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Abstract. We present a study of the computational aspects of model
checking based on binary decision diagrams (BDDs). By using a trace-
based evaluation framework, we are able to generate realistic benchmarks
and perform this evaluation collaboratively across several di�erent BDD
packages. This collaboration has resulted in signi�cant performance im-
provements and in the discovery of several interesting characteristics of
model checking computations. One of the main conclusions of this work
is that the BDD computations in model checking and in building BDDs
for the outputs of combinational circuits have fundamentally di�erent
performance characteristics. The systematic evaluation has also uncov-
ered several open issues that suggest new research directions. We hope
that the evaluation methodology used in this study will help lay the
foundation for future evaluation of BDD-based algorithms.

1 Introduction

The binary decision diagram (BDD) has been shown to be a powerful tool in
formal veri�cation. Since Bryant's original publication of BDD algorithms [7],
there has been a great deal of research in the area [8, 9]. One of the most
powerful applications of BDDs has been to symbolic model checking, used to
formally verify digital circuits and other �nite state systems. Characterizations
and comparisons of new BDD-based algorithms have historically been based on
two sets of benchmark circuits: ISCAS85 [6] and ISCAS89 [5]. There has been
little work on characterizing the computational aspects of BDD-based model
checking.

There are two qualitative di�erences between building BDD representations
for combinational circuits versus model checking. The �rst di�erence is that for
combinational circuits, the output BDDs (BDD representations for the circuit
outputs) are built and then are only used for constant-time equivalence checking.
In contrast, a model checker �rst builds the BDD representations for the sys-
tem transition relation, and then performs a series of �xed point computations



analyzing the state space of the system. In doing so, it is solving PSPACE-
complete problems. Another di�erence is that BDD construction algorithms for
combinational circuit operations have polynomial complexity [7], while the key
operations in model checking are NP-hard [16]. These di�erences indicate that
results based on combinational circuit benchmarks may not accurately charac-
terize BDD computations in model checking.

This paper introduces a new methodology for the systematic evaluation of
BDD computations, and then applies this methodology to gain a better under-
standing of the computational aspects of model checking. The evaluation is a
collaborative e�ort among many BDD package designers. As results of this eval-
uation, we have signi�cantly improved model checking performance, and have
identi�ed some open problems and new research directions.

The evaluation methodology is based on a trace-driven framework where
execution traces are recorded from veri�cation tools and then replayed on several
BDD packages. In this study, the benchmark consists of 16 execution traces from
the Symbolic Model Veri�er (SMV) [16]. For comparison with combinational
circuits, we also studied 4 circuit traces derived from the ISCAS85 benchmark.
The other part of our evaluation methodology is a set of platform independent
metrics. Throughout this study, we have identi�ed useful metrics to measure
work, space, and memory locality.

This systematic and collaborative evaluation methodology has led to bet-
ter understanding of the e�ects of cache size and garbage collection frequency,
and has also resulted in signi�cant performance improvement for model checking
computations. Systematic evaluation also uncovered vast di�erences in the com-
putational characteristics of model checking and combinational circuits. These
di�erences include the e�ects of the cache size, the garbage collection frequency,
the complement edge representation [1], and the memory locality of the breadth-
�rst BDD packages. For the di�cult issue of dynamic variable reordering, we
introduce some methodologies for studying the e�ects of variable reordering al-
gorithms and initial variable orders.

It is important to note that the results in this study are obtained based
on a very small sample of all possible BDD-based model checking computations.
Thus, in the subsequent sections, most of the results are presented as hypotheses
along with their supporting evidence. These results are not conclusive. Instead,
they raise a number of interesting issues and suggest new research directions.

The rest of this paper is organized as follows. We �rst present a brief overview
of BDDs and relevant BDD algorithms (Sec. 2) and then describe the experi-
mental setup for the study (Sec. 3). This is followed by three sections of experi-
mental results. First, we report the �ndings without dynamic variable reordering
(Sec. 4). Then, we present the results on dynamic variable reordering algorithms
and the e�ects of initial variable orders (Sec. 5). Third, we present results that
may be generally helpful in studying or improving BDD packages (Sec. 6). After
these result sections, we discuss some unresolved issues (Sec. 7) and then wrap
up with related work (Sec. 8) and concluding remarks (Sec. 9).



2 Overview

This section gives a brief overview of BDDs and pertinent BDD algorithms.
Detailed descriptions can be found in [7] and [16].

2.1 BDD Basics

A BDD is a directed acyclic graph (DAG) representation of a Boolean func-
tion where equivalent Boolean sub-expressions are uniquely represented. Due
to this uniqueness property, a BDD can be exponentially more compact than
its corresponding truth table representation. One criterion for guaranteeing the
uniqueness of the BDD representation is that all the BDDs constructed must
follow the same variable order. The choice of this variable order can have a
signi�cant impact on the size of the BDD graph.

BDD construction is a memoization-based dynamic programming algorithm.
Due to the large number of distinct subproblems, a cache, known as the com-
puted cache, is used instead of a memoization table. Given a Boolean opera-
tion, the construction of its BDD representation consists of two main phases. In
the top-down expansion phase, the Boolean operation is recursively decomposed
into subproblems based on the Shannon decomposition. In the bottom-up re-
duction phase, the result of each subproblem is put into the canonical form. The
uniqueness of the result's representation is enforced by hash tables known as
unique tables. The new subproblems are generally recursively solved in a depth-
�rst order as in Bryant's original BDD publication [7]. Recently, there has been
some work that tries to exploit memory locality by using a breadth-�rst or-
der [2, 18, 19, 21, 26].

Before moving on, we �rst de�ne some terminology. We will refer to the
Boolean operations issued by a user of a BDD package as the top-level operations
to distinguish them from sub-operations (subproblems) generated internally by
the Shannon expansion process. A BDD node is reachable if it is in some BDDs
that external users have references to. As external users free references to BDDs,
some BDD nodes may no longer be reachable. We will refer to these nodes as
unreachable BDD nodes. Note that unreachable BDD nodes can still be refer-
enced within a BDD package by either the unique tables or the computed cache.
Some of these unreachable BDD nodes may become reachable again if they end
up being the results for new subproblems. When a reachable BDD node becomes
unreachable, we say a death has occurred. Similarly, when an unreachable BDD
node becomes reachable again, we say a rebirth has occurred. We de�ne the death
rate as the number of deaths over the number of subproblems (time) and de�ne
the rebirth rate as the fraction of the unreachable nodes that become reachable
again, i.e., the number of rebirths over the number of deaths.

2.2 Common Implementation Features

Modern BDD packages typically share the following common implementation
features based on [4, 22]. The BDD construction is based on depth-�rst traversal.



The unique tables are hash tables with the hash collisions resolved by chaining.
A separate unique table is associated with each variable to facilitate the dynamic
variable reordering process. The computed cache is a hash-based direct mapped
(1-way associative) cache. BDD nodes support complement edges where, for each
edge, an extra bit is used to indicate whether or not the target function should
be inverted. Garbage collection of unreachable BDD nodes is based on reference
counting and the reclaimed unreachable nodes are maintained in a free-list for
later reuse. Garbage collection is invoked when the percentage of the unreachable
BDD nodes exceeds a preset threshold.

