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Abstract. Recent work introduced the cube-and-conquer technique to
solve hard SAT instances. It partitions the search space into cubes using a
lookahead solver. Each cube is tackled by a conflict-driven clause learning
(CDCL) solver. Crucial for strong performance is the cutoff heuristic
that decides when to switch from lookahead to CDCL. Yet, this offline
heuristic is far from ideal. In this paper, we present a novel hybrid solver
that applies the cube and conquer steps simultaneously. A lookahead
and a CDCL solver work together on each cube, while communication
is restricted to synchronization. Our concurrent cube-and-conquer solver
can solve many instances faster than pure lookahead, pure CDCL and
offline cube-and-conquer, and can abort early in favor of a pure CDCL
search if an instance is not suitable for cube-and-conquer techniques.

1 Introduction

Current satisfiability solvers that target industrial instances are almost always
based on the conflict-driven clause learning (CDCL) [7] technique. A technique
with fast heuristics and data structures that can successfully solve very large
instances by propagating decisions and learning additional information when
conflicts arise. Yet on small, hard problems lookahead solvers [3] perform bet-
ter by applying much more reasoning in each search node and then recursively
splitting the search space until a solution is found.

Recent work [4] has shown that the two techniques can be combined suc-
cessfully, resulting in better performance particularly for very hard instances.
The key insight is that lookahead solvers can be used to partition the search
space into subproblems that are easy for a CDCL solver to solve. By first par-
titioning (cube) and then solving each subproblem (conquer), some instances
can be solved within hours rather than days. This cube-and-conquer approach,
particularly the conquer part, is also easy to parallelize.

The challenge to make this technique work lies in developing good heuristics
to determine when to stop partitioning and start solving. The current heuristics
already give good results, but are far from optimal and require some fine tuning
to work well with instances of different difficulty. For example, applying too much
partitioning can undesirably increase the run time of otherwise easy instances.

⋆ The second author is supported by DARPA contract number N66001-10-2-4087. The
third author is supported by FWF, NFN Grant S11408-N23 (RiSE).



The most important problem in developing a better heuristic is that in the
partitioning phase no information is available about how well the CDCL solver
will perform on a subproblem. The heuristic is required to estimate this perfor-
mance, but this is not always reliable. In this work we use an online approach
that runs both phases concurrently, and that thereby avoids this problem. We
focus less on the parallelization of the conquer phase.

Other than improving the performance of cube-and-conquer by replacing this
heuristic, the online approach aims to solve another problem: for some instances
cube-and-conquer performs worse than CDCL regardless of the configuration
of the solvers and heuristics. Our approach is able to quickly identify these
instances, in which case the problem can be solved using a classical CDCL search.

We believe that CCC is particularly interesting as part of a portfolio solver,
where our predictor can be used to predict whether to apply cube-and-conquer
techniques. The authors of SATzilla specifically mention in their conclusion that
identifying solvers that are only competitive for certain kinds of instances still
has the potential to further improve SATzilla’s performance substantially [10].

2 Preliminaries

For a Boolean variable x, there are two literals, the positive literal, denoted by x,
and the negative literal, denoted by ¬x. A clause is a disjunction of literals, and
a CNF formula is a conjunction of clauses. A clause can be seen as a finite set
of literals, and a CNF formula as a finite set of clauses. A unit clause contains
exactly one literal. A truth assignment for a CNF formula F is a function ϕ that
maps variables in F to {t, f}. If ϕ(x) = v, then ϕ(¬x) = ¬v, where ¬t = f and
¬f = t. A clause C is satisfied by ϕ if ϕ(l) = t for some l ∈ C. An assignment
ϕ satisfies F if it satisfies every clause in F . A cube is a conjunction of literals
and a DNF formula a disjunction of cubes. A cube can be seen as a finite set of
literals and a DNF formula as a finite set of cubes. If c = (l1 ∧ · · · ∧ lk) is a cube,
then ¬c = (¬l1 ∨ · · · ∨ ¬lk) is a clause. A truth assignment ϕ can be seen as the
cube of literals l for which ϕ(l) = t. A cube c is satisfied by ϕ if ϕ(l) = t for all
l ∈ c. An assignment ϕ satisfies DNF formula D if it satisfies some cube in D.
A DNF formula D is called a tautology if every full assignment ϕ satisfies D.

