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ABSTRACT
Combinatorial testing aims at covering the interactions of
parameters in a system under test, while some combinations
may be forbidden by given constraints (forbidden tuples).

In this paper, we illustrate that such forbidden tuples cor-
respond to unsatisfiable cores, a widely understood notion in
the SAT solving community. Based on this observation, we
propose a technique to detect forbidden tuples lazily during
a greedy test case generation, which significantly reduces
the number of required SAT solving calls. We further re-
duce the amount of time spent in SAT solving by essentially
ignoring constraints while constructing each test case, but
then “amending” it to obtain a test case that satisfies the
constraints, again using unsatisfiable cores. Finally, to com-
plement a disturbance due to ignoring constraints, we im-
plement an efficient approximative SAT checking function
in the SAT solver Lingeling.

Through experiments we verify that our approach signifi-
cantly improves the efficiency of constraint handling in our
greedy combinatorial testing algorithm.

Keywords
Combinatorial testing, test case generation, SAT solving

CCS Concepts
•Software and its engineering → Software testing
and debugging;

1. INTRODUCTION
Combinatorial testing (cf. [24]) aims at ensuring the qual-

ity of software testing by focusing on the interactions of pa-
rameters in a system under test (SUT), while at the same
time reducing the number of test cases that has to be ex-
ecuted. It has been shown empirically [23] that a signif-
icant number of defects can be detected by t-way testing,
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which tests all t-way combinations of parameters at least
once, where t is a relatively small number.

Constraint handling, mentioned already by Tatsumi [34]
in the late ’80s, remains as a challenging research topic in
combinatorial testing [25]. To illustrate the concept, we take
a simple web application example which is expected to work
in various environments listed as follows:

Parameter Values
CPU Intel, AMD
OS Windows, Linux, Mac

Browser IE, Firefox, Safari

Combinatorial testing aims at covering all combinations of
values, but not all of them are necessarily executable; e. g.,
we have the following constraints:

1. IE is available only for Windows.

2. Safari is available only for Mac.

3. Mac does not support AMD CPUs.

Thus one must take care of such combinations which cannot
be executed, called forbidden tuples. In the above example,
there are six forbidden tuples: {Linux, IE}, {Linux, Safari},
{AMD,Mac}, etc.

There is substantial work on combinatorial testing tak-
ing constraints and forbidden tuples into account, includ-
ing meta-heuristic approaches [10, 17, 20, 27], SAT-based
approaches [29, 36], and greedy approaches, which is fur-
ther categorized into one-test-at-a-time (OTAT) approaches
[9, 11, 10] and in-parameter-order generalized (IPOG) ap-
proaches [37, 38].

Meta-heuristic approaches and SAT-based approaches of-
ten generate test suites that are smaller than the greedy ap-
proaches, although they usually require more computation
time (cf. [20, 36, 27]). Thus, these approaches are preferred
in case the cost of test execution is high.

On the other hand, there are practical needs for quickly
generating a test suite of reasonable size, while the size is
not the primary concern. For instance, if test execution is
automated, one might better start executing the test cases,
instead of waiting for a sophisticated algorithm to find a
smaller test suite. Also in the phase of test modeling, one
might want to check how test cases look like for an unfinished
test model, not expecting a highly optimized test suite that
would be beneficial if it were to be executed.

http://dx.doi.org/10.1145/2970276.2970335


In the IPOG-based approach, Yu et al. [37] proposed an
efficient constraint handling mechanism which made the ap-
proach practical in the presence of complex constraints. In
more recent work, Yu et al. [38] significantly improved the
efficiency of the approach, by developing a dedicated analy-
sis of minimal forbidden tuples.

In the OTAT approach, on the other hand, such a signif-
icant progress towards efficient constraint handling has not
yet been made [8]. There is both theoretical and practical in-
terest in this approach: An ideal greedy OTAT algorithm—
ignoring constraints—is shown to deliver a test suite whose
size is logarithmic to the number of parameters in the input
SUT model [9]. A similar result is known [7] for the more
feasible density algorithm of this category. In addition, the
nature of generating “one test at a time” can be beneficial
since one can start test execution before the entire test suite
has been generated.

In this paper, we introduce an efficient constraint handling
technique for the OTAT algorithms.

The first challenge for efficient test suite generation is how
to efficiently detect forbidden tuples. To this end, we exploit
the information of unsatisfiable cores, a notion widely under-
stood in the SAT community [5]. In essence, we point out
that every forbidden tuple corresponds to an unsatisfiable
core—more precisely, the failed assumptions in it. Using
failed assumptions, which IPASIR1-compliant SAT solvers
can provide, we propose a technique to lazily detect forbid-
den tuples during greedy test case construction.

The second challenge is that, due to the nature of OTAT
algorithms, still a larger number of SAT solving calls is
needed. We show that most of these SAT solving calls
are not required to guarantee the termination of the algo-
rithm, but are needed to ensure that the given constraints
are satisfied by the generated test cases. We introduce a
new technique to “amend” a test case—turn a test case that
possibly violates the constraints into one that satisfies the
constraints—again using failed assumptions. Then we show
that we can omit most of the SAT solving calls without af-
fecting the correctness of the overall algorithm.