As the variable order can have signi�cant impact on the size of a BDD graph,
dynamic variable reordering is an essential part of all modern BDD packages. The
dynamic variable reordering algorithms are generally based on sifting or window
permutation algorithms [22]. Typically, when a variable reordering algorithm is
invoked, all top-level operations that are currently being processed are aborted.
When the variable reordering algorithm terminates, these aborted operations
are restarted from the beginning.

2.3 Model Checking and Relational Product

There are two popular BDD-based algorithms for computing state transitions:
one is based on applying the relational product operator (also known asAndExists
or and-smooth) on the transition relations and the state sets [10]; the other is
based on applying the constrain operator to Boolean functional vectors [11, 12].

The benchmarks in this study are based on SMV, which uses the relational
product operation. This operation computes \9v:f ^ g" and is used to compute
the set of states by the forward or the backward state transitions. It has been
proven to be NP-hard [16]. Figure 1 shows a typical BDD algorithm for comput-
ing the relational product operation. This algorithm is structurally very similar
to the BDD-based algorithm for the AND Boolean operation. The main di�er-
ence (lines 5{11) is that when the top variable (�) needs to be quanti�ed, a new
BDD operation (OR(r0, r1)) is generated. Due to this additional recursion, the
worst case complexity of this algorithm is exponential in the graph size of the
input arguments.

3 Setup

3.1 Benchmark

The benchmark used in this study is a set of execution traces gathered from
the Symbolic Model Veri�er (SMV) [16] from Carnegie Mellon University. The
traces were gathered by recording BDD function calls made during the execution
of SMV. To facilitate the porting process for di�erent packages, we only recorded
a set of the key Boolean operations and discarded all word-level operations. The
coverage of this selected set of BDD operations is greater than 95% of the total
SMV execution time for all but one case (abp11) which spends 21% of CPU time
in the word-level functions constructing the transition relation.



RP(v, f , g)
/* compute relational product: 9v:f ^ g */

1 if (terminal case) return result
2 if the result of (RP, v, f , g) is cached, return the result
3 let � be the top variable of f and g

4 r0  RP(v, f j� 0, gj� 0) /* Shannon expansion on 0-cofactors */
5 if (� 2 v) /* existential quanti�cation on � � OR(r0, RP(v, f j� 1, gj� 1)) */
6 if (r0 == true) /* OR(true, RP(v, f j� 1, gj� 1)) � true */
7 r  true.
8 else
9 r1  RP(v, f j� 1, gj� 1) /* Shannon expansion on 1-cofactors */
10 r  OR(r0, r1)
11 else
12 r1  RP(v, f j� 1, gj� 1) /* Shannon expansion on 1-cofactors */
13 r  reduced, unique BDD node for (� , r0, r1)
14 cache the result of this operation
15 return r

Fig. 1. A typical relational product algorithm.

A side e�ect of recording only a subset of BDD operations is that the con-
struction process of some BDDs is skipped, and these BDDs might be needed
later by some of the selected operations. Thus in the trace �le, these BDDs need
to be reconstructed before their �rst reference. This reconstruction is performed
bottom-up using the If-Then-Else operation. This process is based on the prop-
erty that each BDD node (vi, child0, child1) essentially represents the Boolean
function \If vi then child1 else child0".

For this study, we have selected 16 SMV models to generate the traces. The
following is a brief description of these models along with their sources.

abp11: alternating bit protocol.
Source: Armin Biere, Universit�at Karlsruhe.

dartes: communication protocol of an Ada program.
dpd75: dining philosophers protocol.
ftp3: �le transfer protocol.
furnace17: remote furnace program.
key10: keyboard/screen interaction protocol in a window manager.
mmgt20: distributed memory manager protocol.
over12: automated highway system overtake protocol.

Source: James Corbett, University of Hawaii.

dme2-16: distributed mutual exclusion protocol.
Source: SMV distribution, Carnegie Mellon University.



futurebus: futurebus cache coherence protocol.
Source: Somesh Jha, Carnegie Mellon University.

motor-stuck: batch-reactor system model.
valves-gates: batch-reactor system model.

Source: Adam Turk, Carnegie Mellon University.

phone-async: asynchronous model of a simple telephone system.
phone-sync-CW: synchronous model of a telephone system with call

waiting.
Source: Malte Plath and Mark Ryan, University of Birmingham,
Great Britain.

tcas: tra�c alert and collision system for airplanes.
Source: William Chan, University of Washington.

tomasulo: a buggy model of the Tomasulo algorithm for instruction
scheduling in superscalar processors.
Source: Yunshan Zhu, Carnegie Mellon University.

As we studied and improved on the model checking computations during the
course of the study, we compared their performance with the BDD construction
of combinational circuit outputs. For this comparison, we used the ISCAS85
benchmark circuits as the representative circuits. We chose these benchmarks
because they are perhaps the most popular benchmarks used for BDD perfor-
mance evaluations. The ISCAS85 circuits were converted into the same format
as the model checking traces. The variable orders used were generated by the
order-dfs in SIS [24]. We excluded cases that were either too small (< 5 CPU
seconds) or too large (> 1 GBytes of memory requirement). Based on this crite-
ria, we were left with two circuits | C2670 and C3540. To obtain more circuits,
we derived 13-bit and 14-bit integer multipliers, based on the C6288, which we
refer to as C6288-13 and C6288-14. For the multipliers, the variable order is
an�1 � an�2 � ::: � a0 � bn�1 � bn�2 � ::: � b0, where A =

Pn�1

i=0 2iai and

B =
Pn�1

i=0 2ibi are the two n-bit input operands to the multiplier.
Figure 2 quanti�es the sizes of the traces we used in the study. The statistic

\# of BDD Vars" is the number of BDD variables used. The statistic \Min. #
of Ops" is the minimum number of sub-operations (or subproblems) needed for
the computation. This statistic characterizes the minimum amount of work for
each trace. It was gathered using a BDD package with a complete cache and no
garbage collection. Thus, this statistic represents the minimum number of sub-
operations needed for a typical BDD package. Due to insu�cient memory, there
are 4 cases (futurebus, phone-sync-CW, tcas, tomasulo) for which we were not
able to collect this statistic. For these cases, the results shown are the minimum
across all the packages used in the study. These results are marked with the
\<" symbol. The third statistic, \Peak # of Live BDDs", represents the peak
number of reachable BDD nodes during the execution. It provides a lower bound



on the memory required to execute the corresponding trace. Note that neither
\Min. # of Ops" nor \Peak # of Live BDDs" re
ects the e�ects of the dynamic
variable reordering process.

Min. # of Ops Peak # of Live BDDs
Trace # of BDD Vars (�106) (�103)

abp11 122 116 53

dartes 198 6 468

dme2-16 586 106 905

dpd75 600 41 1719

ftp3 100 132 763

furnace17 184 30 2109

futurebus 348 < 10270 4473

key10 140 91 626

mmgt20 264 35 1113

motors-stuck 172 29 325

over12 174 58 3008

phone-async 86 329 1446

phone-sync-CW 88 < 3803 22829

tcas 292 < 1323 19921

tomasulo 212 < 1497 26944

valves-gates 172 44 433

c2670 233 15 4363

c3540 50 57 7775

c6288-13 26 60 3378

c6288-14 28 178 9662

Fig. 2. Sizes of the benchmark traces. \# of BDD Vars" is the number of BDD vari-
ables. \Min. # of Ops" is the minimum number of sub-operations which characterizes
work. \Peak # of Live BDDs" is the maximum number of reachable BDD nodes, which
characterizes the minimum memory requirement.