2.1 Cube-and-conquer

The technique proposed in this work is based on cube-and-conquer (CC) [4]. CC
was designed for solving very hard instances by partitioning the search space into
cubes using a lookahead solver (march cc), and then solving each cube using an
incremental CDCL solver (iLingeling). The key observation made by the authors
is that CDCL solvers often solve these cubes very fast, and as a result the two-
phase solver is faster than either solver on its own. Additionally, it is natural
to parallelize by solving multiple cubes in parallel. In this work we mainly use
MiniSAT 2.2 [2] as CDCL solver instead of Lingeling, since it is easier to extend.



Cube-and-conquer modifies the lookahead solver to cut off its search based on
a cutoff heuristic. When the heuristic triggers, the conjunction of decision literals
(cube) is stored and the solver continues as if the branch was unsatisfiable. When
finished, all cubes are solved incrementally by a CDCL solver, by adding a cube’s
literals as assumptions [1] to the original formula and running the search. The
disjunction of cubes is a tautology, so that solving each cube individually is
equivalent to finding a solution to the original formula.

The cutoff heuristic multiplies the number of assigned decision variables and
the total number of assigned variables as an indication of the complexity of
the current cube. If this number exceeds a threshold value, the branch is cut
off. The threshold is chosen dynamically: it is decreased when lookahead proves
unsatisfiability for a branch, because CDCL would likely have solved it faster,
and it is also decreased when lookahead descends too deep in the decision tree,
which would result in too many cubes. A more detailed explanation follows in
Sec. 4.3.

3 Motivation

Cube-and-conquer shows strong performance on several hard application bench-
marks [4], beating both the lookahead and CDCL solvers that were used for the
cube and conquer steps. However, on many other instances, either lookahead or
CDCL outperforms CC. We observed that for benchmarks for which CC has rel-
atively weak performance, two important assumptions regarding the foundations
of CC do not hold in general.

First, in order for CC to perform well, lookahead heuristics must be able to
split the search space into cubes that, combined, take less time for CDCL to
solve. Otherwise, cube-and-conquer techniques are ineffective and CDCL would
be the preferred solving technique. Second, lookahead must be able to refute
cubes that are easy for CDCL to solve, and it should not refute cubes that are
still hard for CDCL. When this assumption fails, the cutoff heuristic will perform
badly, and the cube phase either generates too few cubes and leaves a potential
performance gain unused, or generates too many cubes because cubes with fewer
decisions are also easy for CDCL to solve. In this section, we discuss the involved
heuristics in more detail, and we discuss how to predict when these heuristics
are ineffective.

In related work on portfolio SAT solving [10,9,6] machine learning techniques
are used for selection (including parameters) and scheduling of SAT solvers.
These techniques are based on measuring several features of instances, which
can be characterized as either being static, such as number of variables and
clauses, or dynamic, such as the number of propagated assignments at certain
decision depths (local search or DPLL probing [10]). In this section, we describe
a new dynamic feature, which allows us to predict the effectiveness of lookahead
and cutoff heuristics in the context of CC and extensions.



3.1 Lookahead heuristics

To compare the performance of CDCL and CC, we ran both solver types4 on all
application benchmarks of SAT 2009. CDCL was able to solve 57 more bench-
marks than CC within the timeout of 900 seconds (171 vs 114). For some in-
stances, the performance gap was huge (in favor of CDCL), in particular on
satisfiable ones. This can be explained as follows. After a decision, the reduced
formula might be harder (or at least not easier) than the original one. This may
be caused by ineffective lookahead heuristics. In case a decision hardly reduces
the search space, the conquer solver could need to solve two similar problems
instead of one, thereby raising the computational costs. On satisfiable formulas
this negative effect is expected to be larger, since a single wrong decision might
bring the solver in a part of the search space without solutions.

