
CryptoMiniSat 5.6 with YalSAT at the SAT Race
2019

Mate Soos (National University of Singapore), Armin Biere (JKU Linz)

I. Introduction

This paper presents the conflict-driven clause-learning
(CLDL) SAT solver CryptoMiniSat v5.6 (CMS ) augmented
with the Stochastic Local Search (SLS) [11] solver YalSAT
03v as submitted to SAT Race 2019.

CryptoMiniSat aims to be a modern, open source SAT
solver using inprocessing techniques, optimized data struc-
tures and finely-tuned timeouts to have good control over
both memory and time usage of inprocessing steps. It also
supports, when compiled as such, to recover XOR con-
straints and perform Gauss-Jordan elimination on them at
every decision level. For the competition, this option was
disabled. CryptoMiniSat is authored by Mate Soos.

Yet Another Local Search SAT Solver (YalSAT) imple-
ments several variants of ProbSAT’s [4] algorithm and re-
cent extensions [3]. These variants are selected randomly at
restarts, scheduled by a reluctant doubling scheme (Luby).
For further details, see [1]. YalSAT is authored by Armin
Biere.

A. Composing the Two Solvers

The two solvers are composed together in a way that
does not resemble portfolio solvers. The system runs the
CDCL solver CryptoMiniSat, along with its periodic in-
processing, by default. However, at every N inprocessing
step, CryptoMiniSat’s irredundant clauses are pushed into
the SLS solver (in case the predicted memory use is not
too high). The SLS solver is then allowed to run for a
predefined number of steps. In case the SLS solver finds
a solution, this is given back to the CDCL solver, which
then performs all the necessary extension to the solution
(e.g. for Bounded Variable Elimination, BVE [5]) and then
outputs the solution.

Note that the inclusion of the SLS solver is full in the
sense that assumptions-based solving, library-based solver
use, and all other uses of the SAT solver is fully supported
with SLS solving enabled. Hence, this is not some form
of portfolio where a simple shell script determines which
solver to run and then runs that solver. Instead, the SLS
solver is a full member of the CDCL solver, much like any
other inprocessing system, and works in tandem with it.
For example, in case an inprocessing step has reduced the
number of variables through BVE or increased it through
BVA [9], the SLS solver will then try to solve the problem
thus modified. In case the SLS solver finds a solution, the
main solver will then correctly manipulate it to fit the needs
of the “outside world”, i.e. the caller.

As the two solvers are well-coupled, the combination of
the two solvers can solve problems that neither system
can solve on its own. Hence, the system is more than just

a union of its parts which is not the case for traditional
portfolio solvers.

II. Major Improvements

A. Via Negativa

The system has been subjected to a thorough investi-
gation whether all the different systems that have been
implemented into it actually make the solver faster. In
this spirit, failed literal probing [8], stamping [6], burst
searching (random variable picking), and blocked clause
elimination [7] have all been disabled.

B. Chronological Backtracking

Chronological backtracking [10] has been implemented
into a branch of the solver. However, chronological back-
tracking (CBT) is a double-edged sword. Firstly, it slows
down the solver’s normal functionality as it adds a number
of expensive checks to both the propagation and the back-
tracking code. Secondly, it changes the trail of the solver in
ways that make it hard to reason about the current state
of the solver. Finally, it seems only to help with satisfiable
instances which are theoretically less interesting for the au-
thor of CryptoMiniSat. These issues make CBT a difficult
addition.

Currently, CryptoMiniSat by default does not implement
CBT. The SAT Race has two versions submitted, clearly
marked, one with, an one without CBT.

C. Cluster Tuning

The author has been generously given time on the
ASPIRE-1 cluster of the National Supercomputing Center
Singapore[2]. This allowed experimentation and tuning
that would have been impossible otherwise. Without this
opportunity, CryptoMiniSat would not stand a chance at
the SAT Race.

III. General Notes

A. On-the-fly Gaussian Elimination

On-the-fly Gaussian elimination is again part of Crypto-
MiniSat. This is explicitly disabled for the competition, but
the code is available and well-tested. This allows for special
uses of the solver that other solvers, without on-the-fly
Gaussian elimination, are not capable of.

B. Robustness

CMS aims to be usable in both industry and academia.
CMS has over 150 test cases and over 2000 lines of Python
just for fuzzing orchestration, and runs without fault under
both the ASAN and UBSAN sanitisers of clang. It also
compiles and runs under Windows, Linux and MacOS X.