3.2 BDD Packages

The following is a list of the BDD packages used in the study. For each BDD
package, we note how it di�ers from the common implementation described in
Sec. 2.2. Although many of these BDD packages contain a wide variety of useful
features, only those pertinent to the study are described in this section.

ABCD (Author: Armin Biere)
ABCD [3] is an experimental BDD package based on the classical depth-
�rst traversal. Interesting features include mark-and-sweep based garbage
collection, the integration of BDD nodes with the BDD unique table by using
open addressing, and index-based (instead of pointer-based) references to



BDD nodes. These techniques reduce the BDD node size by half (2 machine
words instead of 4). In addition, to avoid clustering in open addressing,
ABCD uses a quadratic probe sequence for the hashing collision resolution.

CAL (Authors: Rajeev Ranjan and Jagesh Sanghavi)
CAL [20] is a publicly available BDD package based on breadth-�rst traver-
sal to exploit memory locality. The garbage collection algorithm is based on
reference-counting with memory compaction. To increase locality of refer-
ence, each BDD node contains the indices of its cofactor nodes. To keep the
node size to 4 machine words, bit tagging is used to store and retrieve the
value of the reference count of a node. For this study, the relational product
operation is based on the depth-�rst traversal with the quanti�cation step
(line 7 in Fig. 1) computed using the breadth-�rst traversal.

CUDD (Author: Fabio Somenzi)
CUDD [25] is a publicly available BDD package based on depth-�rst traver-
sal. In CUDD, the reference counts of the nodes are kept up-to-date through-
out the computation. To counter the impact on performance of these updates
when many nodes are freed and reclaimed, CUDD enqueues the requests for
updates and performs them only if they are still valid when they are ex-
tracted from the queue. The growth of the tables in CUDD is determined by
a reward policy. For instance, the cache grows if the hit rate is high. CUDD
partially sorts the free list during garbage collection to improve memory
locality. Another distinguishing feature is that CUDD contains a suite of
heuristics for dynamic variable reordering.

EHV (Author: Geert Janssen)
EHV [14] is a publicly available BDD package based on depth-�rst traver-
sal. The main di�erences from the common implementation are additional
support for inverted inputs [17] and provisions for user data to be attached
to a BDD node. The latter feature allows intermediate results to be stored
in the BDD nodes, which in turn, removes the need to use separate com-
puted caches for some special BDD operations. This feature incurs a memory
overhead of 2 extra machine words per BDD node.

PBF (Authors: Bwolen Yang and Yirng-An Chen)
PBF [26] is an experimental BDD package based on partial breadth-�rst
traversal. The partial breadth-�rst traversal along with per-variable memory
managers and the memory-compacting mark-and-sweep garbage collector
are used to exploit memory locality. The partial breadth-�rst traversal also
bounds the breadth-�rst expansion to avoid the potential excessive memory
overhead of a full breadth-�rst expansion.

TiGeR (Authors: Olivier Coudert, Jean C. Madre and Herve Touati)
TiGeR [13] is a commercial BDD package based on the depth-�rst approach.
Interesting features include the segmentation of the computed caches and
the garbage collection algorithm. In TiGeR, each operation type has its own
cache. This allows the caches to be tuned independently. For this study, the
caches for the non-polynomial operations such as relational product are set
to be about four times as sparse as the caches for the polynomial operations.
TiGeR's garbage collection algorithm is di�erent from typical garbage col-



lection algorithms in two ways: the free-list is sorted to maintain memory
locality, and the memory compaction is performed when memory resources
become critical.

3.3 Evaluation Process

The performance study was carried out in two phases. The �rst phase studied
performance issues in BDD construction without variable reordering. The second
phase focused on the dynamic variable reordering computation. The evaluation
process was iterative, with the study evolving dynamically as new issues were
raised and new insights gained. Based on the results from each iteration, we
collaboratively tried to identify the performance issues and possible improve-
ments. Each BDD package designer then incorporated and validated the sug-
gested improvements. During this iterative process, we also tried to hypothesize
the characteristics of the computation and design new experiments to test these
hypotheses.

4 Phase 1 Results: No Variable Reordering

Figure 3 presents the overall performance improvements for Phase 1 with dy-
namic variable reordering disabled. There are 6 packages and 16 model checking
traces, for a total of 96 cases. Figure 3(a) categorizes the results for these cases
based on speedups. Note that the speedups are plotted in a cumulative fashion;
i.e., the > x column represents the total number of cases with speedups greater
than x. Figure 3(b) presents a comparison between the initial timing results
(when we �rst started the study) and the current timing results (after the au-
thors made changes to their packages based on insights gained from previous
iterations). The n/a results represent cases where results could not be obtained.

Initially, 19 cases did not complete because of implementation bugs or mem-
ory limits. Currently, 13 of these 19 cases now complete (the new cases in the
�gures). The other 6 cases still do not complete within the the resource limit
of 8 hours and 900 MBytes (the failed cases in the �gures). There is one case
(the bad case in the charts) that initially completed, but now does not complete
within the memory limit.

Figure 3(a) shows that signi�cant speedups have been obtained for many
cases. Most notably, 22 cases have speedups greater than an order of magnitude
(the > 10 column), and 6 out of these 22 cases actually achieve speedups greater
than two orders of magnitude (the > 100 column)!

Figure 3(b) shows that signi�cant speedups have been obtained mostly from
the small to medium traces, although some of the larger traces have achieved
speedups greater than 3. Another interesting point is that the new cases (those
that initially failed but are now doable) range across small to large traces.

Overall, for the 76 cases where the comparison could be made, the total CPU
time was reduced from 554,949 seconds to 127,786 seconds | a speedup of 4.34.
Another interesting overall statistic is that initially none of the 6 BDD packages



could complete all 16 traces, but currently 3 BDD packages can complete all of
them.

Cumulative 
Speedup Histogram

22

33

61

75 76 76

13
6

1
6

0

10

20

30

40

50

60

70

80

>
10

0

>
10 >

5

>
2

>
1

>
0.

95 >
0

ne
w

fa
ile

d

ba
d

speedups

# 
of

 c
as

es

(a)

Time Comparison

10

100

1000

10000

100000

1000000

10 100 1000 10000 100000 100000
0

current results (sec)
in

it
ia

l r
es

ul
ts

 (
se

c)

new
failed
bad
rest

1x10x100x

n/a

n/a

(b)

Fig. 3. Overall results. The new cases represent the number of cases that failed initially
and are now doable. The failed cases represent those that currently still exceed the
limits of 8 CPU hours and 900 MBytes. The bad shows the case that �nished initially,
but cannot complete currently. The rest are the remaining cases. (a) Results shown as
histograms. For the 76 cases where both the initial and the current results are available,
the speedup results are shown in a cumulative fashion; i.e., the > x column represents
the total number of cases with speedups greater than x. (b) Time comparison (in
seconds) between the initial and the current results. n/a represents results that are not
available due to resource limits.

The remainder of this section presents results on a series of experiments
that characterize the computational aspects of the BDD traces. We �rst present
results on two aspects with signi�cant performance impact | computed cache
size and garbage collection frequency. Then we present results on the e�ects of
the complement edge representation. Finally, we give results on memory locality
issues for the breadth-�rst based traversal.

