge generates lambda
term t; by substituting all occurrences of variable j; in the function body of A; by
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1 procedure merge lambdas (¢)

2 for write sequence \,, := write(a, i, €) € ¢

3 b :=rec_merge(n, jn, An)

4 ¢ = ¢[An/b]

5 procedure rec_merge (n, jn, A;)

6 if @ =0 return ao(j,) // base array ag

7 ti1=rec_merge(n, jn, Ai—1) /) Ai = Ajiite(fi = i, e Aic1(di))
8 if i <n

9 t; = ite(ji = i, ei, Ni—1(7i)) [/ Jn

10 return t;[\;—1(jn)/ti—1]

11 return A, [Ai—1(jn)/ti—1] // top-most lambda ay,

Figure 8.5: Merge lambdas algorithm in pseudo-code.

Jn, and returns the lambda term obtained by substituting all occurrences of read
operation read(\;—1, jn, ) in t; with term ¢;_1 (line. For the top most lambda
(¢ = n), procedure rec_merge returns the lambda term obtained by substituting
all occurrences of read operation read(\j—1, jn, ) in A, with term ;1 (line .

8.5 Experimental Evaluation

We implemented lambda extraction and merging in our SMT solver Boolec-
tor and evaluated our techniques on all non-extensional benchmarks from the
QF ABYV category of the SMT-LIBv2 benchmark library. Six configurations
are considered: (1) Btor, (2) Btor+e, (3) Btor+m, (4) Btor+x, (5) Btor+xme, and
(4) Btor+xm. The base line Btor is an improved version of Boolector that won
the QF ABYV track of the SMT competition in 2014. For the other configura-
tions, x indicates that lambda extraction is enabled, m indicates that lambda
merging is enabled, and e indicates an eager solving approach by reducing the
formula to QF BYV. It eliminates lambda terms with beta reduction, and the
remaining read operations, i.e., applications of uninterpreted functions (UF),
by Ackermann reduction. The Btor+e and Btor+xme configurations essentially
simulate an eager approach similar to that of UCLID [58].

All experiments were performed on a cluster with 30 nodes of 2.83GHz Intel
Core 2 Quad machines with 8GB of memory using Ubuntu 14.04.2 LTS. The
memory and time limit for each solver/benchmark pair was set to 7 GB and
1200 seconds CPU time, respectively. In case of a timeout or memory out, a
penalty of 1200 seconds was added to the total CPU time. Note that the time
and memory limits and the hardware used for our experiments differ from the
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QF ABV (13317)

Solved TO MO  Time [
Btor 13242 68 7 122645
Btor+e 13242 49 26 120659
Btor+m 13259 50 8 105647
Btor+x 13256 54 7 99834
Btor+xme 13246 47 24 111114
Btor+xm 13263 46 8 84760

Table 8.1: Overall results on QF ABV benchmarks (13317 in total).

setup used at the SMT competition 2014.

Table depicts the overall results consisting of the number of solved bench-
marks (Solved), number of timeouts (TO), number of memory outs (MO), and
the CPU time (Time) of all four configurations on the QF ABV benchmarks.
Enabling either lambda extraction (Btor+x) or lambda merging (Btor+m) im-
proves the number of solved benchmarks by up to 17 instances and the runtime
by up to 19% compared to Btor. Combining both techniques (Btor+xm) solves
21 more benchmarks and requires 30% less runtime compared to Btor. This
suggests, that lambda extraction and merging have orthogonal effects. They
complement each other and in combination improve solver performance further
(most of the time). However, if the eager solving approach is employed, both
configurations Btor+e and Btor+xme do not show a notable improvement in
terms of solved instances (less timeouts, but more memory outs). This is due
to the high memory consumption caused by eager elimination of lambda terms
and UFs, where Btor+e in total consumes 2.6 times (397 GB), and Btor+xme
2.3 times (347 GB) more memory than Btor. The other four configurations re-
quire roughly the same amount of memory. Table depicts the overall results
and the number of extracted patterns grouped by QF ABV benchmark fami-
lies in more detail. On benchmark families bmc, bbiere2, klee, platania, and stp
Btor+xm considerably improves in terms of runtime and number of solved in-
stances compared to Btor. On the bbiere2 and platania benchmark families, the
combined use of lambda extraction and lambda merging yields significantly bet-
ter results than both Btor+x and Btor+m alone. The most notable improvement
in terms of runtime is achieved on the klee benchmark family, where all three
configurations with lambda extraction enabled improve by orders of magnitude
compared to Btor. The klee benchmark family consists of symbolic execution
benchmarks obtained from KLEE [13], a symbolic virtual machine built on top
of the LLVM compiler infrastructure. Previous versions of Boolector were shown
to have rather poor performance on these benchmarks [50|, which is confirmed
by our experiments. This is due to the extreme version of lazy SMT in Boolec-
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Btor Btor+e Btor+m Btor+x Btor+xme Btor+xm Extracted Patterns
Family | Solved Time [s| | Solved Time [s| | Solved Time [s| | Solved Time [s| | Solved Time [s] | Solved Time [s] Amset Xive Xiritl