Finally, this omission of SAT solving makes the greedy test
case generation heuristic to be approximative, i. e., it can
make a wrong choice that will later be amended. Hence, we
propose reducing the chance of making such wrong choices
by exploiting the internal reasoning of SAT solvers. We
added a new API function in the SAT solver Lingeling [2] that
instantly checks satisfiability but allows for the third answer
“unknown”. We experimentally show that this technique
pays off in terms of the sizes of generated test suites, with a
mild computational overhead.

In principle, the proposed constraint handling method is
applicable to any algorithms that comply the OTAT frame-
work of Bryce et al. [8]. We implement the method in our
base OTAT algorithm that is inspired by PICT [11] and
AETG [9], and experimentally show that the proposed con-
straint handling method delivers a significant improvement
to the efficiency of the algorithm.

This paper is organized as follows: Section 2 defines com-
binatorial testing formally, and Section 3 describes the us-
age of embedded SAT solvers. Section 4 shows the greedy
(base) variant of our algorithm, where we observe that for-
bidden tuples correspond to unsatisfiable cores, as described

1IPASIR is the new incremental SAT solver interface used
in the SAT Race/Competition 2015/2016.

in Section 5. Section 6 uses unsatisfiable cores to amend test
cases, and Section 7 uses an extension of our SAT solver
Lingeling [2] to optimize this algorithm. Section 8 gives on
overview of related work. The results of our experiments are
shown in Section 9, and Section 10 concludes.

2. COMBINATORIAL TESTING
We define several notions for combinatorial testing. First,

we define a model of a system under test (SUT).

Definition 1. An SUT model is a triple 〈P, V, φ〉 of

• a finite set P of parameters,

• a family V = {Vp}p∈P that assigns each p ∈ P a finite
set Vp of values, and

• a boolean formula φ called the SUT constraint, whose
atoms are pairs 〈p, v〉 of p ∈ P and v ∈ Vp.

Hereafter, instead of 〈p, v〉 we write p.v or even v if no
confusion arises.

A valid test case is a choice of values for parameters that
satisfy the SUT constraint.

Definition 2 (test cases). Given SUT 〈P, V, φ〉, a test case
is a mapping γ : P →

⋃
V that satisfies the domain con-

straint: γ(p) ∈ Vp for every p ∈ P . A test case is called
valid if it satisfies φ; more precisely, the following assign-
ment γ̂ satisfies φ.

γ̂(p.v) :=

{
True if γ(p) = v

False otherwise

We call a set of valid test cases a test suite.

Example 1. Consider the web-application mentioned in the
introduction. The SUT model 〈P, V, φ〉 for this example con-
sists of the following parameters and values:

P = {CPU,OS,Browser}
VCPU = {Intel,AMD}
VOS = {Windows,Linux,Mac}

VBrowser = {IE,Firefox, Safari}

Following convention, the size of this model is denoted as
2132, meaning that there is one parameter with two values
and two with three values. The constraint in the introduction
are expressed by the following SUT constraint:

φ := (IE⇒Windows) ∧ (Safari⇒ Mac) ∧ (Mac⇒ ¬AMD)

The following table shows a test suite for the SUT model
consisting of seven valid test cases.

No. CPU OS Browser
1 AMD Windows IE
2 Intel Windows Firefox
3 Intel Linux Firefox
4 Intel Windows IE
5 Intel Mac Safari
6 AMD Linux Firefox
7 Intel Mac Firefox

The observation supporting combinatorial testing is that
faults are caused by the interaction of values of a few pa-
rameters. Such interactions are formalized as follows.



Definition 3 (tuples). Given SUT 〈P, V, φ〉, a parameter
tuple is a subset π ⊆ P of parameters, and a (value) tuple
over π is a mapping τ : π →

⋃
V that satisfies the domain

constraint. Here, π is denoted by Dom(τ).

We identify a tuple τ with the following set:

τ = { p.v | τ(p) = v is defined }

A test case γ is also a tuple s. t. Dom(γ) = P .

Definition 4 (covering tests). We say that a test case γ
covers a tuple τ iff τ ⊆ γ, i. e., value choices in γ meet τ .
A tuple is possible iff a valid test case covers it; otherwise,
it is forbidden. Given a set T of tuples, we say that a test
suite Γ is T -covering iff every τ ∈ T is either forbidden or
covered by some γ ∈ Γ.

The covering test problem is to find a T -covering test suite.
The terms t-way or t-wise testing and covering arrays (cf.
[30]) refer to a subclass of the covering test problems, where
T is the set of all value tuples of size t. The number t is
called the strength of combinatorial testing.

Example 2. The SUT model of Example 1 has 21 tuples of
size two, where six out of them are forbidden. The test suite
in Example 1 covers all the 15 possible tuples and thus is a
2-way covering test suite for the SUT model.

3. SAT SOLVING
Satisfiability (SAT) solvers [5] are tools that, given a

boolean formula in conjunctive normal form (CNF), decide
whether it is possible to instantiate the variables in the for-
mula such that the formula evaluates to true.

More formally, consider a boolean formula φ over a set
X of variables. An assignment is a mapping α : X →
{True,False}. It satisfies a formula φ iff φ evaluates to
True after replacing every variable x in φ by α(x). A for-
mula is satisfiable if it can be satisfied by some assignment,
and is unsatisfiable otherwise.

When SAT solvers conclude unsatisfiability, they are typ-
ically able to output a (minimal) unsatisfiable core, which
is defined as follows. Here, we consider a CNF also as a set
of clauses.