The main reason for this negative effect is that the key assumption underlying
CC fails. This assumption expects that lookahead decision heuristics can select
for a formula F a decision variable x in such a way that F ∪ {x} and F ∪
{¬x} are easier to solve separately than F itself. It was shown that for several
benchmarks this assumption holds [4]. However, the results above show that for
many benchmarks in the SAT 2009 application suite this is not the case. For
those, one would like to apply pure CDCL instead of CC.

Ineffective lookahead heuristics can be observed as follows. Given a formula F
and a decision variable x, lookahead creates two branches F ∪{x} and F ∪{¬x}.
The branch that reduces the formula the most is called the right branch, or a
discrepancy. In case lookahead heuristics are effective, then with each decision,
but especially each discrepancy the formula becomes much simpler. Thus, after
only a few discrepancies, lookahead (or CDCL) should be able to refute the
branch. A cube that is reached through many discrepancies suggests that the
lookahead heuristics have not been effective for that branch.

3.2 The cutoff heuristic

The cutoff heuristic is crucial for performance of cube-and-conquer. Cutting off
too early wastes a potential performance gain, but cutting off too deep can result
in a large number of instances increasing the total run time. Yet with the current
heuristic it is often the case that thousands or millions of cubes are solved almost
instantly, while one or two remain and take the majority of the run time. This
suggests that the heuristic is not able to properly detect which branches are easy
and should be cut off.

In case this behavior is observed, two complementary actions would be pre-
ferred. On the one hand, for the many cubes that are solved almost instantly,
the cutoff should have taken place earlier (at a smaller cube) to reduce the cost
of the cube phase of CC. On the other hand, for the cubes that require lots

4 MiniSAT 2.2 for CDCL; MiniSAT 2.2 and march cc (cube phase) and iMiniSAT 2.2
(conquer phase) for CC. All benchmarks were first preprocessed using Lingeling as
suggested for CC in [4]. We used the same version of Lingeling as in [4].



of computational resources, the cutoff should have been performed later to use
lookahead for further partitioning. In short, if this happens – in CC only in the
conquer phase – then the cutoff heuristic should be considered ineffective.

3.3 Predicting when to apply cube-and-conquer

To predict for which benchmarks CC is competitive, we propose concurrent cube-
and-conquer (CCC) as follows. During the cube phase of CC, run a CDCL solver
in parallel which follows the decisions of the cube solver (details are described
in Sec. 4). By running both solvers simultaneously, the cutoff heuristic becomes
obsolete, because the CDCL solver naturally determines whether a cube is easy
for CDCL5. With the cutoff heuristic out, we only need to predict when looka-
head heuristics are ineffective. The following two metrics can be used to predict
when this is the case.

First, lookahead techniques appear effective if they can solve some cubes
faster than CDCL. While running the lookahead and CDCL solver in parallel, we
count the number of times that lookahead is faster than CDCL. For benchmarks
for which this count is increased very slowly, say less than once per second, we
observed that CC was generally not an effective solving strategy.

Second, if the variable heuristics are effective then each discrepancy should
result in a large reduction of the formula. Hence after a certain number of dis-
crepancies the solver should be able to refute that branch. Preliminary experi-
ments suggest that if CCC finds a leaf with over 20 discrepancies early in the
search-tree, then lookahead variable heuristics should be considered as ineffec-
tive. Lookahead solvers solve the left branch first as it is heuristically most likely
to be satisfiable. In contrast, CCC considers the right branch first so that it can
quickly detect if a branch with a large number of discrepancies is encountered.

To predict whether an instance is suitable for (C)CC, these metrics are com-
bined as follows. Run CCC and abort it if it enters a branch with more than
20 discrepancies. If after 5 seconds CCC is still running but 10 or fewer cubes
were solved by lookahead, also abort the solver. For aborted instances (unpre-
dicted instances), a pure CDCL search is run instead. For instances that were
not aborted (predicted instances) CCC is the preferred solving technique and
can continue. The same instances usually work well for CC, but they cannot be
detected as easily because CDCL is only used in the conquer phase. In fact, we
have not been able to come up with a quick CC-based predictor that works well.