Amepy Aii
bench (119) 119 2 119 3 119 2 119 0.3 119 0.3 119 0.3 208 0 34 0 0
bme (38) 38 1361 39 769 39 921 39 197 39 88 39 182 256 3 56 0 0
bbiere (98) 75 29455 75 30301 75 28944 75 29359 75 29167 75 28854 0 10 0 0 0
bbiere2 (22) 17 7299 21 2617 18 6927 18 7842 22 2034 20 3241 1392 0 8 0 0
bbiere3 (8) 0 9600 1 8464 1 8435 0 9600 1 8463 1 8435 0 0 0 0 0
btfnt (1) 1 134 1 144 1 134 1 134 1 146 1 134 0 0 0 0 0
cale2 (36) 36 862 36 1528 36 864 36 863 36 1527 36 863 0 0 0 0 0
dwp (4188) 4187 2668 | 4188 2216 4187 2090 4187 2666 4187 2235 4187 2089 42 0 0 0 0
ecc (55) 54 1792 54 1745 54 1792 54 1845 54 1808 54 1845 125 0 0 0 0
egt (7719) 7719 222 7719 544 7719 221 7719 225 7719 275 | 7719 212 3893 0 0 0 0
jager (2) 0 2400 0 2400 0 2400 0 2400 0 2400 0 2400 || 14028 0 239 0 0
klee (622) 622 12942 620 4408 622 12688 622 169 622 126 622 154 9373 0 10049 0 0
pipe (1) 1 10 1 14 1 10 1 10 1 14 1 10 0 0 0 0 0
platania (275) 247 42690 238 58807 256 35005 255 34993 240 56172 258 31189 0 0 0 58 120
sharing (40) 40 2460 40 2459 40 2459 40 2460 40 2458 40 2458 0 0 0 0 0
stp (40) 34 8749 38 4238 39 2755 38 7072 38 4200 39 2695 60 0 297 0 0
stp_sa (52) 52 0.7 52 0.5 52 0.6 52 0.6 52 0.5 52 0.7 0 0 0 0 0
totals (13317) | 13242 122645 | 13242 120659 | 13259 105647 | 13256 99834 | 13246 111114 | 13263 84760 || 29377 13 10683 58 120

Table 8.2: Overall results and number of extracted patterns on all QF ABV benchmarks grouped by benchmark family.
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tor, using lemmas on demand. In our experiments, Btor requires almost 13000
seconds to solve the 622 klee benchmarks, while lambda extraction improved run-
time by up to a factor of 500 compared to Btor. This effect is illustrated by the
scatter plot in Figure [8.6] which shows that the runtime on most of the bench-
marks is improved by a factor of 10 to 100. The klee benchmarks contain many
instances of the A\, and ;e patterns, where Btor+xm was able to extract
9373 and 10049 lambda terms with an average size of 108 and 11, respectively.
On most of the benchmarks where Btor+xm was able to extract lambda terms,
the runtime improved. The only exceptions are the two benchmarks in the jager
benchmark family, on which Btor+xm still timed out even though 14028 A, st
and 239 )\, patterns were extracted. In total, Btor+xm was able to extract
29377 Amset, 13 Amepy, 10683 Aje, 58 i, and 120 A\;;41 patterns with an
average size of 40, 7, 12, 39, and 38, respectively. The overall time required by
Btor+xm for extracting and merging the lambda terms amounts to 41 and 24
seconds, which is less than 0.01% of the total runtime and therefore negligible.
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Figure 8.6: Btor vs. Btor+xm on klee benchmark family.
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k=1 2 3 4 ) 6 7 8 9 10 11

Btor | 0.1 04 8 42 296 T T T T T T
SONOLAR | 0.1 0.2 2 15 201 T T T T T T
MathSAT | 0.1 0.3 2 9 70 709 T M T T T
Yices | 0.0 0.0 0.1 0.6 2 8 23 93 371 T T
Btor+xm | 0.1 0.1 0.1 0.1 01 0.1 01 0.1 0.1 0.2 0.2

12 13 14 15 16 17 18 19 20 21
Btor T T T
SONOLAR T T T
MathSAT T T T
T

1

H
H
—
H

T T M M
T M M M
14 44 140 463 M

M

T M M M M

M

Yices T T
Btor+xm | 0.3 0.5

CEEEE N
o B33

Table 8.3: Runtime in seconds on memcpy benchmarks of size 2% copied ele-
ments. T denotes out of time, M denotes out of memory.

Benchmark family bbiere contains 11 benchmarks, which encode a memcpy op-
eration on two non-overlapping memory regions and verify the correctness of the
memcpy algorithm. The benchmarks are parameterized by the size of the copied
memory region starting from size 2 up to size 12. We generated 21 additional
benchmarks with size 2 to 22! (i.e., 2F with 1 < k < 21) in order to evaluate how
Btor+xm scales on these benchmarks. For comparison we additionally ran the
top three solvers after Boolector at the SMT competition 2014, Yices [22] ver-
sion 2.3.1, MathSAT [14] version 5.3.5, and SONOLAR |[41] version 2014-12-04
on these benchmarks. Table depicts the runtime of all solvers on the addi-
tional memcpy benchmarks of size 2 to 22!, where T denotes out of time, and M
denotes out of memory. Btor and SONOLAR are able to solve these benchmarks
up to size 2°, MathSAT up to size 25, Yices up to size 22, and Btor+xm up to
size 220, For the largest instance parsing consumes most of the runtime (~60%).
For sizes greater than 220, Boolector is not able to fit the input formula into 7
GB of memory, which results in a memory out.

Finally, we measured the impact of lambda extraction and lambda merging
w.r.t. the number of generated lemmas. Since every lemma generated in Boolec-
tor entails an additional call to the underlying SAT solver, the number of gener-
ated lemmas usually correlates with the runtime of the solver. On the QF ABV
benchmarks commonly solved by Btor and Btor+xm (13242 in total), Btor gen-
erates 872913 lemmas, whereas Btor+xm generates 158175 lemmas, which is a
reduction by a factor of 5.5. Consequently, the size of the CNF is reduced by 25%
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Figure 8.7: Number of generated lemmas Btor vs. Btor+xm on commonly solved
QF _ABYV benchmarks (13242 in total).

on average (no matter whether variables or clauses are counted). This is further
illustrated in Figure[8.7 On these benchmarks the reduction of the time spent in
the underlying SAT solver is reduced from 59638 to 40101, i.e., an improvement
of 33%.

8.6 Conclusion

We discussed patterns of array operations occurring in actual benchmarks and
presented a technique denoted as lambda extraction, which utilizes such patterns
to extract compact and more succinct lambda terms. Another new complemen-
tary technique, called lambda merging, can still be exploited if lambda extraction
is not applicable. These techniques allow to produce stronger and more succinct
lemmas.

In the experimental analysis, based on our SMT solver Boolector, it was shown
that these techniques reduce the number of generated lemmas by a factor of 5.5,
and the overall size of the bit-blasted CNF by 25% on average. To summarize,
we were able to considerably improve the overall performance of Boolector and
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achieve speedups up to orders of magnitude, particularly on benchmarks from
symbolic execution.