4.1 Computed Cache Size

We have found that dramatic performance improvements are possible by us-
ing a larger computed cache. To study the impact of the computed cache, we
performed some experiments and arrived at the following two hypotheses.

Hypothesis 1 Model checking computations have a large number of repeated
subproblems across the top-level operations. On the other hand, combinational
circuit computations generally have far fewer such repeated subproblems.



Experiment: Measure the minimum number of subproblems needed by using
a complete cache (denoted CC-NO-GC). Compare this with the same setup
but with the cache 
ushed between top-level operations (denoted CC-GC).
For both cases, BDD-node garbage collection is disabled.

Result: Figure 4 shows the results of this experiment. Note that the results for
the four largest model checking traces are not available due to insu�cient
memory.
These results show that for model checking traces, there are indeed many
subproblems repeated across the top-level operations. For 8 traces, the ratio
of the number of operations in CC-GC over the number of operations in CC-
NO-GC is greater than 10. In contrast, this ratio is less than 2 for building
output BDDs for the ISCAS85 circuits. For model checking computations,
since subproblems can be repeated further apart in time, a larger cache is
crucial.
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Fig. 4. Performance measurement on the frequency of repeated subproblems across the
top-level operations. CC-GC denotes the case in which the cache is 
ushed between the
top-level operations. CC-NO-GC denotes the case in which the cache is never 
ushed.
In both cases, a complete cache is maintained within a top-level operation and BDD-
node garbage collection is disabled. For four model checking traces, the results are not
available (and are not shown) due to insu�cient memory.

Hypothesis 2 The computed cache is more important for model checking than
for combinational circuits.

Experiment: Vary the cache size as a percentage of the number of BDD nodes
and collect the statistics on the number of subproblems generated to measure
the e�ect of the cache size. In this experiment, the cache sizes vary from 10%



to 80% of the number of BDD nodes. The cache replacement policy used is
FIFO (�rst-in-�rst-out).

Results: Figure 5 plots the results of this experiment. Each curve represents
the result for a trace with varying cache sizes. The \# of Ops" statistic is
normalized over the minimum number of operations necessary (i.e., the CC-
NO-GC results). Note that for the four largest model checking traces, the
results are not available due to insu�cient memory.

These results clearly show that the cache size can have much more signi�cant
e�ects on the model checking computations than on building BDDs for the
ISCAS85 circuit outputs.
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Fig. 5. E�ects of cache size on overall performance for (a) the model checking traces
and (b) the ISCAS85 circuits. The cache size is set to be a percentage of the number of
BDD nodes. The number of operations (subproblems) is normalized to the minimum
number of subproblems necessary (i.e., the CC-NO-GC results).

4.2 Garbage Collection Frequency

The other source of signi�cant performance improvement is the reduction of the
garbage collection frequency. We have found that for the model checking traces,
the rate at which reachable BDD nodes become unreachable (death rate) and
the rate at which unreachable BDD nodes become reachable (rebirth rate) can
be quite high. This leads to the following conclusions:

{ Garbage collection should occur less frequently.



{ Garbage collection should not be triggered solely based on the percentage of
the unreachable nodes.

{ For reference-counting based garbage collection algorithms, maintaining ac-
curate reference counts all the time may incur non-negligible overhead.

Hypothesis 3 Model checking computations can have very high death and re-
birth rates, whereas combinational circuit computations have very low death and
rebirth rates.

Experiment: Measure the death and rebirth rates for the model checking traces
and the ISCAS85 circuits.

Results: Figure 6(a) plots the ratio of the total number of deaths over the total
number of sub-operations. The number of sub-operations is used to represent
time. This chart shows that the death rates for the model checking traces
can vary considerably. In 5 cases, the number of deaths is higher than the
number of sub-operations (i.e., death rate is greater than 1). In contrast, the
death rates of the ISCAS85 circuits are all less than 0.3.

That the death rates exceed 1 is quite unexpected. To explain the signi�cance
of this result, we digress brie
y to describe the process of BDD nodes becom-
ing unreachable (death) and then becoming reachable again (rebirth). When
a BDD node become unreachable, its children can also become unreachable
if this BDD node is its children's only reference. Thus, it is possible that
when a BDD node become unreachable, a large number of its descendants
also become unreachable. Similarly, if an unreachable BDD node becomes
reachable again, a large number of its unreachable descendants can also be-
come reachable. Other than rebirth, the only way the number of reachable
nodes can increase is when a sub-operation creates a new BDD node as
its result. As each sub-operation can produce at most one new BDD node,
a death rate of greater than 1 can only occur when the corresponding re-
birth rate is also very high. In general, high death rate coupled with high
rebirth rate indicates that many nodes are toggling between being reachable
and being unreachable. Thus, for reference-counting based garbage collec-
tion algorithms, maintaining accurate reference count all the time may incur
signi�cant overhead. This problem can be addressed by using a bounded-size
queue to delay the reference-count updates until the queue over
ows.

Figure 6(b) plots the ratio of the total number of rebirths over the total
number of deaths. Since garbage collection is enabled in these runs and
does reclaim unreachable nodes, the rebirth rates shown may be lower than
without garbage collection. This �gure shows that the rebirth rates for the
model checking traces are generally very high | 8 out of 16 cases have rebirth
rates greater than 80%. In comparison, the rebirth rate for the ISCAS85
circuits are all less than 30%.

The high rebirth rates indicate that garbage collection for the model checking
traces should be delayed as long as possible. There are two reasons for this:
�rst, since a large number of unreachable nodes do become reachable again,
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by using per-variable memory managers and per-variable breadth-�rst queues to
cluster the nodes of the same variable together. This clustering is bene�cial only
if many nodes are processed for each breadth-�rst queue during each expansion
and reduction phase.

The breadth-�rst approach does have some performance drawbacks (at least
in the two packages we studied). The breadth-�rst expansion usually has higher
memory overhead. In terms of running time, one drawback is in the implementa-
tion of the cache. In the breadth-�rst approach, the sub-operations are explicitly
represented as operator nodes and the uniqueness of these nodes is ensured by
using a hash table with chaining for collision resolution. Accesses to this hash
table are inherently slower than accesses to the direct mapped (1-way associa-
tive) computed cache used in the depth-�rst approaches. Furthermore, handling
of the computed and yet-to-be-computed operator nodes adds even more over-
head. Depending on the implementation strategy, this overhead could be in the
form of an explicit cache garbage collection phase or transferring of a computed
result from an operator node's hash table to a computed cache. Maintenance
of the breadth-�rst queues is another source of overhead. This overhead can be
higher for operations such as relational products because of the possible addi-
tional recursion (e.g., line 7 in Fig. 1). Given that each sub-operation requires
only a couple hundred cycles on modern machines, these overheads can have a
non-negligible impact on the overall performance.

In this study, we have found no evidence that the breadth-�rst based packages
are better than the depth-�rst based packages when the computation �ts in main
memory. Our conjecture is that since the relational product algorithm (Fig. 1)
can have exponential complexity, the graph sizes of the BDD arguments do not
have to be very large to incur a long running time. As a result, the number of
nodes processed each time can be very small. The following experiment tests
this conjecture.