Definition 5. An unsatisfiable core of a CNF φ is a sub-
set of φ which is unsatisfiable. An unsatisfiable core ρ is
minimal if any proper subset of ρ is satisfiable.

3.1 CDCL
The DPLL algorithm [12] with conflict-driven clause learn-

ing (CDCL) [28] is a de facto standard architecture of SAT
solvers. The CDCL approach constitutes a backtrack-based
search algorithm, which efficiently scans the search space of
possible assignments for the variables of a given formula. Its
basic procedure is to repeat (1) choosing a variable and as-
signing a truth value for it (decision) and (2) simplifying the
formula based on decisions using unit propagation. During
this procedure, it may detect a conflict of some combinations
of decisions and propagated assignments. Then a cause of
the conflict—a set of decisions that derives it—is analyzed,
and a clause is learned to avoid the same conflict later on.
After backtracking the learned clause forces the assignment
of one of its variables to be flipped, which might trigger
further propagation. During this procedure the algorithm

also checks whether all variables have been assigned and no
more propagations are pending. In this case it terminates
indicating that the formula is satisfiable.

3.2 Incremental SAT Solving and Failed As-
sumptions

Incremental SAT solving facilitates checking satisfiability
for a series of closely related formulas. It is particularly im-
portant [33, 13] in the context of bounded model checking [4].
State-of-the-art SAT solvers like Lingeling [3] implement the
assumption-based incremental algorithm, as pioneered by
the highly influential SAT solver MiniSAT [14].

Incremental SAT solvers remember the current state and
do not just exit after checking the satisfiability of one input
formula. Besides asserting clauses that will be valid in the
later satisfiability checks, incremental SAT solvers accept
assumption literals [14], which are used as forced decision
and are only valid during the next incremental satisfiability
check, thus abandoned in later checks.

When an incremental SAT solver derives unsatisfiability,
it is particularly important to know which assumption liter-
als are a cause of unsatisfiability—in other words, constitute
an unsatisfiable core. Such literals are called failed assump-
tions.

The interface of an incremental SAT solver is expressed
in an object-oriented notation as follows, which is also com-
patible with the IPASIR interface.

class solver {
literal newVar();
void assert(clause C);
void assume(literal l);
bool check();
assignment model ; // refers to a solution if exists
list〈literal〉 failed assumptions;

};

4. BASE GREEDY ALGORITHM
Before introducing constraint handling, we introduce our

base OTAT algorithm without constraint handling, which is
shown as Algorithm 1.

The algorithm works as follows: To generate one test case,
the first step picks up a parameter tuple that has most un-
covered tuples, and fixes those parameters to cover one of
the uncovered tuples (lines 2–3). The second step greed-
ily chooses a parameter and a value so that the number of
newly covered tuples is maximized (lines 4–6). It may hap-
pen that fixing any single parameter/value will not increase
the number of covered tuples, but fixing more than two will.
In such a case, we apply the first step again to fix multiple
parameters (lines 7–9).

The first step mimics that of PICT, while the second step
is similar to AETG. The main difference from AETG is that
we search all unfixed parameters for a value that maximizes
the number of newly covered tuples, while AETG randomly
chooses a parameter to be fixed and searches only for the
best value for the parameter. Here, we do some clever com-
putation in order to efficiently search all parameters. Due to
this difference, our algorithm is deterministic (for tie break-
ing we use the deterministic random number generator of
the standard C library) and produces a fairly small test suite
without requiring multiple test case generation runs.



Algorithm 1: Basic Greedy Test Case Generation

Input: An SUT model 〈P, V, φ〉 and a set T of tuples
Output: A T -covering test suite Γ

1 while T 6= ∅ do
2 choose τ ∈ T s. t. Dom(τ) contains most uncovered

tuples (as in PICT);
3 γ ← τ ; // cover at least this tuple

4 while there are an unfixed parameter p and a value
v s. t. γ ∪ {p.v} covers some uncovered tuples do

5 choose such p and v that maximize the number
of covered tuples;

6 γ ← γ ∪ {p.v};
7 if there is an uncovered tuple τ that may be covered

by fixing more than two parameters in γ then
8 choose such τ as in PICT; γ ← γ ∪ τ ;
9 go to line 4;

10 Fix unfixed parameters in γ to arbitrary values;
11 Γ← Γ ∪ {γ}; // add the new test case

12 Remove from T the tuples covered by γ;

4.1 Naive Constraint Handling
Now we present a variant of Algorithm 1 with naive con-

straint handling using incremental SAT solving, as already
proposed by Cohen et al. [10].

Consider an SUT model 〈P, V, φ〉. To represent a test case
γ as a SAT formula, we introduce a boolean variable p.v for
each p ∈ P and v ∈ Vp, denoting γ(p) = v. Since γ(p) must
be uniquely defined, we impose the following constraint:2

Unique :=
∧
p∈P

(
1 =

∑
v∈Vp

p.v
)

In the following algorithms, tool is assumed to be a SAT
solver instance on which Unique ∧ φ is asserted.

Algorithm 2 shows our first algorithm called“naive”, which
however utilizes incremental SAT solving. It works as fol-
lows: Before generating test cases, it first removes all for-
bidden tuples in the set T of target tuples that has to be
covered (lines 4–5). Then, whenever it chooses a tuple or
value, it checks if the choice does not violate the constraint
φ with already fixed values in γ (lines 9 and 11).