We believe, that there are additional patterns in software and hardware veri-
fication benchmarks, which can be extracted as lambdas and used to speed-up
array reasoning further. Our results also suggest, that a more expressive theory
of arrays might be desirable for users of SMT solvers, in order to allow more
succinct encodings of common array operation patterns.
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Paper C.
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Abstract In this paper we present a new approach for solving quantified for-
mulas in Satisfiability Modulo Theories (SMT), with a particular focus on the
theory of fixed-size bit-vectors. We combine counterexample-guided quantifier
instantiation with a syntax-guided synthesis approach, which allows us to syn-
thesize both Skolem functions and terms for quantifier instantiations. Our ap-
proach employs two ground theory solvers to reason about quantified formulas.
It neither relies on quantifier specific simplifications nor heuristic quantifier in-
stantiation techniques, which makes it a simple yet effective approach for solving
quantified formulas. We implemented our approach in our SMT solver Boolector
and show in our experiments that our techniques are competitive compared to
the state-of-the-art in solving quantified bit-vectors.
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9.1 Introduction

Many techniques in hardware and software verification rely on quantifiers for
describing properties of programs and circuits, e.g., universal safety properties,
inferring program invariants [35], finding ranking functions [16], and synthesizing
hardware and software [36,59]. Quantifiers further allow to define theory axioms
to reason about a theory of interest not supported natively by an SMT solver.

The theory of fixed-size bit-vectors provides a natural way of encoding bit-
precise semantics as found in hardware and software. In recent SMT competi-
tions, the division for quantifier-free fixed-size bit-vectors was the most compet-
itive with an increasing number of participants every year. Quantified bit-vector
reasoning, however, even though a highly required feature, is still very challeng-
ing and did not get as much attention as the quantifier-free fragment. The com-
plexity of deciding quantified bit-vector formulas is known to be NExpTime-hard
and solvable in ExpSpace [40]. Its exact complexity, however, is still unknown.

While there exist several SMT solvers that efficiently reason about quantifier-
free bit-vectors, only CVC4 [3], Z3 |19, and Yices [23] support the quantified
bit-vector fragment. The SMT solver CVC4 employs counterexample-guided
quantifier instantiation (CEGQI) [54], where a ground theory solver tries to find
concrete values (counterexamples) for instantiating universal variables by gen-
erating models of the negated input formula. In Z3, an approach called model-
based quantifier instantiation (MBQI) [33] is combined with a model finding
procedure based on templates [63]. In contrast to only relying on concrete coun-
terexamples as candidates for quantifier instantiation, MBQI additionally uses
symbolic quantifier instantiation to generalize the counterexample by selecting
ground terms to rule out more spurious models. The SMT solver Yices provides
quantifier support limited to exists/forall problems [24] of the form IxVy.P[x,y].
It employs two ground solver instances, one for checking the satisfiability of a
set of generalizations and generating candidate solutions for the existential vari-
ables x, and the other for checking if the candidate solution is correct. If the
candidate model is not correct, a model-based generalization procedure refines
the candidate models.

Recently, a different approach based on binary decision diagrams (BDD) was
proposed in [38]. Experimental results of its prototype implementation Q3B
show that it is competitive with current state-of-the-art SMT solvers. However,
employing BDDs for solving quantified bit-vectors heavily relies on formula sim-
plifications, variable ordering, and approximation techniques to reduce the size
of the BDDs. If these techniques fail to substantially reduce the size of the BDDs
this approach does not scale. Further, in most applications it is necessary to pro-
vide models in case of satisfiable problems. However, it is unclear if a bit-level
BDD-based model can be lifted to produce more succinct word-level models.

In this paper, we combine a variant of CEGQI with a syntax-guided syn-
thesis 2] approach to create a model finding algorithm called counterexample-
guided model synthesis (CEGMS), which iteratively refines a synthesized candi-
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date model. Unlike Z3, our approach synthesizes Skolem functions based on a
set of ground instances without the need for specifying function or circuit tem-
plates up-front. Further, we can apply CEGMS to the negation of the formula
in a parallel dual setting to synthesize quantifier instantiations that prove the
unsatisfiability of the original problem. Our approach is a simple yet efficient
technique that does not rely on quantifier specific simplifications, which have
previously been found to be particularly useful [63]. Our experimental evalua-
tion shows that our approach is competitive with the state-of-the-art in solving
quantified bit-vectors. However, even though we implemented it in Boolector, an
SMT solver for the theory of bit-vectors with arrays and uninterpreted functions,
our techniques are not restricted to the theory of quantified bit-vectors.

9.2 Preliminaries

We assume the usual notions and terminology of first-order logic and primarily
focus on the theory of quantified fized-size bit-vectors. We only consider many-
sorted languages, where bit-vectors of different size are interpreted as bit-vectors
of different sorts.

Let X be a signature consisting of a set of function symbols f : ny,...,ny = n
with arity k& > 0 and a set of bit-vector sorts with size n,nq,...,ng. For the sake
of simplicity and w.l.o.g., we assume that sort Bool is interpreted as a bit-vector
of size one with constants T (1) and L (0), and represent all predicate symbols as
function symbols with a bit-vector of size one as the sort of the co-domain. We
refer to function symbols occurring in 3 as interpreted, and those symbols not
included in X as uninterpreted. A bit-vector term is either a bit-vector variable
or an application of a bit-vector function of the form f(¢,...,t;), where f € X
or f €3 andty,...,t, are bit-vector terms. We denote bit-vector term ¢ of size
n as t,) and define its domain as BV|,), which consists of all bit-vector values of
size n. Analogously, we represent a bit-vector value as an integer with its size as
a subscript, e.g., 14 for 0001 or —1jy for 1111.

We assume the usual interpreted symbols for the theory of bit-vectors, e.g.,
=] T[n]s ¥[n]> CONCAL [ 4m), <[n]> €tC., and will omit the subscript specifying their
bit-vector size if the context allows. We further interpret an ite(c, to, t1) as an if-
then-else over bit-vector terms, where ite(T, to, t1) = to and ite(L, to, t1) = 1.

