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Satisfiability solvers targeting industrial instances are currently almost al-
ways based on conflict-driven clause learning (CDCL) [5]. This technique can
successfully solve very large instances. Yet on small, hard problems lookahead
solvers [3] often perform better by applying much more reasoning in each search
node and then recursively splitting the search space until a solution is found.

The cube-and-conquer (CC) approach [4] has shown that the two techniques
can be combined, resulting in better performance particularly for very hard
instances. The key insight is that lookahead solvers can be used to partition the
search space into subproblems (called cubes) that are easy for a CDCL solver
to solve. By first partitioning (cube phase) and then solving each cube (conquer
phase), some instances can be solved within hours rather than days. This cube-
and-conquer approach, particularly the conquer phase, is also easy to parallelize.

The challenge to make this technique work in practice lies in developing
effective heuristics to determine when to stop partitioning and start solving.
The current heuristics already give strong results for very hard instances, but
are far from optimal and require some fine tuning to work well with instances of
different difficulty. For example, applying too much partitioning might actually
result in a considerable increase of run time for easy instances. On the other hand,
applying not enough partitioning reduces the benefits of cube-and-conquer.

The most important problem in developing an improved heuristic is that in
the partitioning phase no information is available about how well the CDCL
solver will perform on a cube. In CC’s heuristics, performance of CDCL is as-
sumed to be similar to that of lookahead: if lookahead refutes a cube, CDCL is
expected to be able to refute similar cubes fast, and if CDCL would solve a cube
fast, lookahead is expected to be able to refute it fast too. However, due to the
different nature of lookahead and CDCL, this is not always true.

To improve cutoff heuristics, we propose concurrent cube-and-conquer (CCC):
an online approach that runs the cube and conquer phases concurrently. When-
ever the lookahead solver makes a new decision, this decision is sent to the CDCL
solver, which adds it as an assumption [2]. If CDCL refutes a cube fast, it will
refute it before lookahead makes another decision. This naturally cuts off easy
branches, so that the cutoff heuristic is no longer necessary.

Although this basic version of CCC already achieves speedups, it can be im-
proved further by applying a (slightly different) cutoff heuristic. This heuristic
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attempts to identify cubes similar to those that CDCL already solved, rather
than estimating CDCL performance based on lookahead performance (as origi-
nally in CC). Cutting off has two advantages: often CDCL can already solve a
cube efficiently without the last few decision variables; further partitioning these
already easy cubes only hampers performance. Additionally, cutting off allows
multiple cubes to be solved in parallel.

Other than improving performance of cube-and-conquer by replacing the
cutoff heuristic, CCC also aims at solving another problem: on some instances
(C)CC performs worse than CDCL regardless of the configuration of the solvers
and heuristics. It seems that lookahead sometimes selects a decision ldec which
results in two subformulas F ∧ ldec and F ∧ ¬ldec that are not easier to solve
separately by CDCL. If the decision is not relevant to CDCL search, (C)CC
forces the CDCL solver to essentially solve the same problem twice. We propose
two metrics that can detect this behavior, in which case CCC is aborted within
5 seconds and the problem is solved by CDCL alone.

Our experiments show that CCC works particularly well on crafted instances.
Without selection of suitable instances, cube-and-conquer and CCC cannot com-
pete with other solvers. However the proposed predictor based on CCC accu-
rately selects instances for which cube-and-conquer techniques are not suitable
and for which a CDCL search is preferred. It is thereby able to solve several
more application and crafted instances than the CDCL and lookahead solvers
it was based on. CCC solves 24 more crafted instances within one hour over all
the SAT 2009 and 2011 competition instances than Plingeling [1], where both
solvers use four threads. For application instances, Plingeling solves one more
instance for a one hour timeout but CCC is slightly better for lower timeouts
(anything below 2500 seconds).

We believe that CCC is particularly interesting as part of a portfolio solver,
where our predictor can be used to predict whether to apply cube-and-conquer
techniques. The authors of SATzilla specifically mention in their conclusion that
identifying solvers that are only competitive for certain kinds of instances still
has the potential to further improve SATzilla’s performance substantially [6].
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