4 Concurrent cube-and-conquer

This section describes the concurrent cube-and-conquer (CCC) technique. We
first describe CCC∞, and extend it later by adding a cutoff heuristic like in CC
for better resource utilization. CCC∞ constructs a decision tree via the lookahead

5 Still, cutoff heuristics can lead to reduced resource usage and better performance,
as described in Sec. 4.3.



solver and simultaneously runs a CDCL solver on the newest node of this decision
tree. Whenever the lookahead solver assigns a decision variable, the new literal
is sent to the CDCL solver, which adds it as an assumption and restarts. This is
repeated recursively until either solver proves unsatisfiability, which means that
the cube is refuted and both solvers backtrack. Whereas CC uses a cutoff heuris-
tic to determine which branches are cut off, CCC∞ cuts branches off implicitly
when CDCL proves unsatisfiability before lookahead makes another decision.

Ideally, this approach is implemented within one solver. However, due to
lack of appropriate data structures, current CDCL solvers only apply lookahead
and other forms of preprocessing at the top-level, and not under assumptions.
For instance tree-based lookahead [5] requires access to all binary clauses at all
decision levels, which can only be accessed in a fast manner by either using full
occurrence lists or three watches for non-binary clauses. Both techniques are not
easy to combine with data structures currently used in CDCL solvers.

On the other hand, lookahead solvers lack data structures for conflict analysis
and learning, which is essential in CDCL solvers for allowing non-chronological
backtracking and for cutting off repeated parts of the search. CC and CCC can
be seen as two different ways of solving this dilemma by running both types of
solvers separately, sequentially in CC and concurrently in CCC∞.

CC showed to be particularly useful if many cubes were generated, which
means that CCC needs frequent synchronization. To keep the synchronization
costs small, CCC∞ uses asynchronous message queues, where both solvers are
peers. This architecture also makes it easy to integrate other solvers in the future.

The solvers in CCC∞ communicate using two queues: the decision queue
Qdecision and the result queue Q solved. Whenever the lookahead solver assigns a
decision variable, it pushes the tuple 〈cube cid, literal ldec, backtrackLevel〉 com-
prising a uniquely allocated id, the decision literal, and the number of previously
assigned decision variables (backtrackLevel). When the CDCL solver reads the
new decision from the queue, it already knows all previous decision literals, and
only needs to backtrack to the backtrackLevel and add ldec as an assumption to
start solving cid. The id is used to identify the newly created cube.

If the CDCL solver proves unsatisfiability of a cube before it receives an-
other decision, it pushes the cid of the refuted cube to Qsolved. The solver then
continues with the parent cube, by backtracking to the level where all but the
last decision literal were assigned. When the lookahead solver reads the cid from
Qsolved, it backtracks to the level just above this cube’s last decision variable
and continues its search as if it proved unsatisfiability of the cube by itself.

The CDCL solver proves unsatisfiability of a cube if it encounters a comple-
mentary assignment when attempting to assign one of a cube’s literals. This is
not necessarily the last literal of the cube, so that it may refute not only the
cube corresponding to the latest decision read from Qdecision, but also one or
more of its parent cubes. Therefore, it sends only cid of the smallest cube which
it refuted, which implies that the sub cubes are also unsatisfiable.

To keep track of the cubes that are pending to be solved, both solvers keep the
trail of decision literals (or assumptions for the CDCL solver) and the ids of the



cubes up to and including each decision literal (or assumption). Whenever either
solver proves unsatisfiability of the empty cube, or when it finds a satisfying
assignment, the other solver is aborted.

It is possible that the lookahead solver already proved unsatisfiability of a
cube when it receives the same result from the CDCL solver. The id is used to
discard results on Qsolved for cubes that have already been closed. Similarly, it
is possible that the lookahead solver makes a decision even though the CDCL
solver already proved unsatisfiability of a parent of that cube. In that case the
CDCL solver can discard the obsolete item on Qdecision.