In general, we refer to 0-arity function symbols as constant symbols, and de-
note them by a, b, and ¢. We use f and g for non-constant function symbols,
P for predicates, z, y and z for variables, and ¢ for arbitrary terms. We use
symbols in bold font, e.g., x, as a shorthand for tuple (x1,...,zx), and denote
a formula (resp. term) that may contain variables x as ¢[x] (resp. t[x]). If a
formula (resp. term) does not contain any variables we refer to it as ground
formula (resp. term). We further use ¢[t/x] as a notation for replacing all oc-
currences of = in ¢ with a term ¢. Similarly, ¢[t/x] is used as a shorthand for

olt1/x1, ...t/ Tk
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Given a quantified formula ¢[x,y]| with universal variables x and existential
variables y, Skolemization |56] eliminates all existential variables y by intro-
ducing fresh uninterpreted function symbols with arity > 0 for the existential
variables y. For example, the skolemized form of formula Jy;Vx3ys. P(y1, X, y2)
is VX.P(fy,,X, fy, (%)), where f,, and f,, are fresh uninterpreted symbols, which
we refer to as Skolem symbols. The subscript denotes the existential variable that
was eliminated by the corresponding Skolem symbol. We write skolemize(yp) for
the application of Skolemization to formula ¢, vary(p) for the set of universal
variables in ¢, and sym () for the set of Skolem symbols in ¢.

A ¥-structure M maps each bit-vector sort of size n to its domain BV}, each
function symbol f:mnq,...,np —n € ¥ with arity £ > 0 to a total function
M(f): BV -+ s BV, = BV}, and each constant symbol with size n to an
element in BVy,. We use M’ := M{z — v} to denote a X-structure M’ that
maps variable x to a value v of the same sort and is otherwise identical to M.
The evaluation M (z,) of a variable x,) and M(cp,)) of a constant ¢ in M is
an element in BV[,. The evaluation of an arbitrary term ¢ in M is denoted
by M][t] and is recursively defined as follows. For a constant ¢ (resp. vari-
able x) M|[c] = M(c) (resp. M[z] = M(x)). A function symbol f is evaluated
as M[f(ty,...,te)] = M(f)(M[t1],..., M[tx]). A E-structure M is a model of
a formula ¢ if M[p] = T. A formula is satisfiable if and only if it has a model.

unsat

® Preprocessing Check sat Synthesize
Ground Instances | Model | Candidate Model
New Skolem
ground instance functions

sat Check
CEGQI
Q Counter-| Candidate Model
example
unsat

CIBERT SAT  UNSAT

Figure 9.1: Basic workflow of our CEGMS approach.
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9.3 Overview

In essence, our counterexample-guided model synthesis (CEGMS) approach for
solving quantified bit-vector problems combines a variant of counterexample-
guided quantifier instantiation (CEGQI) [54] with the syntax-guided synthesis
approach in [2| in order to synthesize Skolem functions. The general workflow
of our approach is depicted in Figure [9.1] and introduced as follows.

Given a quantified formula ¢ as input, CEGMS first applies Skolemization as a
preprocessing step and initializes an empty set of ground instances. This empty
set is, in the following, iteratively extended with ground instances of ¢, generated
via CEGQI. In each iteration, CEGMS first checks for a ground conflict by calling
a ground theory solver instance on the set of ground instances. If the solver
returns unsatisfiable, a ground conflict was found and the CEGMS procedure
concludes with UNSAT. If the solver returns satisfiable, it produces a model
for the Skolem symbols, which serves as a base for synthesizing a candidate
model for all Skolem functions. If the candidate model is valid, the CEGMS
procedure concludes with SAT. However, if the candidate model is invalid, the
solver generates a counterexample, which is used to create a new ground instance
of the formula via CEGQI. The CEGMS procedure terminates, when either a
ground conflict occurs, or a valid candidate model is synthesized.

9.4 Counterexample-Guided Model Synthesis

The main refinement loop of our CEGMS approach is realized via CEGQI [54],
a technique similar to the generalization by substitution approach described
in [24], where a concrete counterexample to universal variables is used to create a
ground instance of the formula, which then serves as a refinement for the candi-
date model. Similarly, every refinement step of our CEGMS approach produces
a ground instance of the formula by instantiating its universal variables with
a counterexample if the synthesized candidate model is not valid. The coun-
terexample corresponds to a concrete assignment to the universal variables for
which the candidate model does not satisfy the formula. Figure [0.2] introduces
the main algorithm of our CEGMS approach as follows.

Given a quantified bit-vector formula ¢, we represent ¢ as a directed acyclic
graph (DAG), with the Boolean layer expressed by means of AND and NOT.
As a consequence, it is not possible to transform ¢ into negative normal form
(NNF) and we therefore apply quantifier normalization as a preprocessing step
to ensure that a quantifier does not occur in both negated and non-negated form.
For the same reason, an ite-term is eliminated in case that a quantifier occurs
in its condition. Note that if ¢ is not in NNF, it is sufficient to keep track of
the polarities of the quantifiers, i.e., to count the number of negations from the
root of the formula to the resp. quantifier, and flip the quantifier if the number
of negations is odd. If a quantifier occurs negative and positive, the scope of the

105



9 TACAS 17

1 function CEGMS (¢)
2 G =T, x = vary(p)

3 @sk = skolemize(preprocess(y)) apply Skolemization

4 f = symg(@sk) // Skolem symbols

5 pa = psklu/x] // ground g, with fresh u

6 while true

7 r, Mg = sat(G) // check set of ground instances

8 if » = unsat return unsat // found ground conflict

9 Mg = synthesize(f, G, Mg, ¢c) // synthesize candidate model

10 r, Mc = sat(—pq[Ms(f)/f]) // check candidate model

11 if 7 = unsat return sat // candidate model is valid

12 G =G N pg[Mc(u)/u] // new ground instance via CEGQI

Figure 9.2: High level view of our CEGMS approach.

quantifier is duplicated, the quantification is flipped, and the negative occurrence
is substituted with the new subgraph. Further note that preprocessing currently
does not include any further simplification techniques such as miniscoping or
destructive equality resolution (DER) [63].

After preprocessing, Skolemization is applied to the normalized formula, and
all universal variables x in g are instantiated with fresh bit-vector constants u
of the same sort. This yields ground formula ¢g. Initially, procedure CEGMS
starts with an empty set of ground instances G, which is iteratively extended
with new ground instances during the refinement loop.