Hypothesis 5 For our test cases, few nodes are processed each time a breadth-
�rst queue is visited. For the same amount of total work, combinational circuit
computations have much better \breadth-�rst" locality than model checking com-
putations.

Experiment: Measure the number of sub-operations processed each time a
breadth-�rst queue is visited. Then compute the maximum, mean, and stan-
dard deviation of the results. Note that these calculations do not include the
cases where the queues are empty since they have no impact on the memory
locality issue.

Result: Figure 8 shows the statistics for this experiment. The top part of the
table shows the results for the model checking traces. The bottom part shows
the results for the ISCAS85 circuits. We have also included the \Average /
Total # of Ops" column to show the results for the average number of sub-



operations processed per pass, normalized against the total amount of work
performed.

The results show that on average, 10 out of 16 model checking traces pro-
cessed less than 300 sub-operations (less than one 8-KByte memory page) in
each pass. Overall, the average number of sub-operations in a breadth-�rst
queue is at most 4685, which is less than 16 memory pages (128 KBytes).
This number is quite small given that hundreds of MBytes of total memory
are used. This shows that for these traces, the breadth-�rst approaches are
not very e�ective in clustering accesses.

# of Ops Processed per Queue Visit Average / Total # of Ops
Trace Average Max. Std. Dev. (�10�6)

abp11 228 41108 86.43 1.86

dartes 27 969 12.53 3.56

dme2-16 34 8122 17.22 0.31

dpd75 15 186 4.75 0.32

ftp3 1562 149792 63.11 8.80

furnace17 75 131071 42.40 2.38

futurebus 2176 207797 76.50 0.23

key10 155 31594 48.23 1.70

mmgt20 66 4741 21.67 1.73

motors-stuck 11 41712 50.14 0.39

over12 282 28582 55.60 3.32

phone-async 1497 175532 87.95 3.53

phone-sync-CW 1176 186937 80.83 0.19

tcas 1566 228907 69.86 1.16

tomasulo 2719 182582 71.20 1.95

valves-gates 25 51039 70.41 0.55

c2670 3816 147488 71.18 204.65

c3540 1971 219090 45.49 34.87

c6288-13 4594 229902 24.92 69.52

c6288-14 4685 237494 42.29 23.59

Fig. 8. Statistics for memory locality in the breadth-�rst approach.

Another interesting result is that the maximum number of nodes in the
queues is quite large and is generally more than 100 standard deviations away
from the average. This result suggests that some depth-�rst and breadth-�rst
hybrid (perhaps as an extension to what is done in the CAL package) may
obtain further performance improvements.

The result for \Average / Total # of Ops" clearly shows that for the same
amount of work, the ISCAS85 computations have much better locality for
the breadth-�rst approaches. Thus, for a comparable level of \breadth-�rst"



locality, model checking applications might need to be much larger than the
combinational circuit applications.

We have also studied the e�ects of the breadth-�rst approach's memory lo-
cality when the computations do not �t in the main memory. This experiment
was performed by varying the size of the physical memory. The results show that
the breadth-�rst based packages are signi�cantly better only for the three largest
cases (largest in terms of memory usage). The results are not very conclusive
because as an artifact of this BDD study, the participating BDD packages tend
to use a lot more memory than they did before the study began, and further-
more, since these BDD packages generally do not adjust memory usage based
on the actual physical memory sizes and page fault rates, the results are heavily
in
uenced by excessive memory usage. Thus, they do not accurately re
ect the
e�ects of the memory locality of the breadth-�rst approach.

5 Phase 2 Results: Dynamic Variable Reordering

Dynamic variable reordering is inherently di�cult for many reasons. First, there
is a tradeo� between time spent in variable reordering and the total elapsed
time. Second, small changes in the triggering and termination criteria may have
signi�cant impact in both the space and time requirements. Another di�culty
is that because the space of possible variable orders is so huge and variable
reordering algorithms tend to be very expensive, many machines are required
to perform a comprehensive study. Due to these inherent di�culties and lack
of resources, we were only able to obtain very preliminary results and have
performed only one round of evaluation.

For this phase, only the CAL, CUDD, EHV, and TiGeR BDD packages were
used, since the ABCD and PBF packages have no support for dynamic variable
reordering. There are 4 packages and 16 traces, for a total of 64 cases. Figure 9
presents the timing results for these 64 cases. In this �gure, the cases that did
not complete within the resource limits are marked with n/a. The speedup lines
ranging from 0:01x to 100x are included to help classify the performance results.

Figure 9(a) compares running time with and without dynamic variable re-
ordering. With dynamic variable reordering enabled, 19 cases do not �nish within
the resource limits. Six of these 19 cases also cannot �nish without variable re-
ordering (the failed cases in Fig. 9(a)). Thirteen of these 19 cases are doable
without dynamic variable reordering enabled (the bad cases in Fig. 9(a)). There
is one case that does not �nish without dynamic variable reordering, but �nishes
with dynamic variable reordering enabled (the new in Fig. 9(a)). The remain-
ing 45 cases are marked as the rest in Fig. 9(a). These results show that given
reasonably good initial orders (e.g., those provided by the original authors of
these SMV models), dynamic variable reordering generally slows down the com-
putation. This slowdown may be partially caused by the cache 
ushing in the
dynamic variable reordering phase; i.e., given the importance of the computed
cache, cache 
ushing can increase the number of repeated subproblems.



To evaluate the quality of the orders produced, we used the �nal orders pro-
duced by the dynamic variable reordering algorithms as new initial orders and
reran the traces without dynamic variable reordering. Then we compared these
results with the results obtained using the original initial order and also without
dynamic variable reordering. This comparison is one good way of evaluating the
quality of the variable reordering algorithms since in practice, good initial vari-
able orders are often obtained by iteratively feeding back the resulting variable
orders from the previous variable reordering runs.

Figure 9(b) plots the results for this experiment. The y-axis represents the
cases using the original initial variable orders. The x-axis represents the cases
where the �nal variable orders produced by the dynamic variable reordering
algorithms are used as the initial variable orders. In this �gure, the cases that
�nished using the original initial orders but failed using the new initial orders are
marked as the bad and the remaining cases are marked as the rest. The results
show that improvements can still be made from the original variable orders. A
few cases even achieved a speedup of over 10.

Effects of Rerordering
Time Comparison 

10

100

1000

10000

100000

1000000

10 100 1000 10000 100000 1E+06

with reorder (sec)

no
 r

eo
rd

er
 (

se
c)

new
failed
bad
rest

1x10x100x

.1x

.01x

n/a

n/a

(a)

Effects of New Initial Order
Time Comparison 

10

100

1000

10000

100000

1000000

10 100 1000 10000 100000 1E+06

new initial orders - no reorder (sec)

no
 r

eo
rd

er
 (

se
c)

bad

rest

n/a

n/a

1x10x100x

.1x

.01x

(b)

Fig. 9. Overall results for variable reordering. The failed cases represent those that
always exceed the resource limits. The bad cases represent those that are originally
doable but failed with the new setup. The rest represent the remaining cases. (a)
Timing comparison between with and without dynamic variable reordering. (b) Timing
comparison between original initial variable orders and new initial variable orders. The
new initial variable orders are obtained from the �nal variable orders produced by the
dynamic variable reordering algorithms. For results in (b), dynamic variable reordering
is disabled.