The use of incremental SAT solving reduces the total cost
of SAT solving [10]. Nevertheless, as we will see in the exper-
imental section, Algorithm 2 is not efficient for large-scale
test models due to the large number of required SAT solving
calls. Hence in the next section, we try to improve efficiency
by reducing the number of SAT solving calls.

5. FORBIDDEN TUPLES AS CORES
The most time-consuming part of Algorithm 2 consists of

lines 4–5, where all forbidden tuples are removed a priori.
Note that for t-way testing of an SUT model of size gk, the
number of tuples in T , that is, the number of SAT solving
calls needed in this phase, sums up to O(gt kt).

Hence, as the first improvement to this naive algorithm,
we propose to remove forbidden tuples lazily. The key ob-
servation is that a forbidden tuple corresponds to the set of
failed assumptions in an unsatisfiable core.

2 In order to encode the above formula into a CNF, we use
the ladder encoding [18] for at-most-one constraints.

Algorithm 2: Naive Treatment of Constraints

1 function Possible(τ)
2 foreach v ∈ τ do tool .assume(v);
3 return tool .check();

4 foreach τ ∈ T do // remove forbidden tuples

5 if ¬Possible(τ) then T ← T \ {τ};
6 while T 6= ∅ do // main loop

7 choose τ ∈ T as in PICT;
8 γ ← τ ; // cover at least this tuple

9 while there exist p and v ∈ Vp s. t. γ ∪ {p.v} covers
new tuples and Possible(γ ∪ {p.v}) do

10 Choose such best p and v; γ ← γ ∪ {p.v};
11 if there is τ ∈ T s. t. Possible(γ ∪ τ) then
12 choose such τ as in PICT; γ ← γ ∪ τ ;
13 go to line 9;

14 At this point, Possible(γ) = True is ensured. Fix
unfixed parameters in γ according to tool .model ;

15 Γ← Γ ∪ {γ}; // add the new test case

16 Remove from T the tuples covered by γ;

Example 3. Consider the SUT model of Example 1, and
suppose that in a test case generation procedure, Browser has
been fixed to Safari and OS has been fixed to Mac. Note that
no conflict will arise at this point. Next, consider fixing CPU
to AMD. This choice raises unsatisfiability in the Possible
call in line 9 of Algorithm 2. The corresponding minimum
unsatisfiable core is either of the following:

Mac ∧ AMD ∧ (Mac⇒ ¬AMD) (1)

Safari ∧ AMD ∧ (Safari⇒ Mac) ∧ (Mac⇒ ¬AMD) (2)

The set of failed assumptions in (1) is {Mac,AMD}; this
indicates that one cannot fix OS to Mac and CPU to AMD
in a test case, i. e., {Mac,AMD} is a forbidden tuple. Sim-
ilarly, core (2) indicates that {Safari,AMD} is a forbidden
tuple. In either case, we detect a forbidden tuple.

Now we introduce Algorithm 3, called “lazy”, which omits
to remove the forbidden tuples a priori, but lazily removes
them when SAT checks show unsatisfiability.

Algorithm 3: Lazy Removal of Forbidden Tuples

1 function Possible’(τ)
2 foreach v ∈ τ do tool .assume(v);
3 if tool .check() then return True;
4 else
5 T ← { τ ′ ∈ T | tool .failed assumptions() * τ ′ };
6 return False;

7 while there is τ ∈ T s. t. Possible’(τ) do
8 choose τ ∈ T as in PICT; γ ← τ ;
9 Do lines 9–13 of Algorithm 2, where Possible is

replaced by Possible’;

Function Possible’(τ) checks if the tuple (or equivalently,
partial test case) τ is possible (line 3). If it is not the case,
then the SAT solver provides a set of failed assumptions,
such as {Mac,AMD} in Example 3. We now know that tu-
ples containing the failed assumptions are forbidden; hence
we remove such tuples from T (line 5).



The correctness of Algorithm 3, i. e., that it terminates
and generates a T -covering test suite, is easily proven.

Proposition 1. Algorithm 3 is correct.

Proof. In every iteration of the main loop, the first τ chosen
in line 8 is either removed or covered by the newly added
test case. Hence, the algorithm terminates as |T | strictly
decreases in each iteration. Clearly, all tuples in T are either
forbidden or covered by the output test suite.

In many examples, the lazy removal of forbidden tuples
significantly improves the runtime of the algorithm. In cer-
tain cases, however, this approach still suffers from an ex-
cessive large number of SAT solving calls (see also the ex-
perimental section). This phenomenon is caused by the sec-
ond occurrence of PICT-like value choices (line 11 in Algo-
rithm 2); if the constraint is so strict that the current values
in γ are not compatible with any other remaining tuples in
T , then at line 11 we have to perform SAT checks for all
the remaining tuples in T . Hence in the next section, we
consider to even omit these SAT checks.

6. CORES FOR AMENDING TEST CASES
The termination argument of Proposition 1 shows that

only the first SAT check in every iteration is crucial to
achieve the termination of the algorithm. The remaining
SAT checks are only necessary to ensure that intermediate
value choices in γ never contradict the SUT constraint φ.
However, γ need not always respect φ; it suffices if the final
test cases added to the output in line 16 satisfy φ.

Hence, in all iterations we can omit the SAT checks except
for the first one. Unfortunately, then the resulting test case
γ is not guaranteed to be valid in line 14 anymore. To solve
this problem, we propose a technique to “amend” such an
invalid test case and turn it into a valid one, again using the
information of failed assumptions.