In the first step of the loop, an SMT solver instance checks whether GG con-
tains a ground conflict (line . If this is the case, procedure CEGMS has found
conflicting quantifier instantiations and concludes with unsatisfiable. Else, the
SMT solver produces model Mg for all Skolem symbols in G, i.e., every Skolem
constant is mapped to a bit-vector value, and every uninterpreted function corre-
sponding to a Skolem function is mapped to a partial function mapping bit-vector
values. Model Mg is used as a base for synthesizing a candidate model Mg that
satisfies G. The synthesis of candidate models Mg will be introduced in more
detail in the next section. In order to check if Mg is also a model that satisfies ¢,
we check with an additional SMT solver instance if there exists an assignment to
constants u (corresponding to universal variables x), such that candidate model
Mg does not satisfy formula ¢ (line [L0)).

If the second SMT solver instance returns unsatisfiable, no such assignment to
constants u exists and consequently, candidate model Mg is indeed a valid model
for the Skolem functions and procedure CEGMS returns with satisfiable. Else,
the SMT solver produces a concrete counterexample for constants u, for which
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candidate model Mg does not satisfy formula ¢. This counterexample is used as
a quantifier instantiation to create a new ground instance g; = pg[Mc(u)/ul,
which is added to G := G A g; as a refinement (line and considered in the
next iteration for synthesizing a candidate model. These steps are repeated until
either a ground conflict is found or a valid candidate model was synthesized.

Our CEGMS procedure creates in the worst-case an unmanageable number
of ground instances of the formula prior to finding either a ground conflict or a
valid candidate model, infinitely many in case of infinite domains. In the bit-
vector case, however, it produces in the worst-case exponentially many ground
instances in the size of the domain. Since, given a bit-vector formula, there
exist only finitely many such ground instances, procedure CEGMS will always
terminate. Further, if CEGMS concludes with satisfiable, it returns with a model
for the existential variables.

9.5 Synthesis of Candidate Models

In our CEGMS approach, based on a concrete model Mg we apply synthe-
sis to find general models Mg to accelerate either finding a valid model or a
ground conflict. Consider formula ¢ :=Vzydz.z = x + y, its skolemized form
sk = Vay.f.(x,y) = x + y, some ground instances G := f,(0,0) = 0 A f,(0,1)
= 1A f.(1,2) = 3, and model Mg = {f.(0,0) — 0, f,(0,1) — 1, f.(1,2) — 3}
that satisfies G. A simple approach for generating a Skolem function for f, would
be to represent model Mg (f,) as a lambda term Azy.ite(z = 0Ay = 0, 0, ite(x =
0Ny =1,1,ite(x =1Ay =2,3,0))) with base case constant 0, and check if it
is a valid Skolem function for f,. If it is not valid, a counterexample is generated
and a new ground instance is added via CEGQI to refine the set of ground in-
stances G. However, this approach, in the worst-case, enumerates exponentially
many ground instances until finding a valid candidate model. By introducing a
modified version of a syntax-guided synthesis technique called enumerative learn-
ing 62|, CEGMS is able to produce a more succinct and more general lambda
term Azy.z + y, which satisfies the ground instances G and formula .
Enumerative learning as in [62] systematically enumerates expressions that can
be built based on a given syntax and checks whether the generated expression
conforms to a set of concrete test cases. These expressions are generated in
increasing order of a specified complexity metric, such as, e.g., the size of the
expression. The algorithm creates larger expressions by combining smaller ones
of a given size, which is similar to the idea of dynamic programming. Each
generated expression is evaluated on the concrete test cases, which yields a vector
of values also denoted as signature. In order to reduce the number of enumerated
expressions, the algorithm discards expressions with identical signatures, i.e., if
two expressions produce the same signature the one generated first will be stored
and the other one will be discarded. Figure [9.3] depicts a simplified version of
the enumerative learning algorithm as employed in our CEGMS approach, while
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1 function enumlearn (f, I, O, T, M)

2 S=0, E[1l] =1, size=0

3 while true

4 size = size + 1 // increase expression size to create
5 for t € enumexps(size, O, F) // enumerate all expr. of size size

6 s =eval(M,T[t/f]) // compute signature of ¢

7 if s¢S // expression not yet created

8 S = SuU{s} // cache signature

9 if checksig(s) return ¢ // t conforms to test cases T’

10 El[size] .= E[size] U{t} // store expression t

Figure 9.3: Simplified version of enumerative learning |62] employed in CEGMS.

a more detailed description of the original algorithm can be found in [62].

Given a Skolem symbol f, a set of inputs I, a set of operators O, a set of test
cases T, and a model M, algorithm enumlearn attempts to synthesize a term ¢,
such that T'[t/f] evaluates to true under model M. This is done by enumer-
ating all terms ¢ that can be built with inputs I and bit-vector operators O.
Enumerating all expressions of a certain size (function enumexps) follows the
original enumerative learning approach [62]. Given an expression size size and a
bit-vector operator o, the size is partitioned into partitions of size k = arity(o),
e.g., (1,3) (3,1) (2,2) for size = 4 and k = 2. Each partition (si,..., si) specifies
the size s; of expression e;, and is used to create expressions of size size with
operator o, i.e., {o(er,...,ex) | (e1,...,ex) € E[s1] X ... x E[sg]}, where El[s;]
corresponds to the set of expressions of size s;. Initially, for size = 1, function
enumexps enumerates inputs only, i.e., E[1] = I.

For each generated term ¢, a signature s is computed from a set of test cases
T with function eval. In the original algorithm [62], set T' contains concrete
examples of the input/output relation of f, i.e., it defines a set of output val-
ues of f under some concrete input values. In our case, model M(f) may be
used as a test set 7', since it contains a concrete input/output relation on some
bit-vector values. However, we are not looking for a term ¢ with that concrete
input /output value behavior, but a term ¢ that at least satisfies the set of current
ground instances GG. Hence, we use G as our test set and create a signature s
by evaluating every ground instance g; € G|t/ f], resulting in a tuple of Boolean
constants, where the Boolean constant at position 7 corresponds to the value
MTgi] of ground instance g; € G[t/f] under current model M. Procedure check-
sig returns true if signature s contains only the Boolean constant T, i.e., if every
ground instance g; € G is satisfied.