This is in contrast many academic winning SAT solvers that
produce results that are non-reproducible, cannot be com-
piled on anything but a few select systems, and/or produce
segmentation faults if used as a library. CryptoMiniSat has
extensive fuzzing setup for library usage and is very robust
under strange/unexpected use cases.

IV. Thanks

This work was supported in part by NUS ODPRT Grant
R-252-000-685-133 and AI Singapore Grant R-252- 000-
A16-490. The computational work for this article was
performed on resources of the National Supercomputing
Center, Singapore[2]. The author would also like to thank
all the users of CryptoMiniSat who have submitted over
500 issues and many pull requests to the GitHub CMS
repository[12].

References

[1] Anton, B., Daniel, D., Heule, M.J.H., Jarvisalo, M.: Yet another
Local Search Solver and Lingeling and Friends Entering the SAT
Competition 2014. In: Proceedings of SAT Competition 2014
(2014)

[2] ASTAR, NTU, NUS, SUTD: National Supercomputing Centre
(NSCC) Singapore (2018), https://www.nscc.sg/about-nscc/
overview/

[3] Balint, A., Biere, A., Fröhlich, A., Schöning, U.: Improving
implementation of SLS solvers for SAT and new heuristics for
k-SAT with long clauses. In: Sinz, C., Egly, U. (eds.) Theory and
Applications of Satisfiability Testing – SAT 2014. pp. 302–316.
Springer International Publishing, Cham (2014)

[4] Balint, A., Schöning, U.: Choosing probability distributions for
stochastic local search and the role of make versus break. In:
Cimatti, A., Sebastiani, R. (eds.) Theory and Applications of
Satisfiability Testing – SAT 2012. pp. 16–29. Springer Berlin
Heidelberg, Berlin, Heidelberg (2012)

[5] Eén, N., Biere, A.: Effective preprocessing in SAT through
variable and clause elimination. In: Bacchus, F., Walsh, T. (eds.)
Theory and Applications of Satisfiability Testing. pp. 61–75.
Springer Berlin Heidelberg, Berlin, Heidelberg (2005)

[6] Heule, M.J.H., Järvisalo, M., Biere, A.: Efficient CNF simplifi-
cation based on binary implication graphs. In: Sakallah, K.A.,
Simon, L. (eds.) Theory and Applications of Satisfiability Test-
ing - SAT 2011. pp. 201–215. Springer Berlin Heidelberg, Berlin,
Heidelberg (2011)

[7] Järvisalo, M., Biere, A., Heule, M.: Blocked Clause Elimination.
In: Proceedings of the 16th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems.
Lecture Notes in Computer Science, vol. 6015, pp. 129–144.
Springer International Publishing (2010)

[8] Lynce, I., Silva, J.P.M.: Probing-based preprocessing techniques
for propositional satisfiability. In: 15th IEEE International Con-
ference on Tools with Artificial Intelligence (ICTAI 2003), 3-5
November 2003, Sacramento, California, USA. p. 105. IEEE
Computer Society (2003), https://doi.org/10.1109/TAI.2003.
1250177

[9] Manthey, N., Heule, M.J.H., Biere, A.: Automated reencoding
of boolean formulas. In: Biere, A., Nahir, A., Vos, T. (eds.)
Hardware and Software: Verification and Testing. pp. 102–117.
Springer Berlin Heidelberg, Berlin, Heidelberg (2013)

[10] Nadel, A., Ryvchin, V.: Chronological backtracking. In: Beyers-
dorff, O., Wintersteiger, C.M. (eds.) Theory and Applications of
Satisfiability Testing – SAT 2018. pp. 111–121. Springer Interna-
tional Publishing, Cham (2018)

[11] Selman, B., Kautz, H., Cohen, B.: Local search strategies for
satisfiability testing. In: DIMACS Series in Discrete Mathematics
and Theoretical Computer Science. pp. 521–532 (1995)

[12] Soos, M.: CryptoMiniSat SAT solver GitHub page (2018), https:
//github.com/msoos/cryptominisat

https://www.nscc.sg/about-nscc/overview/
https://www.nscc.sg/about-nscc/overview/
https://doi.org/10.1109/TAI.2003.1250177
https://doi.org/10.1109/TAI.2003.1250177
https://github.com/msoos/cryptominisat
https://github.com/msoos/cryptominisat

	Introduction
	Composing the Two Solvers

	Major Improvements
	Via Negativa
	Chronological Backtracking
	Cluster Tuning

	General Notes
	On-the-fly Gaussian Elimination
	Robustness

	Thanks