In general, if an incremental SAT solver detects unsatisfia-
bility, then one of the failed assumptions must be removed in
order to satisfy the formula. In our application, this means
that some of the value assignments must be abandoned. By
repeatedly removing failed assumptions until the formula
becomes satisfiable, we can derive a test case that satisfies
the SUT constraint.

Example 4. Consider again the SUT model of Example 1,
and the following invalid test case:

γ = {Safari,Mac,AMD}

Possible’(γ) will return False with a set of failed assump-
tions, e. g., {Mac,AMD}. This indicates that at least either
Mac or AMD must be removed from the test case. Thus
consider removing, e. g., AMD:

γ′ = {Safari,Mac}

Possible’(γ′) returns True, with a satisfying assignment

γ′′ = {Safari,Mac, Intel}

which is a valid test case.

It is important to properly choose which value assignment
to remove. Note that even the termination of the algorithm
cannot be ensured if one removes the first assumptions that
are made to cover the first tuple τ in line 8.

For this choice, we propose to remove the failed assump-
tion that corresponds to the most recently chosen value
assignment. The underlying observation for this choice is
that later value assignments are decided depending on ear-
lier choices; the earlier the value assignment is chosen, the
more influential it is to the coverage of the test case.

This algorithm, which we call “amend”, is shown in Algo-
rithm 4.

Algorithm 4: Amending Test Cases

1 function Amend(γ) // make γ a valid test case

2 while ¬Possible’(γ) do
3 Identify p.v ∈ tool .failed assumptions that is the

most recently fixed;
4 γ ← γ \ {p.v};
5 Fix unfixed parameters in γ according to tool .model ;
6 return γ;

7 while there is τ ∈ T s. t. Possible’(τ) do
8 choose τ ∈ T as in PICT; γ ← τ ;
9 Do lines 4–9 of Algorithm 1 (ignoring constraints);

10 γ ← amend(γ);
11 Γ← Γ ∪ {γ}; // add the new test case

12 Remove from T the tuples covered by γ;

Proposition 2. Algorithm 4 is correct.

Proof. The crucial point is that the assumptions made in
line 8 to cover the first tuple τ will not be removed. Since
the satisfiability of τ is ensured, any unsatisfiable core that
is found later must contain a failed assumption that is added
by later greedy choice. In the worst case, all the choices but
τ may be removed, but still T strictly decreases by each
iteration.

As we see in the above proof, Algorithm 4 is correct;
however, it may happen that many value choices in a test
case, which are chosen to cover as many tuples as possi-
ble, are eventually abandoned. This may in some particular
cases result in preferable randomness that eventually yields a
smaller test suite, but in general disturbs the greedy heuris-
tic and results in a larger test suite, especially when the con-
sidered SUT constraint is so strict that most value choices
violate the constraint. Note also that the notion of strict-
ness does not directly correspond to the size or complexity
of the constraint.

7. AVOIDING WRONG CHOICES
Finally, we reduce the chance of making wrong choices

by extending the SAT solver Lingeling with the following
method:

bool imply(literal l);

Method imply(l) adds l as an assumption literal just like
assume(l), but it additionally performs the unit propaga-
tion. If the unit propagation causes a conflict, then the
method returns False and the SAT solver goes into the
state where it derives unsatisfiability. Otherwise, l is added
as an assumption literal.

Using this method we implement a function Maybe, which
is an approximate variant of Possible’. Maybe(τ) tests if



τ is possible by dispatching the imply method on the back-
end SAT solver, but will not perform the actual satisfiability
check. That is, this function may fail to detect a conflict,
even if τ is actually impossible. However, if it detects a
conflict, then τ is indeed impossible and the lazy removal of
forbidden tuples (Section 5) is performed.

The overall algorithm “imply”, which leverages the new
imply method, is presented in Algorithm 5.

Algorithm 5: Avoiding Wrong Choices

1 function Maybe(τ)
2 foreach v ∈ τ do
3 if ¬tool .imply(v) then
4 T ← { τ | tool .failed assumptions() * τ };
5 return False;

6 return True;

7 while there is τ ∈ T s. t. Possible’(τ) do
8 choose τ ∈ T as in PICT; γ ← τ ;
9 Do lines 9–13 of Algorithm 2, where Possible is

replaced by Maybe;
10 γ ← amend(γ);
11 Γ← Γ ∪ {γ}; // add the new test case

12 Remove from T the tuples covered by γ;

Since Maybe is only approximate, it is not ensured that
the test case γ is valid after all values are fixed. Thus, the
application of the Amend function from the previous section
is a crucial step (line 10).

Proposition 3. Algorithm 5 is correct.

Proof. The reasoning is the same as Proposition 2.

The estimation quality of Maybe depends on how many
clauses have been learned by the SAT solver. At the be-
ginning of test suite generation, it may often fail to detect
conflicts, but at this stage disturbance by Amend should
be small, since most tuples are yet to be covered and any
test case will cover some of them. As more test cases are
generated, Maybe becomes more precise.

8. RELATED WORK
Here we recall previous work towards efficient constraint

handling in combinatorial testing, and remark a few other
uses of SAT solving for test case generation.