As a consequence of using G rather than M(f) as a test set T', the expres-
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1 function synthesize (f, G, Mg, ¢c)

2 Mg := Mg, O = ops(pg) // choose operators O w.r.t. g
3 for fef

4 I == inputs(f, ¢q) // choose inputs for f

5 t == enumlearn(f,I,0,G,Mg) // synthesize term ¢

6 if t # null

7 Mg :== Mg{f — t} // update model

8 return Mg

Figure 9.4: Synthesis of candidate models in CEGMS.

sion enumeration space is even more pruned since computing the signature of f
w.r.t. G yields more identical expressions (and consequently, more expressions
get discarded). Note that the evaluation via function eval does not require ad-
ditional SMT solver calls, since the value of ground instance g; € G[t/f] can be
computed via evaluating M [g;].

Algorithm synthesize produces Skolem function candidates for every Skolem
symbol f € f, as depicted in Figure Initially, a set of bit-vector operators O
is selected, which consists of those operators appearing in formula . Note that
we do not select all available bit-vector operators of the bit-vector theory in order
to reduce the number of expressions to enumerate. The algorithm then selects a
set of inputs I, consisting of the universal variables on which f depends and the
constant values that occur in formula . Based on inputs I and operators O,
a term ¢ for Skolem symbol f is synthesized and stored in model Mg (lines .
If algorithm enumlearn is not able to synthesize a term ¢, model Mg(f) is used
instead. This might happen if function enumlearn hits some predefined limit
such as the maximum number of expressions enumerated.

In each iteration step of function synthesize, model Mg is updated if enum-
learn succeeded in synthesizing a Skolem function. Thus, in the next iterations,
previously synthesized Skolem functions are considered for evaluating candidate
expressions in function enumlearn. This is crucial to guarantee that each syn-
thesized Skolem function still satisfies the ground instances in G. Otherwise,
Mg may not rule out every counterexample generated so far, and thus, vali-
dating the candidate model may result in a counterexample that was already
produced in a previous refinement iteration. As a consequence, our CEGMS
procedure would not terminate even for finite domains since it might get stuck
in an infinite refinement loop while creating already existing ground instances.

The number of inputs and bit-vector operators used as base for algorithm
enumlearn significantly affects the size of the enumeration space. Picking too
many inputs and operators enumerates too many expressions and algorithm
enumlearn will not find a candidate term in a reasonable time, whereas restrict-
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ing the number of inputs and operators too much may not yield a candidate
expression at all. In our implementation, we kept it simple and maintain a set
of base operators {ite, ~}, which gets extended with additional bit-vector opera-
tors occurring in the original formula. The set of inputs consists of the constant
values occurring in the original formula and the universal variables on which a
Skolem symbol depends. Finding more restrictions on the combination of inputs
and bit-vector operators in order to reduce the size of the enumeration space is
an important issue, but left to future work.

Example 9.1. Consider ¢ :==VaIy.(r <0 —y=—2)A(x >0—>y==x), and
its skolemized form Vz.(z <0 — fy(z) = —z) A (x > 0 — fy(x) = x), where y
and consequently fy(z) corresponds to the absolute value function abs(z). For
synthesizing a candidate model for f,, we first pick the set of inputs I := {x,0}
and the set of operators O := {—,~, <, ite} based on formula ¢. Note that we
omitted operators > and — since they can be expressed by means of the other
operators. The ground formula and its negation are defined as follows.

o= u<0—= fy(u) =—u)A(u>0— f,(u) =u)

oG = (W< 0 A fylu) £ —u) V(>0 A fy(u) # )

For every refinement round ¢, the table below shows the set of ground in-
stances G, the synthesized candidate model M (f,), formula —pc[Ms(fy)/ fyl
for checking the candidate model, and a counterexample M¢ for constant u if
the candidate model was not correct.

ilG Ms(fy) v [Ms(fy)/fy] Mc(u)

1T Az.0 (u<OAO0# —u)V(u>0A0%#u) 1

2| fy(1) =1 A\z.x (u<O0Au##—u)V(u>0Au#u) -1
| Aate( (u <O ANdte(u <0, —u,u) #—u) V

3| (-1 =1 r<0,—2,2) | (u>0Aidte(u <0, —u,u) # u) )

In the first round, the algorithm starts with ground formula G := T. Since
any model of f, satisfies G, for the sake of simplicity, we pick Az.0 as candi-
date, resulting in counterexample v = 1, and refinement pg[1/u] = fy(1) =1 is
added to G. In the second round, lambda term Az.x is synthesized as candidate
model for f, since it satisfies G = f,(1) = 1. However, this is still not a valid
model for f, and counterexample u = —1 is produced, which yields refinement
val—1/u]l = fy(—1) = 1. In the third and last round, Ms(f,) = Az.ite(x <
0, —z, z) is synthesized and found to be a valid model since =g [Ms(fy)/fy] is
unsatisfiable, and CEGMS concludes with satisfiable.
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9.6 Dual Counterexample-Guided Model Synthesis

Our CEGMS approach is a model finding procedure that enables us to synthesize
Skolem functions for satisfiable problems. However, for the unsatisfiable case we
rely on CEGQI to find quantifier instantiations based on concrete counterex-
amples that produce conflicting ground instances. In practice, CEGQI is often
successful in finding ground conflicts. However, it may happen that way too
many quantifier instantiations have to be enumerated (in the worst-case expo-
nentially many for finite domains, infinitely many for infinite domains). In order
to obtain better (symbolic) candidates for quantifier instantiation, we exploit the
concept, of duality of the input formula and simultaneously apply our CEGMS
approach to the original input and its negation (the dual formula).