4.1 Example

Consider the decision tree in Figure 1. The decisions made by the lookahead
solver are displayed on the edges, and each node contains the cid of the cube
corresponding to the literals on the path from the root of the tree up to that
node. The id’s are incremented based on depth first search.

c1

c2

x2

c3

¬x3

c4

x7

c5

¬x7

c6

¬x4

c7

x4

c8

x3

c9

¬x2

Fig. 1. Example decision tree.

Assume that c4 has been refuted previously, and both solvers are currently
solving c6. Now, if the CDCL solver finds a conflict when assigning assumption
¬x3, it knows that c3 is unsatisfiable and pushes c3 to Qsolved. It then removes
assumptions ¬x4, ¬x7, and ¬x3, continues with c2, and propagates x3 because
it analyzed the conflict and learned something like (¬x2 ∨ x3).

When the lookahead solver reads c3 from Qsolved, it will abort its search in
c6, skip over c7 and also abort c5, and c3. It continues solving c8 by making
decision x3 from c2. Note that it is possible that when the lookahead solver
reads c3 from Qsolved, it has already progressed and is solving c7, or even c8 or
c9. When solving c7, the same action can be taken: abort c7, c5, and c3. In case



it is at c8 or beyond, then c3 will no longer be part of the trail and the message
is skipped because c3 is already known to be unsatisfiable.

Now consider what would happen if the lookahead solver proves unsatisfiabil-
ity of c6: without sending anything to the CDCL solver, it would backtrack to c5
and then enter the right branch, pushing (c7, x4, 3) onto Qdecision. If the CDCL
solver has not yet solved c5 by the time it reads from Qdecision, it backtracks to
level 3 (c5), decides x4, and thereby starts solving c7.

4.2 Implementation

The listing in Fig. 2 shows pseudocode for the implementation of the lookahead
solver in CCC∞. The function is called recursively for each cube that is entered,
and all arguments except for the formula F are initially empty lists. Line 1
allocates a new, unique id for the cube. Line 2 checks if the CDCL solver has
proved any new cubes unsatisfiable. If it did, and if that cube is part of the cube
that is currently being solved, the search for this cube is aborted on line 3. If it
is not a parent of the current cube, then this result is no longer relevant and is
removed from the queue via line 4.

If the cube was not yet solved by CDCL, line 5 adds its id to the id trail S id,
which is the list of all nodes on the path from the root of the decision tree to the
current cube. Line 7 sends the id and new decision literal to the CDCL solver, as
well as the level at which the literal was added, because the CDCL solver should
backtrack to this level before adding the literal. Line 6 only handles the special
case of the root cube, which has no decision literal and does not need to be sent
to the CDCL solver. Lines 8 to 13 describe the core of any typical lookahead
solver, and are responsible for propagating unit clauses, checking if a solution is
found, and otherwise making a new decision and calling LA search recursively
for the two cubes that result by adding the literal or its complement to ϕdec.

Fig. 3 lists the pseudocode for CCC∞’s CDCL solver. S contains the ids of
cubes that are currently being solved, much like S id in the lookahead solver,
and is initially empty. Lines 4 to 9 handle decision literals sent by the lookahead
solver. If a new decision is available on queue Qdecision, then the solver pushes
the id of the new cube on S , backtracks to the indicated level, and adds the new
decision literal on lines 7, 8, and 9 respectively. Line 6 handles a special case
that can occur when the lookahead solver makes a decision while the CDCL
solver already proved its parent cube unsatisfiable. In that case, backtrackLevel
(the size of the parent cube) will be larger than the number of decisions in the
current cube, |S |, which indicates that the decision is no longer relevant and can
be ignored. If no decisions are waiting on the queue, line 11 makes a decision
using the CDCL solver’s heuristics. Line 16 will detect if the CDCL solver finds
a conflict while assigning one of the literals in the cube, in which case lines 17
and 18 will notify the lookahead solver. Since one conflict can prove multiple
cubes in S unsatisfiable, line 17 removes the larger cubes so that line 18 only
sends the smallest cube that was proved unsatisfiable. The lookahead solver only
needs the smallest cube, because this will implicitly abort the larger cubes too.