The remainder of this section presents results of a limited set of experiments
for characterizing dynamic variable reordering. We �rst present the results on
two heuristics for dynamic variable reordering. Then we present results on sen-
sitivity of dynamic variable reordering to the initial variable orders. For these
experiments, only the CUDD package is used. Note that the results in this sec-
tion are very limited in scope and are far from being conclusive. Our intent is to
suggest new research directions for dynamic variable reordering.

5.1 Present and Next State Variable Grouping

We set up an experiment to study the e�ects of variable grouping, where the
grouped variables are always kept adjacent to each other.

Hypothesis 6 Pairwise grouping of present state variables with their corre-
sponding next state variables is generally bene�cial for dynamic variable reorder-
ing.

Experiment: Measure the e�ects of this grouping on the number of subprob-
lems (work), maximum number of live BDD nodes (space), and number of
nodes swapped with their children during dynamic variable reordering (re-
order cost).

Results: Figure 10 plots the e�ects of grouping on work (Fig. 10(a)), space
(Fig. 10(b)), and reorder cost (Fig. 10(c)). Note that the results for two
traces are not available. One trace (tomasulo) exceeded the memory limit,
while the other (abp11) is too small to trigger variable reordering.

These results show that pairwise grouping of the present and the next state
variables is a good heuristic in general. However, there are a couple of ex-
ceptions. A better solution might be to use the grouping initially and relax
the grouping criteria somewhat as the reordering process progresses.

5.2 Reordering the Transition Relations

Since the BDDs for the transition relations are used repeatedly in model checking
computations, we set up an experiment to study the e�ects of reordering the
BDDs for the transition relations.

Hypothesis 7 Finding a good variable order for the transition relation is an
e�ective heuristic for improving overall performance.

Experiment: Reorder variables once, immediately after the BDDs for the tran-
sition relations are built, and measure the e�ect on the number of subprob-
lems (work), maximum number of live BDD nodes (space), and number of
nodes swapped with their children during dynamic variable reordering (re-
order cost).
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Fig. 10. E�ects of pairwise grouping of the current and next state variables on (a)
the number of subproblems, (b) the number of maximum live BDD nodes, and (c) the
amount of work in performing dynamic variable reordering.

Results: Figure 11 plots the results of this experiment on work (Fig. 11(a)),
space (Fig. 11(b)), and reorder cost (Fig. 11(c)). The results are normalized
against the results from automatic dynamic variable reordering for compar-
ison purposes. Note that the results for two traces are not available. With
automatic dynamic variable reordering, one trace (tomasulo) exceeded the
memory limit, while the other (abp11) is too small to trigger variable re-
ordering.

The results show that reordering once, immediately after the construction
of transition relations' BDDs generally works well in reducing the number
of subproblems (Fig. 11(a)). This heuristic's e�ects on the maximum num-
ber of live BDD nodes is mixed (Fig. 11(b)). Figure 11(c) shows that this
heuristic's reordering cost is generally much lower than automatic dynamic
variable reordering. Overall, the the number of variable reordering for au-
tomatic dynamic variable reordering is 5.75 times the variable reordering
frequency using this heuristic. These results are not strong enough to sup-
port our hypothesis as cache 
ushing may be the main factor for the e�ects
on the number of subproblems. However, it does provide an indication that
the automatic dynamic variable reordering algorithm may be invoking the
variable reordering process too frequently.

5.3 E�ects of Initial Variable Orders

In this section, we study the e�ects of initial variable orders on BDD construction
with and without dynamic variable reordering. We generate a suite of initial
variable orders by perturbing a set of good initial orders. In the following, we
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Fig. 11. E�ects of variable reordering the transition relations on (a) the number of
subproblems, (b) the number of maximum live BDD nodes, and (c) the amount of work
in performing variable reordering. For comparison purposes, all results are normalized
against the results for automatic dynamic variable reordering.

describe this experimental setup in detail and then present some hypotheses
along with supporting evidence.

Experimental Setup

The �rst step is the selection of good initial variable orders | one for each
model checking trace. The quality of an initial variable order is evaluated by the
running time using this order without dynamic variable reordering.

Once the best initial variable order is selected, we perturb it based on two
perturbation parameters: the probability (p), which is the probability that a
variable will be moved, and the distance (d), which controls how far a variable
may move. The perturbation algorithm used is shown in Figure 12. Initially, each
variable is assigned a weight corresponding to its variable order (line 1). If this
variable is chosen (with the probability of p) to be perturbed (by the distance
parameter d), then we change its weight by �w, where �w is chosen randomly
from the range [�d; d] (lines 3-5). At the end, the perturbed variable order is
determined by sorting the variables based on their �nal weights (line 6). This
algorithm has the property that on average, p fraction of the BDD variables are
perturbed and each variable's �nal variable order is at most 2d away from its
initial order. Another property is that the perturbation pair (p = 1; d = 1)
essentially produces a completely random variable order.

Since randomness is involved in the perturbation algorithm, to gain better
statistical signi�cance, we generate multiple initial variable orders for each pair
of perturbation parameters (p; d). For each trace, if we study np di�erent pertur-
bation probabilities, nd di�erent perturbation distances, and k initial orders for
each perturbation pair, we will generate a total of knpnd di�erent initial variable



perturb order(v[n], p, d)
/* perturb the variable order with probability p and distance d.

v[ ] is an array of n variables sorted based on decreasing
variable order precedence. */

1 for (0 � i < n) w[i] i /* initialize weight */
2 for (0 � i < n) /* for each variable, with probability p, perturb its weight. */
3 With probability p do
4 �w randomly choose an integer from [�d; d]
5 w[i] w[i] + �w

6 sort variables in array v[ ] based on increasing weight w[ ]
7 return v[ ]

Fig. 12. Variable-order perturbation algorithm.

orders. For each initial variable order, we compare the results with and without
dynamic variable reordering enabled. Thus, for each trace, there will be 2knpnd
runs. Due to lack of time and machine resources, we were only able to complete
this experiment for one very small trace | abp11.

The perturbed initial variable orders were generated from the best initial
variable ordering we found for abp11. Using this order, the abp11 trace can
be executed (with dynamic variable reordering disabled) using 12.69 seconds of
CPU time and 127 MBytes of memory on a 248 MHz UltraSparc II. This initial
order and its results are used as the base case for this experiment. Using this
base case, we set the time limit of each run to 1624.32 seconds (128 times the
base case) and 500 MBytes of memory.

For the perturbation parameters, we let p range from 0:1 to 1:0 with an
increment of 0:1. Since abp11 has 122 BDD variables, we let d range from 10 to
100 with an increment of 10 and added the case for d =1. These choices result
in 110 perturbations pairs (with np = 10 and nd = 11). For each perturbation
pair, we generate 10 initial variable orders (k = 10). Thus, there are a total of
1100 initial variable orders and 2200 runs.

Results for abp11

Hypothesis 8 Dynamic variable reordering improves the performance of model
checking computations.

Supporting Results: Figure 13 plots the number of cases that did not com-
plete within various time limits for runs with and without dynamic variable
reordering. For these runs, the memory limit is �xed at 500 MBytes. The
time limits in this plot are normalized to the base case of 12:69 seconds and
are plotted in log scale.

The results clearly show that given enough time, the cases with dynamic
variable reordering perform better. Overall, with a time limit of 128 times



the base case, only 10.1% of cases with dynamic variable reordering exceeded
the resource limits. In comparison, 67.6% of cases without dynamic variable
reordering failed to complete.