8.1 PICT
PICT [11] is a well-known combinatorial testing tool based

on the OTAT approach. For constraint handling, it precom-
putes all forbidden tuples—regardless of t—and uses this in-
formation when greedily constructing a test case [37]. This
approach is quite fast if the SUT constraint is weak, i. e., only
few tuples are forbidden. However, it becomes intractable
if the constraint is so strict that a great number of tuples
are forbidden. Note again that the strictness of constraint
does not correspond to the complexity or the size of the con-
straint. On the other hand, the efficiency of our approach is
stable from the strictness of the SUT constraint.

8.2 AETG
Cohen et al. [10] pioneered the use of incremental SAT

solving for constraint handling in their OTAT algorithm
AETG [9]. All their algorithms however remove forbidden
tuples before the actual test case generation phase, as in
our “naive” algorithm. Hence, their AETG variants would
also benefit from our ideas. We also did not follow their
“may” and “must” analysis, which was introduced to prevent
the back-end SAT solver from encountering unsatisfiability.
In our usage, deriving unsatisfiability is the key to detecting
forbidden tuples, and we have no reason to prevent it.

8.3 ACTS
ACTS [6] is another successful combinatorial testing tool,

which is based on the IPOG algorithm [26]. Yu et al. [38]
improved the constraint handling of the IPOG algorithm
using the notion of minimum forbidden tuples (MFTs), i. e.,
the forbidden tuples whose proper subsets are not forbidden.
Their first algorithm precomputes all MFTs, and uses this
information during the test case generation. Moreover, to
relax the cost of computing all MFTs, which is significant
if the constraint is complex [38], they further introduced
an algorithm using necessary forbidden tuples (NFTs), that
computes forbidden tuples when it becomes necessary.

Their work largely inspired us, although we did not choose
IPOG as our base greedy algorithm. The notion of MFTs is
somewhat related to minimal unsatisfiable cores, i. e., unsat-
isfiable cores whose proper subsets are satisfiable. The idea
of the NFT algorithm is also visible in our “lazy” algorithm.
However, while minimal unsatisfiable cores are naturally ob-
tained by CDCL SAT solving, computing MFTs is a hard
optimization problem since one has to further minimize un-
satisfiable cores in terms of the failed assumptions.

8.4 ICPL
In the context of software product lines (SPLs), Johansen

et al. [21] introduced the ICPL algorithm for t-way test suite
generation for SPLs. ICPL also incorporates SAT solvers,
and take a different approach to reduce the cost of precom-
puting forbidden tuples. Their algorithm generates t-way
test suite by generating t′-way test suites for t′ = 1, 2, . . . , t.
Using the information of t′-way forbidden tuples, they pro-
posed an algorithm to efficiently compute (t′ + 1)-way for-
bidden tuples.

Compared to their work, our approach does not require a
particular phase for computing forbidden tuples, since they
are provided for free by incremental SAT solvers as failed
assumptions. We leave it for future work to experimentally
compare our tool with ICPL; these tools assume different
input formats.

8.5 Constraints in Other Approaches
Of course, there are efforts towards constraint handling in

non-greedy algorithms. The SAT-based approach encodes
entire test suite generation as a SAT formula [19], and hence
constraints can be naturally encoded [29]. Also the use of
SAT solving has been proposed for the simulated-annealing-
based tool CASA [16]. Lin et al. [27] recently introduced the
two-mode meta-heuristic approach in combinatorial testing,
and their tool TCA produces notably small test suites.

The primary concern of these approaches are not on ex-
ecution time, but on the size of test suites. Indeed, CASA,
TCA, and the SAT-based test suite optimization function in
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Figure 1: Comparison of the runtime of Algorithms 2–5. The ratio of the runtime over the best among all
algorithms for each benchmark are plotted.
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Figure 2: Comparison of Algorithms 2–5 in terms of the sizes of the generated test suites.

Calot [36] do not output a test suite even when they inter-
nally have one; they try to optimize it as far as possible,
until certain termination conditions are met.

Nevertheless, we observe some cases where our work may
provide a benefit to these approaches; e. g., Calot previously
employed ACTS for constructing an initial test suite for op-
timization, which is now done efficiently inside Calot. TCA
also employs a greedy algorithm for the initial test suite, and
one of its “two modes” is a “greedy” mode, where we expect
our technique can improve its efficiency.

Farchi et al. [15] proposed using unsatisfiable cores in the
test modeling phase of combinatorial testing. Their test
modeling tool FOCUS tests if tuples are possible or forbid-
den as expected. If a tuple is unexpectedly forbidden, then
the tool analyzes the unsatisfiable core and indicates which
clauses of the SUT constraint forbid the tuple. Thus users
can effectively model an intended the SUT constraint. Our
use of unsatisfiable cores makes a good contrast: Farchi et al.
[15] consider assumed value choices are correct and fixes the
clauses in an unsatisfiable core, while we consider the clauses
are correct and fix the value choices.

8.6 SAT Solvers in Model-Based Testing
The model-based testing (MBT) (cf. [32]) considers more

elaborated SUT models compared to combinatorial testing;
namely, states of SUTs are considered. MBT tools aim at
generating sequences of test cases which ensure a certain
path-coverage criterion.

The use of incremental SAT solving in MBT is also pro-
posed [1]. We expect that it is also interesting to use unsat-
isfiable cores to improve such SAT-based MBT tools; e. g.,
it might be able to efficiently detect “forbidden paths”. We
leave it for future work to explore to this direction.

9. EXPERIMENTS
We implemented Algorithms 2–5 in our tool Calot, and

conducted experiments to investigate the following research
questions.