The remaining lines are like any other CDCL solver. Restarts are not part of
the pseudocode, but should be implemented by backtracking to level |S | instead
of level 0 for CCC∞ to work correctly. In addition, we reset the restart strategy
and reduce the clause database size every time a cube is refuted for better
performance. Cubes are solved in the same order as they were generated, and two
threads of a parallel solver never solve the same cube (the multijob strategy [4]).

global Qdecision = ∅,Qsolved = ∅, id = 0

LA search(F, ϕdec, ϕimp,S id)
1 id := id + 1
2 while not Qsolved.empty() do
3 if Qsolved.head() ∈ S id then return UNSAT
4 Qsolved.remove()
5 S id.push(id)
6 if |ϕdec| > 0 then

7 Qdecision.add(〈id , |ϕdec| − 1, ϕdec.last()〉)
8 〈F, ϕimp〉 := simplify and learn(F, ϕdec, ϕimp)
9 if ϕdec ∪ ϕimp falsify a clause in F then return UNSAT
10 if ϕdec ∪ ϕimp assign all variables in F then return SAT
11 ldec := decide(F, ϕdec, ϕimp)
12 if LA search(F, ϕdec ∪ {ldec}, ϕimp,S id) = SAT then return SAT
13 return LA search(F, ϕdec ∪ {¬ldec}, ϕimp,S id)

Fig. 2. Pseudocode listing of march ccc.

4.3 Reintroducing the cutoff heuristic

One advantage of CC was that the conquer phase could be parallelized efficiently
by using multiple CDCL solvers in parallel, each solving a single cube. With
CCC∞ this is no longer possible, since the lookahead solver will continue with
a single branch until it is solved by either CDCL or lookahead. Additionally,
CCC∞ always uses twice as much CPU time as wall clock time, because the
lookahead and CDCL solvers run in parallel.

To reduce this wasted resource utilization and allow for parallelization of the
CDCL solver, we reintroduce the conquer phase by applying a suitable cutoff
heuristic. As with CC, we pass cubes from the cube phase to the conquer phase
via the file system using the iCNF6 format, which is basically a concatenation of
the original formula F and the generated cubes as assumptions. An incremental
SAT solver iterates over each cube cid in the file, and solves F∧cid until a solution
is found or all cubes have been refuted. We use iMiniSAT and iLingeling with
four CDCL solvers for the serial respectively parallelized conquer phase, denoted
CCCmini and CCClgl4. We use CCC to refer to the cube phase regardless of what
conquer solver is used.

6 http://users.ics.tkk.fi/swiering/icnf

http://users.ics.tkk.fi/swiering/icnf


CDCL search(F )
1 S := ∅
2 forever do

3 if ϕ assigns all variables in F then return SAT
4 if Qdecision 6= ∅ then

5 〈id , backtrackLevel , ldec〉 := Qdecision.remove()
6 if backtrackLevel > |S | then continue

7 S .push(id)
8 ϕ := backtrack(ϕ, backtrackLevel)
9 ϕ := ϕ ∪ {ldec = t}
10 else

11 ϕ := ϕ ∪ {pickDecisionLiteral() = t}
12 ϕ := propagate(F , ϕ)
13 while ϕ falsifies a clause in F do

14 〈conflict , backtrackLevel〉 := analyze(F , ϕ)
15 if conflict = ∅ then return UNSAT
16 if backtrackLevel < |S | then
17 while |S | > backtrackLevel + 1 do S .pop()
18 Qsolved.add(S .pop())
19 F := F ∧ conflict
20 ϕ := backtrack(ϕ, backtrackLevel)
21 ϕ := propagate(F , ϕ)

Fig. 3. Pseudocode listing of minisat ccc.