Note that for the time limit of 2 times the base case (the > 2x case in the
chart), the results with dynamic variable reordering is worse. This re
ects
the fact that dynamic variable reordering can be expensive. As the time
limit increases, the number of un�nished cases for with dynamic variable
reordering drops more quickly until at about 32 times the base case. After
this point, the number of un�nished cases for both with and without dynamic
variable reordering appear to be decreasing at about the same rate.

Another interesting result is that none of the cases takes less time to complete
than the base case of 12.69 seconds (i.e., the > 1x results are both 1100).
This result indicates that the initial variable order of our base case is indeed
a very good variable order.

Effects of Variable Reordering
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Fig. 13. E�ects of variable reordering on abp11. This chart plots the number of un�n-
ished cases for various time limits. The time limits are normalized to the base case of
12:69 seconds. The memory limit is set at 500 MBytes.

To better understand the impact of the perturbations on running time, we
analyzed the distribution of these results (in Fig. 13) across the perturbation
space and formed the following hypothesis.

Hypothesis 9 The dynamic variable reordering algorithm performs \unneces-
sary" work when it is already dealing with reasonably good variable orders. Over-
all, given enough time, dynamic variable reordering is e�ective in recovering from
poor initial variable order.



Supporting Results: Figure 14(a) shows the results with a time limit of 4
times the base case of 12:69 seconds. These plots show that when there are
small perturbations (p = 0:1 or d = 10), we are better o� without dynamic
variable reordering. However, for higher levels of perturbations, the cases
with dynamic variable reordering usually does a little better.

Figures 14(b) and 14(c) show the results with time limits of 32 and 128
times, respectively, the base case. Note that since 128 times is the maximum
time limit we studied, Fig. 14(c) also represents the distribution of the cases
that did not complete at all for this study. These results clearly show that
given enough time, the cases with dynamic variable reordering perform much
better.

Hypothesis 10 The quality of initial variable order a�ects the space and time
requirements, with or without dynamic variable reordering.

Supporting Results: Figure 15 classi�es the un�nished cases into memory-out
(Fig. 15(a)) or timed-out (Fig. 15(b)). For clarity, we repeated the plots for
the total number of un�nished cases (memory-out plus timed-out results) in
Fig. 15(c). It is important to note that because the BDD packages used in this
study still do not adapt very well upon exceeding memory limits, memory-out
cases should be interpreted as indications of high memory pressure instead
of that these cases inherently do not �t within the memory limit.

The results show that levels of perturbation directly in
uence the time and
memory requirement. With a very high level of perturbation, most of the
un�nished cases are due to exceeding the memory limit of 500 MBytes (the
upper-left triangular regions in Fig. 15(a)). For a moderate level of pertur-
bation, most of the un�nished cases are due to the time limit (the diagonal
bands from the lower-left to the upper-right in Fig. 15(b)).

Note that the results in Fig. 15 are not very monotonic; i.e., the results are
not necessarily worse with a larger degree of perturbation. This leads to the next
hypothesis.

Hypothesis 11 The e�ects of the dynamic variable reordering algorithm and
the initial variable orders are very chaotic.

Supporting Results: Fig. 16 plots the standard deviation of running time
normalized against average running time. For the cases that cannot complete
within the resource limits, they are included as if they use exactly the time
limit. Note that as an artifact of this calculation, when all 10 variants of a
perturbation pair exceed the resource limits, the standard deviation is 0. In
particular, without variable reordering, none of the cases can be completed
in the highly perturbed region (upper-left triangular region in Fig 15(c)) and
thus these results are all shown as 0 in the chart.

The results show that the standard deviations are generally greater than the
average time (i.e., with the normalized result of > 1). This �nding partially
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Fig. 14. Histograms on the number of cases that cannot be �nished within the speci�ed
resource limits. For all cases, the memory limit is set at 500 MBytes. The time limit
varies from (a) 4 times, (b) 32 times, to (c) 128 times the base case of 12:69 seconds.
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Fig. 15. Breakdown on the cases that cannot be �nished. (a) memory-out cases, (b)
timed-out cases, (c) total number of un�nished cases.



con�rms our hypothesis. It also indicates that 10 initial variable orders per
perturbation pair (p; d) is probably too small for some perturbation pairs.

The results also show that with very low level of perturbation (lower-right
triangular region), the normalized standard deviation is generally smaller.
This gives an indication that higher perturbation level may result in more
unpredictable performance behavior.

Furthermore, the normalized standard deviation for without dynamic vari-
able reordering is generally smaller than the same statistic for with dynamic
variable reordering. This result provides an indication that dynamic variable
reordering may also have very unpredictable e�ects.
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Fig. 16. Standard deviation of the running time for abp11 with perturbed initial vari-
able orders (a) without dynamic variable reordering, and (b) with dynamic variable
reordering. Each results are normalized to the average running time.

6 General Results

This section presents results which may be generally helpful in studying or im-
proving BDD packages.

Hash Function

Hashing is a vital part of BDD construction since both the uniqueness of
BDD nodes and the cache accesses are based on hashing. Currently, we have
not found any theoretically good hash functions for handling multiple hash
keys. In this study, we have empirically found that the hash function used by
the TiGeR BDD package worked well in distributing the nodes. This hash
function is of the form

H(k1; k2) = ((k1p1 + k2)p2)=2
w�n



where k's are the hash keys, p's are su�ciently large primes, w is the number
of bits in an integer, and 2n is the size of the hash table. Note that division
by 2w�n is used to extract the n most signi�cant bits and is implemented
by right shifting (w � n) bits.

The basic idea is to distribute and combine the bits in the hash keys to
the higher order bits by using integer multiplications, and then to extract
the result from the high order bits. The power-of-2 hash table size is used
to avoid the more expensive modulus operation. Some small speedups have
been observed using this hash function. One pitfall is that for backward com-
patibility reasons, some compilers might generate a function call to compute
integer multiplication, which can cause signi�cant performance degradation
(up to a factor of 2). In these cases, architecture-speci�c compiler 
ags can
be used to ensure the integer-multiplier hardware is used instead.

Caching Strategy

Given the importance of cache, a natural question is: Can we cache more
intelligently? One heuristic, used in CUDD, is that the cache is accessed only
if at least one of the arguments has a reference count greater than 1. This
technique is based on the fact that if all arguments have reference counts
of 1, then this subproblem is not likely to be repeated within the current
top-level operation. In fact, if a complete cache is used, this subproblem will
not be repeated within the same top-level operation. Using this technique,
CUDD is able to reduce the number of cache lookups by up to half, with a
total time reduction of up to 40%.

Relational Product Algorithm

The relational product algorithm in Fig. 1 can be further improved. The new
optimizations are based on the following derivations. Let r0 be the result of
the 0-cofactors (line 4 in Fig. 1), v be the set of variables to be quanti�ed,
and h be any Boolean function, then

r0 _ (9v:r0 ^ h) = r0 _ (r0 ^ 9v:h) = r0

and

r0 _ (9v:(: r0) ^ h) = r0 _ ((: r0) ^ 9v:h) = r0 _ 9v:h

The validity comes from the fact that r0 does not depend on the variables in
v. Based on these equations, we can add the following optimizations (between
line 7 and line 8 in Fig. 1) to the relational product algorithm:

7.1 else if (r0 == f j� 1) or (r0 == gj� 1)
7.2 r  r0
7.3 else if (r0 == :f j� 1)
7.4 r  r0 _ (9v:gj� 1)
7.5 else if (r0 == :gj� 1)
7.6 r  r0 _ (9v:f j� 1)



In general, these optimizations only slightly reduces the number of sub-
problems, with the exception of the futurebus trace, where the number of
subproblems is reduced by over 20%.