RQ1 How efficient is the “lazy” algorithm compared to the
“naive” one? How does it affect the sizes of test suites?

RQ2 How efficient is the “amend” algorithm compared to
“lazy”? How does it affect the sizes of test suites?

RQ3 How much does the “imply” algorithm improve the
sizes of test suites compared to “amend”? How does it
affect the efficiency of the algorithm?

RQ4 How does the “imply” algorithm compare with other
greedy test case generation tools?

As the benchmark set, we collected the following:

• the 35 benchmarks from Cohen et al. [10],

• the 20 industry applications from Segall et al. [31],

• the two industry applications from Yu et al. [38],

• the 18 industry applications from Kitamura et al. [22],

• and two applications from our industry collaborators.3

The experiments were run on a laptop with a 2.59GHz
Intel Core i5-4310U processor and 4GB of RAM running
Windows 10.

Figure 1 compares our four algorithms in terms of runtime
for generating both 2-way and 3-way test suites, and Figure 2
compares the sizes of the generated test suites.

3One of our examples is available at https://staff.aist.go.jp/
t.kitamura/dl/.

https://staff.aist.go.jp/t.kitamura/dl/
https://staff.aist.go.jp/t.kitamura/dl/
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Figure 3: Comparing relative execution times with other tools.
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Figure 4: Comparing test suite sizes with other tools.

The box-plots show the distribution of the data: The
box encompasses the first and third quartile of the distri-
bution, with the middle line denoting the median value of
the data. The “whiskers” are drawn at 1.5 times the in-
terquartile range, to the data point closest to 1.5 times the
distance between the median and the lower/upper quartile.
Points outside that range are considered outliers and shown
as a dot. To measure the validity of our claims, we also
report the p-values in the Wilcoxon signed-rank test [35].

RQ1: Naive vs. Lazy
From Figure 1 we observe that “lazy” significantly improves
the average execution time over “naive”. The significance of
the difference is p < 0.0001 for both 2- and 3-way cases. As
explained in Section 5, however, there are a few examples in
3-way case where the runtime does not improve.

In terms of the sizes of test suites, from Figure 2 we ob-
serve only minor difference in 3-way case where “lazy” can
be slightly worse than “naive”, with p ≈ 0.1711.

RQ2: Lazy vs. Amend
Here we measure the improvement due to amending invalid
choices (see Section 6). In Figure 1, we observe further im-
provement in the efficiency of the “amend” algorithm over
“lazy”. The significance is p < 0.0001 for both 2- and 3-way
cases. On the other hand, the sizes of generated test suites
get noticeably worse (Figure 2), with p < 0.0003.

RQ3: Amend vs. Imply
Now we measure the improvement due to the new “imply”
method (see Section 7). Our final algorithm “imply” im-
proves the sizes of test suites over the previous “amend”
algorithm with significance p < 0.0002, and apparently re-
covers to a similar result to “lazy”. On the other hand, the
overhead in runtime over“amend”is noticeable (p < 0.0002).

RQ4: Comparison with Other Greedy Tools
Finally, we compare our algorithms with the OTAT-based
greedy tool PICT (version 3.3) and the IPOG-based greedy
tool ACTS (version 2.93).

The results are shown in Figures 3–5, and also summarised
in Table 1. The scatter-plots in Figure 5 compare individ-
ual data points between two settings. A data point above
(below) the diagonal implies a higher (lower) value for the
baseline algorithm—the naive algorithm.

For a few benchmarks PICT and ACTS do not respond
within a reasonable time, so we set 3600 seconds as timeout.
In case of timeout, we assumed 3600 seconds as the runtime.
We do not know the size of the output test suite in these
cases; hence Figure 4 excludes the case of timeouts in the
box-plots. Instead, the number of timeouts are reported.
The figures also report the number of “wins”, i. e., how of-
ten the tool achieved the best result among others. When
counting wins, ties are counted as a win for all tied tools.

When comparing the size of test suites, from Figure 4 we
clearly observe that our algorithm outperforms others. The



Table 1: Detailed comparison with other tools. For each categories the average (avr.), geometric mean (g.m.),
and the number of wins are reported. Fields with ‘–’ cannot be computed due to timeouts.

2-way 3-way

imply PICT ACTS imply PICT ACTS
Source # size time size time size time size time size time size time

Cohen et al. [10] 35
avr. 34.9 0.3 43.9 0.2 36.4 4.6 209.0 26.5 252.0 83.2 219.7 5.6
g.m. 32.5 0.2 40.4 0.2 33.8 3.9 174.6 8.4 206.5 16.4 183.6 3.2
wins 32 19 1 18 9 0 33 3 1 3 3 29

Segall et al. [31] 20
avr. 74.5 0.1 77.0 0.2 73.9 1.0 668.0 1.2 684.5 1.9 675.0 1.1
g.m. 37.1 0.1 39.7 0.1 37.1 0.8 163.9 0.3 174.0 0.5 171.2 0.9
wins 11 13 4 10 12 0 15 14 5 2 5 4

Yu et al. [38] 2
avr. 467.5 1.5 – 1800.7 461.0 369.5 7112.5 225.9 – 1805.4 8054.5 360.6
g.m. 348.6 0.9 – 71.7 344.8 146.7 3716.1 64.4 – 196.4 4117.5 149.0
wins 0 2 0 0 2 0 2 2 0 0 0 0