Given a quantified formula ¢ and its negation, the dual formula —p, e.g.,
¢ = Vxdy.Plx,y] and —p = IxVy.—Plzr,y]. If -p is satisfiable, then there
exists a model M (x) to its existential variables x such that ¢[M(x)/x,y] is
unsatisfiable. That is, a model in the dual formula —¢ can be used as a quantifier
instantiation in the original formula ¢ to immediately produce a ground conflict.
Similarly, if —¢ is unsatisfiable, then there exists no quantifier instantiation in
@ such that ¢ is unsatisfiable. As a consequence, if we apply CEGMS to the
dual formula and it is able to synthesize a valid candidate model, we obtain
a quantifier instantiation that immediately produces a ground conflict in the
original formula. Else, if our CEGMS procedure concludes with unsatisfiable on
the dual formula, there exists no model to its existential variables and therefore,
the original formula is satisfiable.

Dual CEGMS enables us to simultaneously search for models and quantifier
instantiations, which is particularly useful in a parallel setting. Further, apply-
ing synthesis to produce quantifier instantiations via the dual formula allows
us to create terms that are not necessarily ground instances of the original for-
mula. This is particularly useful in cases where heuristic quantifier instantiation
techniques based on E-matching [21] or model-based quantifier instantiation |33]
struggle due to the fact that they typically select terms as candidates for quan-
tifier instantiation that occur in some set of ground terms of the input formula,
as illustrated by the following example.

Example 9.2. Consider the unsatisfiable formula ¢ == Vz.a x c+ b* ¢ # x * c,
where x = a + b produces a ground conflict. Unfortunately, a 4+ b is not a ground
instance of ¢ and is consequently not selected as a candidate by current state-
of-the-art heuristic quantifier instantiation techniques. However, if we apply
CEGMS to the dual formula Vabc3z.a x ¢+ b * c = x * ¢, we obtain Azxyz.x +y
as a model for Skolem symbol f,(a,b,c), which corresponds to the term a + b if
instantiated with (a, b, ¢). Selecting a + b as a term for instantiating variable z in
the original formula results in a conflicting ground instance, which immediately
allows us to determine unsatisfiability.
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Note that if CEGMS concludes unsatisfiable on the dual formula, we currently
do not produce a model for the original formula. Generating a model would re-
quire further reasoning, e.g., proof reasoning, on the conflicting ground instances
of the dual formula and is left to future work.

Further, dual CEGMS currently only utilizes the final result of applying
CEGMS to the dual formula. Exchanging intermediate results (synthesized can-
didate models) between the original and the dual formula in order to prune the
search is an interesting direction for future work.

In the context of quantified Boolean formulas (QBF), the duality of the given
input has been previously successfully exploited to prune and consequently speed
up the search in circuit-based QBF solvers [34]. In the context of SMT, in
previous work we applied the concept of duality to optimize lemmas on demand
approach for the theory of arrays in Boolector [45].

9.7 Experiments

We implemented our CEGMS technique and its dual version in our SMT solver
Boolector 46|, which supports the theory of bit-vectors combined with arrays
and uninterpreted functions. We evaluated our approach on two sets of bench-
marks (5029 in total). Set BV (191) contains all BV benchmarks of SMT-LIB [4],
whereas set BVpnira (4838) consists of all LIA, LRA, NIA, NRA benchmarks
of SMT-LIB [4] translated into bit-vector problems by substituting every integer
or real with a bit-vector of size 32, and every arithmetic operator with its signed
bit-vector equivalent.

We evaluated four configurations of Boolectoxﬂ (1) Btor, the CEGMS ver-
sion without synthesis, (2) Btor+s, the CEGMS version with synthesis enabled,
(3) Btor+d, the dual CEGMS version without synthesis, (4) Btor+ds, the dual
CEGMS version with synthesis enabled. We compared our approach to the
current development versions of the state-of-the-art SMT solvers CVC4E| 13]
and Ziﬂ [19], and the BDD-based approach implemented as a prototype called
Q?ﬂﬂ [38]. The tool Q3B runs two processes with different approximation strate-
gies in a parallel portfolio setting, where one process applies over-approximation
and the other under-approximation. The dual CEGMS approach implemented in
Boolector is realized with two parallel threads within the solver, one for the orig-
inal formula and the other for the dual formula. Both threads do not exchange
any information and run in a parallel portfolio setting.

All experiments were performed on a cluster with 30 nodes of 2.83GHz Intel
Core 2 Quad machines with 8 GB of memory using Ubuntu 14.04.5 LTS. We set
the limits for each solver/benchmark pair to 7GB of memory and 1200 seconds

'Boolector commit 4f7837876cf9c28f42649b368eaffaf03c7el357
20VC4 commit d19a95344fdelealff7d784b2c4fc6d09f459899
373 commit 186afe7d10d4f0e5acf40f9b1f16a1f1c2d1706¢

4Q3B commit 68301686d36850ba782c¢4d0f9d58{8¢4357e1461
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Figure 9.5: Comparison of Boolector with model synthesis enabled (Btor+s)
and disabled (Btor) on the BV and BVpNira benchmarks.
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(Btor+ds) and disabled (Btor+d) on the BV and BVyNira benchmarks.
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of CPU time (not wall clock time). In case of a timeout, memory out, or an
error, a penalty of 1200 seconds was added to the total CPU time.

Figure illustrates the effect of our model synthesis approach by comparing
configurations Btor and Btor+s on the BV and BVynmra benchmark sets. On
the BV benchmark set, Btor+s solves 22 more instances (21 satisfiable, 1 un-
satisfiable) compared to Btor. The gain in the number of satisfiable instances
is due to the fact that CEGMS is primarily a model finding procedure, which
allows to find symbolic models instead of enumerating a possibly large number
of bit-vector values, which seems to be crucial on these instances.

On set BViNira, however, Btor+s does not improve the overall number of
solved instances, even though it solves two satisfiable instances more than Btor.
Note that benchmark set BVynira contains only a small number of satisfiable
benchmarks (at most 12% = 575 benchmark@, where configuration Btor al-
ready solves 465 instances without enabling model synthesis. For the remaining
satisfiable instances, the enumeration space may still be too large to synthesize
a model in reasonable time and may require more pruning by introducing more
syntactical restrictions for algorithm enumlearn as discussed in Section 9.5

Figure shows the effect of model synthesis on the dual configurations
Btor+d and Btor+ds on benchmark sets BV and BVynira. On the BV bench-
mark set, configuration Btor+ds is able to solve 10 more instances of which all are
satisfiable. On the BV NraA benchmark set, compared to Btor+d, configuration
Btor+ds is able to solve 132 more instances of which all are unsatisfiable. The
significant increase is due to the successful synthesis of quantifier instantiations
(133 cases).