The cutoff heuristic of CC is based on a rough prediction of the performance
of CDCL on a cube. Given a cube cid, it computes its difficulty78 d(cid) :=
|ϕdec|

2 · (|ϕdec| + |ϕimp|)/n, where |ϕdec| and |ϕimp| are the number of decision
and implied variables respectively, and n is the total number of free variables. If
d(cid) is high, the CDCL solver is expected to solve cid fast.

The cutoff heuristic in CC focuses on identifying cubes that are easy for
CDCL to solve. It cuts off a branch if d(cid) exceeds a dynamic threshold value
tcc. Initially tcc = 1000, and it is multiplied by 0.7 whenever lookahead solves a
cube (because it assumes that CDCL would have solved this cube faster) or when
the number of decisions becomes too high (to avoid generating too many cubes).
It is incremented by 5% at every decision to avoid the value from dropping too
low.

For CCC, the same heuristic does not work because easy cubes are solved
quickly by the CDCL solver. This makes the threshold very unstable so that it
quickly converges to 0 or infinity depending on the instance. We therefore use a
different heuristic, but using the same difficulty metric d(cid).

Easy cubes can be detected better by CCC than by CC, because CCC can
detect for which cubes CDCL finds a solution before the lookahead solver does.
CCC would ideally cut off these cubes so that they can be solved in parallel.
The contrary goes for when the lookahead solver solves a cube: it then seems

7 CC’s heuristic has been improved slightly since it was initially published [4]; it now
uses |ϕdec|

2 instead of |ϕdec|.
8 The notation is ours.
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Fig. 4. Scatter plots showing the effect of the performance in seconds of MiniSAT
(vertical axis) and CCCmini (horizontal axis) on benchmarks selected (△) and
not selected (+) by the predictor. Left application benchmarks of SAT 2009 and
SAT 2011, right crafted instances of SAT 2009 and SAT 2011. Above the line
CCCmini is stronger, below the line MiniSAT is stronger.

that lookahead contributes to the search, which means that it is not desirable
to cut off.

CCC uses the same difficulty metric d(cid) as CC, but a different heuristic for
determining the threshold value tccc. If a cube cid is solved by CDCL, the value
is updated towards s := 0.4 · d(cid), whereas it is updated towards s := 3 · d(cid)
if cid was solved by lookahead. To avoid too sudden changes, tccc is not changed
to s directly but is filtered by t′ccc := 0.4 · s+0.6 · tccc. To furthermore avoid the
threshold from dropping too low, it is incremented for every cube that is cut off.

5 Empirical results

In this section we discuss the performance of the CCC solvers and the effective-
ness prediction. We have first run CCC∞ for 5 seconds on all instances from the
application and crafted categories of the SAT 2009 and 2011 competition9 and
selected only instances where CCC∞ is not aborted in favor of a pure CDCL
search by the predictor. These instances are referred to as predicted instances.
Since the prediction takes at most 5 seconds and usually much less, we consider
the overhead hardly significant. We therefore focus our experiments on predicted
instances.10

The predictor selects 44 out of 292 instances from the SAT 2009 applica-
tion suite, and 41 out of 300 from the SAT 2011 application suite. For crafted
instances it selects a larger fraction: 70 out of 281 and 99 out of 276 for the
2009 and 2011 crafted suites respectively. As seen in Fig. 4, the predictor mostly
selects instances for which CCCmini works well compared to MiniSAT, and there

9 http://www.satcompetition.org/
10 The sources of the used software and the list of predicted instances are available on

http://fmv.jku.at/cccreview.

http://www.satcompetition.org/
http://fmv.jku.at/cccreview


are almost no instances where CCCmini times out (>900 seconds) and MiniSAT
does not. For unpredicted instances combined from both application categories,
CCCmini solves only 208 instances within a 900 second timeout versus 274 by
MiniSAT. For the crafted instances that is 115 for CCCmini versus 141 for Min-
iSAT. We therefore argue that the predictor is very well suited to select the
instances where cube-and-conquer works well.