Kitamura et al. [22] 18
avr. 74.7 0.1 75.8 217.7 76.3 15.3 559.8 3.5 – 220.7 567.6 14.9
g.m. 22.7 0.1 22.1 0.3 23.8 1.8 71.6 0.2 – 1.1 74.3 1.8
wins 14 12 7 7 7 0 11 17 6 0 6 1

Company A 1 42.0 0.1 44.0 3221.5 43.0 120.7 126.0 0.8 – 3600.0 128.0 97.7
Company B 1 81.0 0.2 – 3600.0 – 3600.0 369.0 0.8 – 3600.0 – 3600.0
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Figure 5: Comparing runtime with other tools. The vertical axis presents the runtime of each algorithm,
while the horizontal axis presents the runtime the “naive” algorithm took for the same benchmark.

significance is p < 0.0001 for both 2- and 3-way, and for
both PICT and ACTS.

When comparing runtime, from Figure 3 one might think
that our “imply” is faster than the other tools. However,
looking more detail in Figure 5 and Table 1 we see that
the other tools perform quite well for many benchmarks. In
particular, PICT is fast for some 2-way examples and ACTS
is remarkably fast for many 3-way examples from Cohen
et al. [10]. We conjecture that the efficiency of these tools
depends on the weakness of the constraints.

10. CONCLUSION
In this paper, we have developed constraint handling tech-

niques for one-test-at-a-time (OTAT) combinatorial test case
generation algorithms, using the information of unsatisfiable
cores. We implemented the proposed constraint handling
methods in the OTAT algorithm of our test case generation
tool Calot. Through experiments we verified that our tech-
niques significantly improve the efficiency of test case gen-

eration without sacrificing the size of generated test suites,
compared to constraint handling utilizing incremental SAT
solvers naively. We also compared our tool with the greedy
test case generation tools PICT and ACTS, and observed
that our tool perform well in terms of both efficiency and
the size of generated test suite, which are usually a trade-off
with each other.

Limitation and Future Work.
Although Calot performed well in our experiments, if one

ignores constraints, the IPOG algorithm of ACTS is remark-
ably faster than our base algorithm for large SUT models
and higher-strength cases. This is explained by the fact
that our base algorithm always has to compute the best pa-
rameters and values to fix, although this effort often results
in a smaller test suite. Hence, we could only observe in some
industry examples that the minimum forbidden tuple com-
putation of Yu et al. [38] may become a significant overhead.
We leave it for future work to implement our constraint han-
dling approach in the IPOG algorithm to fairly compare our



constraint handling and the minimum forbidden tuple ap-
proach.

In principle, our constraint handling method can be imme-
diately generalized to the OTAT framework by Bryce et al.
[8]. We leave it for future work to develop such a frame-
work where one can plug-in their own OTAT heuristics (such
as the AETG or PICT heuristics), without being concerned
about constraint handling.

11. ACKNOWLEDGMENTS
We would like to thank our two industry collaborators for

allowing us to present experimental results on their applica-
tions. We thank the anonymous reviewers for their construc-
tive and careful comments, which significantly improved the
presentation of the paper. This work is in part supported
by JST A-STEP grant AS2524001H.

12. REFERENCES
[1] P. Abad, N. Aguirre, V. Bengolea, D. Ciolek, M. F.

Frias, J. Galeotti, T. Maibaum, M. Moscato, N. Rosner,
and I. Vissani. Improving test generation under rich
contracts by tight bounds and incremental sat solving.
In ICST 2013, pages 21–30, 2013.

[2] A. Biere. Lingeling, Plingeling and Treengeling entering
the SAT competition 2013. In SAT Competition 2013,
pages 51–52, 2013.

[3] A. Biere. Yet another local search solver and Lingeling
and friends entering the SAT Competition 2014. In SAT
Competition 2014, volume B-2014-2 of Department of
Computer Science Series of Publications B, pages 39–
40. University of Helsinki, 2014.

[4] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Sym-
bolic model checking without BDDs. In TACAS 1999,
volume 1579 of LNCS, pages 193–207, 1999.

[5] A. Biere, M. J. H. Heule, H. van Maaren, and T. Walsh,
editors. Handbook of Satisfiability, volume 185 of FAIA.
IOS Press, February 2009.

[6] M. N. Borazjany, L. Yu, Y. Lei, R. Kacker, and
R. Kuhn. Combinatorial testing of ACTS: A case study.
In ICST 2012, pages 591–600, 2012.

[7] R. C. Bryce and C. J. Colbourn. The density algorithm
for pairwise interaction testing. Softw. Test., Verif. Re-
liab., 17:159–182, 2007.

[8] R. C. Bryce, C. J. Colbourn, and M. B. Cohen. A
framework of greedy methods for constructing interac-
tion test suites. In ICSE 2005, pages 146–155, 2005.

[9] D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C.
Patton. The AETG system: An approach to testing
based on combinatorial design. IEEE Trans. Software
Eng., 23(7):437–444, 1997.

[10] M. B. Cohen, M. B. Dwyer, and J. Shi. Constructing
interaction test suites for highly-configurable systems in
the presence of constraints: A greedy approach. IEEE
Trans. Software Eng., 34(5):633–650, 2008.

[11] J. Czerwonka. Pairwise testing in real world. In PNSQC
2006, pages 419–430, 2006.

[12] M. Davis, G. Logemann, and D. Loveland. A machine
program for theorem-proving. Communications of the
ACM, 4:394–397, 1962.
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