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1 Motivation

Traditional ways of validating and verifying software include testing/simulation and
theorem proving. Testing may start as soon as the first prototype exists. No knowledge
of a specialised formalism is required. Testing is based on a collection of test cases, cor-
rectness is assured for each test case. The number of test cases may grow exponentially
with the number of input variables. Therefore, it is usually impossible to cover every
potential behavior in a test suite. On the other hand, with theorem proving, correctness
of software can be verified formally. Every potential behavior is covered. However, in-
depth knowledge and a lot of of experience in the use of the methodology is required.

Model checking combines some of the advantages of both testing and theorem prov-
ing. Depending on the number of parameters left unspecified in the model a configu-
ration corresponds to either a single or a large number of test cases which are verified
in a single run of the model checker. By leaving all parameters unspecified all possible
behaviors can be covered. However, with more free parameters the state space to be
searched grows and thus the time needed increases.

Other advantages include that model checking can start once the first prototype of
the model and the specification have been finished. The use of a model checker requires
only moderate knowledge of the underlying theory. In the past, model checking has
successfully been applied to several case studies as well as in industry. See, for example,
[1], [2] and [4].

The Tree Identify Protocol of the IEEE 1394 (FireWire) standard [5], [6], proposed
as a case study for the application of formal methods [7], is given as a state machine.
It can be translated easily into a corresponding model for a model checker. SMV [8],
which we used in our evaluation, is probably one of the most widely used model check-
ers. This contribution describes on-going research on modeling and verifying the IEEE
1394 Tree Identify Protocol with SMV.

2 Model

Our model of a FireWire system is based on the structure as shown in sections 3.7.3.1.2
and E.3.2 of the official standard [5]. Aconfigurationconsists of a number ofnodeswith
a fixed topology. Each node has threeportswhich are either connected to other ports or
are inactive. Separate modules contain the implementations of different configurations,
and the definitions of the node and port types.



The implementation of a node is similar to the Tree ID state machine in [6]. A state
variable holds the state of each node in the state machine. Our set of states includes all
states of the Tree Identify Protocol as described in the standard. State T3 is refined (see
below) and state S0 is added as an end state.

However, for low-level communication, IEEE 1394 uses two signals with three dif-
ferent states. We abstract from this low-level line-based encoding scheme and directly
use the line states given in Tabels 4-27 and 4-28 in [5]. Not all possible line states are
relevant for the protocol. See [5] for details. In our implementation each port has a state
variable which takes the line state to be transmitted as its value. The peer port has an
alias to that variable.

SMV does not offer constructs to express continuous time constraints. Therefore,
we use a counter to model time-out and force-root conditions. For the resolution of root
contention in the standard, nodes have to wait different amounts of time. We implement
this by making nodes choose paths of length one or two in the state machine. For this
purpose, state T3 is split up into 5 sub-states.

For the random choice of the bits in the protocol we have implemented two solu-
tions. One is deterministic and supplies a node with a unique sequence of random bits
(i.e., a unique id) upon initialization. In the second solution, non-determinism is used
in the transition relation. A fairness condition ensures that the choices will differ after
an arbitrary but finite number of steps. The latter is closer to the protocol as described
in [5], [6]. Due to technical reasons asynchronous execution is only possible with the
first solution. For our results on synchronous execution the second variant is used. In
the asynchronous case the first solution is employed and a fairness clause is added to
ensure that no process is starving forever.

For a certain topology another parameter remains to be chosen: the force-root flag
of each node. We have tried configurations with the force-root flag fixed (determin-
istic configurations, markeddet.) and with the flag left unspecified (non-deterministic
configurations).

3 Specification

The two most important properties to determine the success of the protocol are stated in
the problem description [7]. We have specified three additional properties to ensure that
each node arrives in a well defined, safe state at the end of the protocol. Depending on
the particular configuraion, further requirements are added. Finally, we include a time-
out clause and a clause specifying known potential problems in our implementation.

A typical requirement looks as follows:

-- all nodes are in state S0_start
AF (AG in_state_S0_start | timeout | known_problems)

When a model checker detects that a requirement does not hold in a given configu-
ration the user is notified and a counter example is produced. This feature helps to track
down and correct errors.



4 Results

The specification has been verified for a number of topologies with synchronous ex-
ecution. Both deterministic and non-deterministic configurations are used. For each
configuration, Table 4 lists the number of reachable states as calculated by SMV, the
number of bytes allocated, and the user time. Most configurations are easily verified.
The verification of the last configuration has been interrupted after 12 hours without
results.

We have also experimented with asynchronous executions. These executions demon-
strate the importance of placing an upper bound on signal propagation and processing
times, a fact which is also reported in [10]. Details can be found in the full version of
our paper.

Configuration# Reachable states# Bytes allocatedUser time [s]
2 nodesdet. 515 2490368 1.3
2 nodes 38398 4915200 393.72
3 nodesdet. 7488 3014646 0.98
3 nodes 1.11349e06 7798784 911.28
5 nodesdet. 1.00329e06 4456448 14.26
5 nodes 4.0333e08 19070976 7074.7
10 nodesdet. 2.47714e11 11730944 97.47
10 nodes – – >38200

Table 1.Performance

5 Evaluation

The first author who has only started his PhD in the area of formal methods used this
case study to gain experience with the SMV system. He has a degree in computer sci-
ence and some experience in software engineering but not in model checking.

About two weeks were spent reading general introductory texts on the subject. A
dedicated introductory course on using SMV should take less time. The prototype pre-
sented above was worked out in about one week. As soon as the first model is finished an
incremental prototyping/testing/refining cycle started. The user can experience success
rather quickly. However, for bigger configurations turn-around times grow. Producing
the model seemed easier than coming up with a correct specification. Experience in for-
mulating the model and the specification and fine-tuning the command-line parameters
of the model checker to keep running times small is still to be gained.

The version of SMV used here does not support splitting of a model into separate
files, thus making modularization and reuse difficult. To solve this problem, some time
was spent to combine SMV with a C pre-processor. Commercial tools [11] are available
that support these features out of the box.



6 Conclusions and Outlook

Model checking with SMV proved to be very effective for the verification of the Tree
Identify Protocol of the IEEE 1394 (FireWire) standard. We were able to model the sys-
tem rather quickly and formulation and verification of the requirements was straightfor-
ward. To verify setups with even more nodes the model needs modified and additional
model checking techniques should be tried. We have first results for setups with more
than 20 nodes. In further experiments we want to investigate how generic setups can
be handeled with model checking. We also plan to apply other model checkers to this
problem.
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