We ran each predicted instance on the following solvers: (C)CCmini, (C)CClgl4,
CCC∞, reference solvers MiniSAT 2.2, March rw [8], and Lingeling, and parallel
solver Plingeling4 (Plingeling with four threads). The CCC solvers all use Min-
iSAT 2.2 and March cc (March rw with cube support) concurrently in the cube
phase as described in Sec.4, and the CC solvers only use March cc in the cube
phase. CCCmini and CCmini use iMiniSAT in the conquer phase, and (C)CClgl4

uses iLingeling with four parallel CDCL solvers in the conquer phase. Before
passing an instance to any solver, the instance was preprocessed with Lingeling’s
-s option.

We report on wall clock time unless stated otherwise. For CCC∞ the CPU
time is twice the wall clock time since two solvers run concurrently. For CCCmini

the cube phase is usually short and the run time is dominated by the conquer
phase, hence the wall clock and CPU time are often similar. For CCClgl4 the
times deviate most, as the conquer phase is parallelized efficiently.

The cactus plots in Fig. 5 and Fig. 6 show that all cube-and-conquer tech-
niques are strong on the predicted instances: all (C)CC solvers outperform the
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Fig. 5. Cactus plot of various solvers on the application benchmarks of the
SAT09 and SAT11 competitions selected by the CCC predictor.
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Fig. 6. Cactus plot of various solvers on the crafted benchmarks of the SAT09
and SAT11 competitions selected by the CCC predictor.

three reference solvers in the crafted categories, and perform slightly better on
application instances especially with lower timeout values. CCCmini solves 3 more
instances than MiniSAT within a 3600 second time limit for both application
suites: 32 vs 35 and 25 vs 28 for the SAT 2009 and 2011 application instances re-
spectively. The performance on crafted instances is even better: CCCmini solves
5 more instances than MiniSAT (52 vs 57) in the SAT 2009 crafted category,
and 17 more in the SAT 2011 crafted category (38 vs 55).

The results for CCClgl4 show that the cubes generated by CCC can be par-
allelized well, even though CCC with a single Lingeling solver (not plotted for
clarity) performs worse than CCCmini. For application instances, the differences
between Plingeling4 (the winner of the SAT 2011 competition’s application cate-
gory in wall-clock time), CClgl4, and CCClgl4 are not so large: CCClgl4 performs
slightly better for lower time limits, but Plingeling4 and CClgl4 eventually solve
one more instance. For crafted instances, CCClgl4 performs best, and solves 7
more than its predecessor CClgl4 and 24 more than Plingeling4.

It is interesting to see that CCC∞ still performs reasonably well, even though
it is a very extreme version of CCC where the cube and conquer phases are fully
merged. Although it is not the best configuration, it shows that the online usage
of CDCL really contributes to the lookahead search: by cutting off leafs early
using MiniSAT, CCC∞ solves many more instances than pure March does. De-
tailed results show that the wall clock time of CCC∞ is often slightly higher than
CCCmini, but the biggest problem is that some instances that are solved quickly
by other solvers and not at all by CCC∞. It seems that for some instances,



CDCL is not fast enough to cut off enough cubes. Additionally the CPU time
is much larger for CCC∞ because at all times the two solvers run concurrently
without idling.

6 Conclusion

In this work we proposed an online cube-and-conquer solver that solves the two
main limitations of offline cube-and-conquer. First, it is able to predict efficiently
on which instances it works well, and abort the search after a few seconds in
favor of a pure CDCL solver if not. Second, it does not estimate the performance
of CDCL on a cube merely by assuming that it is similar to the performance
of lookahead on that cube. This is not true in general so that offline cube-
and-conquer is often not able to determine when to stop partitioning and start
solving.

The cube-and-conquer solver we proposed runs a lookahead and CDCL solver
concurrently to partition the search space. We have seen that this not only
implicitly improves the run time of the cube phase, it also allows for better
cutoff heuristics so that the generated cubes are easier for a CDCL solver to
solve. Like offline cube-and-conquer, our approach allows the conquer phase to
be parallelized efficiently.
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