Table summarizes the results of all four configurations on both bench-
mark sets. Configuration Btor+ds clearly outperforms all other configurations
w.r.t. the number of solved instances and runtime on both benchmark sets. Out
of all 77 (517) satisfiable instances in set BV (BVnira) solved by Btor+ds, 32
(321) were solved by finding a ground conflict in the dual CEGMS approach.
In case of configuration Btor+d, out of 67 (518) solved satisfiable instances, 44
(306) were solved by finding a ground conflict in the dual formula. As an in-
teresting observation, 16 (53) of these instances were not solved by Btor. Note,
however, that Btor+d is not able to construct a model for these instances due to
the current limitations of our dual CEGMS approach as described in Section

On the BV benchmark set, model synthesis significantly reduces the number
of refinement iterations. Out of 142 commonly solved instances, Btor+s required
165 refinement iterations, whereas Btor required 664 refinements. On the 4522
commonly solved instances of the BV nira benchmark set, Btor+s requires 5249
refinement iterations, whereas Btor requires 5174 refinements. The difference
in the number of refinement iterations is due to the fact that enabling model
synthesis may produce different counterexamples that requires the CEGMS pro-

5Boolector, CVC4, Q3B, and Z3 combined solved 4263 unsatisfiable and 533 satisfiable in-
stances, leaving only 42 instances unsolved
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BV (191) BVinira (4838)
Slvd Sat Unsat Time [s| Uniq | Slvd Sat Unsat Time [s] Uniq
Btor 142 51 91 59529 0] 4527 465 4062 389123 3

Btor+s 164 72 92 32996
Btor+d 162 67 95 35877
Btor+ds | 172 77 95 24163

4526 467 4059 390661 1
4572 518 4054 342412 4
4704 517 4187 187411 135

o O O

Table 9.1: Results for all configurations on the BV and BV nira benchmarks.

cedure to sometimes create more refinements. However, as noted earlier, enabling
model synthesis on set BVynira does not improve the overall number of solved
instances in the non-dual case.

We analyzed the terms produced by model synthesis for both Btor+s and
Btor+ds on both benchmark sets. On the BV benchmark set, mainly terms of
the form Ax.c and Ax.x; with a bit-vector value ¢ and x; € x have been synthe-
sized. On the BVNira benchmarks, additional terms of the form Ax.(z; op z;),
Ax.(c op x;), Ax.~(c*x;)) and Ax.(z; + (¢ + ~x;)) with a bit-vector operator
op were synthesized. On these benchmarks, more complex terms did not occur.

Figure depicts two cactus plots over the runtime of our best configuration
Btor+ds and the solvers CVC4, Q3B, and Z3 on the benchmark sets BV and
BVinira. On both benchmark sets, configuration Btor+ds solves the second
highest number of benchmarks after Q3B (BV) and Z3 (BViniira). On both
benchmark sets, a majority of the benchmarks seem to be trivial since they were
solved by all solvers within one second.

Table [0.2] summarizes the results of all solvers on both benchmark sets. On
the BV benchmark set, Q3B solves with 187 instances the highest number of
benchmarks, followed by Btor+ds with a total of 172 solved instances. Out
of all 19 benchmarks unsolved by Btor+ds, 9 benchmarks are solved by Q3B
and CVC4 through simplifications only. We expect Boolector to also benefit
from introducing quantifier specific simplification techniques, which is left to
future work. On the BVpNira set, Z3 solves the most instances (4732) and
Btor+ds again comes in second with 4704 solved instances. In terms of satisfiable
instances, however, Btor+ds solves the highest number of instances (517). In
terms of unsatisfiable instances, Z3 clearly has an advantage due to its heuristic
quantifier instantiation techniques and solves 69 instances more than Btor+ds,
out of which 66 were solved within 3 seconds. The BDD-based approach of Q3B
does not scale as well on the BV nirA set as on the BV set benchmark set and
is even outperformed by Btor+s. Note that most of the benchmarks in BVniRA
involve more bit-vector arithmetic than the benchmarks in set BV.

Finally, considering Btor+ds, a wall clock time limit of 1200 seconds increases
the number of solved instances of set BVinra by 11 (and by 6 for Q3B). On
set BV, the number of solved instances does not increase.
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BV (191) BVinira (4838)
Slvd Sat Unsat Time [s| Uniq | Slvd Sat Unsat Time [s] Uniq
Btor+ds | 172 77 95 24163 2| 4704 517 4187 187411 19

CvVC4 145 64 81 57652 0] 4362 339 4023 580402 3
Q3B 187 93 94 9086 9| 4367 327 4040 581252 5
Z3 161 69 92 36593 01]4732 476 4256 130405 11

Table 9.2: Results for all solvers on the BV and BV nira benchmarks with a
CPU time limit of 1200 seconds (not wall clock time).

9.8 Conclusion

We presented CEGMS, a new approach for handling quantifiers in SMT, which
combines CEGQI with syntax-guided synthesis to synthesize Skolem functions.
Further, by exploiting the duality of the input formula dual CEGMS enables us
to synthesize terms for quantifier instantiation. We implemented CEGMS in our
SMT solver Boolector. Our experimental results show that our technique is com-
petitive with the state-of-the-art in solving quantified bit-vectors even though
Boolector does not yet employ any quantifier specific simplification techniques.
Such techniques, e.g., miniscoping or DER were found particularly useful in Z3.
CEGMS employs two ground theory solvers to reason about arbitrarily quan-
tified formulas. It is a simple yet effective technique, and there is still a lot of
room for improvement. Model reconstruction from unsatisfiable dual formulas,
symbolic quantifier instantiation by generalizing concrete counterexamples, and
the combination of quantified bit-vectors with arrays and uninterpreted func-
tions are interesting directions for future work. It might also be interesting to
compare our approach to the work presented in [8}|28,29,37].

Binary of Boolector, the set of translated benchmarks (BVinira) and all log files of our

experimental evaluation can be found at http://fmv. jku.at/tacas17.
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