BDD Package Comparisons

In comparing BDD packages, one fairness question is often raised: Is it fair
to compare the performance of a bare-bones experimental BDD package with
a more complete public domain BDD package? This question arises particu-
larly when one package supports dynamic variable reordering, while the other
does not. This is an issue because supporting dynamic variable reordering
requires additional data structures and indirection overheads to the compu-
tation for BDD construction. To partially answer this question, we studied
a package with and without its support for variable reordering in place. Our
preliminary results show that the additional overhead to support dynamic
variable reordering has no measurable performance impact. This may be
due to the fact that BDD computation is so memory intensive, a couple
additional non-memory intensive operations can be scheduled either by the
hardware or the compiler without any measurable performance penalty.

Cache Hit Rate

The computed cache hit rate is not a reliable measure of overall performance.
In fact, it can be shown that when the cache hit rate is less than 49%, a
cache miss can actually result in a higher hit rate. This is because a cache
miss generates more subproblems and these subproblems' results could have
already been computed and are still in cache.

Platform Independent Metrics

Throughout this study, we have found several useful machine-independent
metrics for characterizing the BDD computations. These metrics are:
{ the number of subproblems as a measure for work,
{ the maximum number of live nodes as a measure for the lower bound on
memory requirement,

{ the number of subproblems processed for each breadth-�rst queue visit to
re
ect the possibility of exploiting memory locality using the breadth-
�rst traversal, and

{ the number of nodes swapped with their children during dynamic variable
reordering as a measure of the amount of work performed in dynamic
variable reordering.

7 Issues and Open Questions

Cache Size Management

In this study, we have found that the size of the compute cache can have a
signi�cant impact on model checking computations. Given that BDD com-
putations are very memory intensive, there is an inherent con
ict between
using a larger cache for better performance and using a smaller cache to
conserve memory usage. For BDD packages that maintain multiple compute
caches, there are additional con
icts as these caches will compete with each



other for the memory resources. As the problem sizes get larger, �nding
a good dynamic cache management algorithm will become more and more
important for building an e�cient BDD package.

Garbage Collection Triggering Algorithm

Another dynamic memory management issue is the frequency of garbage
collection. The results in Fig. 6(b) clearly suggest that delaying garbage
collection can be very bene�cial. Again, this is a space and time tradeo�
issue. One possibility is to invoke garbage collection when the percentage of
unreachable nodes is high and the rebirth rate is low. Note that for BDD
packages that do not maintain reference counts, the rebirth rate statistic is
not readily available and thus a di�erent strategy is needed.

Resource Awareness

Given the importance of space and time tradeo�, a commercial strength BDD
package not only needs to know when to gobble up the memory to reduce
computation time, it should also be able to free up space under resource
contention. This contention could come from di�erent parts of the same tool
chain or from a completely di�erent job. One way to deal with this issue is
for BDD packages to become more aware of the environment, in particular,
the available physical memory, various memory limits, and the page fault
rate. This information is readily available to the users of modern operating
systems. Several of the BDD packages used in this study already have some
limited form of resource awareness. However, this problem is still not well
understood and probably cannot be easily studied using the trace-driven
framework.

Cross Top-Level Sharing

For the model checking traces, why are there so many subproblems repeated
across the top-level operations? We have two conjectures. First, there is quite
a bit of symmetry in some of these SMV models. These inherent symmetries
are somehow captured by the BDD representation. If so, it might be more ef-
fective to use higher level algorithms to exploit the symmetries in the models.
The other conjecture is that the same BDDs for the transition relations are
used repeatedly throughout model checking in the �xed-point computations.
This repeated use of the same set of BDDs increases the likelihood of the
same subproblems being repeated across top-level operations. At this point,
we do not know how to validate these conjectures. To better understand this
property, one starting point would be to identify how far apart are these
cross top-level repeated subproblems; i.e., is it within one state transition,
within one �xed-point computation, within one temporal logic operator, or
across di�erent temporal logic operators?

Breadth-First's Memory Locality

In this study, we have found no evidence that breadth-�rst based techniques
have any advantage when the computation �ts in the main memory. An
interesting question would be: As the BDD graph sizes get much larger, is
there going to be a crossover point where the breadth-�rst packages will be
signi�cantly better? If so, another issue would be �nding a good depth-�rst
and breadth-�rst hybrid to get the best of both worlds.



Inconsistent Cross Platform Results

Inconsistency in timing results across machines is yet another unresolved
issue in this study. More speci�cally, for some BDD packages, the CPU-
time results on a UltraSparc II machine are up to twice as long as the
corresponding results on a PentiumPro, while for other BDD packages, the
di�erences are not so signi�cant. Similar inconsistencies are also observed
in the Sentovich study [23]. A related performance discrepancy is that for
the depth-�rst based packages, the garbage collection cost for UltraSparc II
is generally twice as high as that of PentiumPro. However, for the breadth-
�rst based packages, the garbage collection performances between these two
machines are much closer. In particular, for one breadth-�rst based package,
the ratio is very close to 1. This discrepancy may be a re
ection of the
memory locality of these BDD packages. To test this conjecture, we have
performed a set of simple tests using synthetic workloads. Unfortunately,
the results did not con�rm this hypothesis. However, the results of this test
do indicate that our PentiumPro machine appears to have a better memory
hierarchy than our UltraSparc II machine. A better understanding of this
issue can probably shed some light on how to improve memory locality for
BDD computations.

Pointer- vs. Index-Based References

Another issue is that within the next ten years, machines with memory sizes
greater than 4 GBytes are going to become common. Thus the size of a
pointer (i.e., memory address) will increase from 32 to 64 bits. Since most
BDD packages today are pointer-based, the memory usage will double on
64-bit machines. One way to reduce this extra memory overhead is to use
integer indices instead of pointers to reference BDDs as in the case of the
ABCD package. One possible drawback of an index-based technique is that
an extra level of indirection is introduced for each reference. However, since
ABCD's results are generally among the best in this study, this provides a
positive indication that the index-based approach may be a feasible solution
to this impending memory overhead problem.

Computed Cache Flushing in Dynamic Variable Reordering

In Sec. 5, we showed that dynamic variable reordering can generally slow
down the entire computation when given a reasonably good initial variable
order. Since the computed cache is typically 
ushed when dynamic variable
reordering takes place, it would be interesting to study what percentage of
the slowdown is caused by an increase in the amount of work (number of
subproblems) due to cache 
ushing. If this percentage is high, then another
interesting issue would be in �nding a good way to incorporate the cache
performance as a parameter for controlling dynamic variable reordering fre-
quency.



8 Related Work

In [23], Sentovich presented a BDD study comparing the performance of sev-
eral BDD packages. Her study covered building output BDDs for combinational
circuits, computing reachability of sequential circuits, and variable reordering.

In [15], Manne et al. performed a BDD study examining the memory locality
issues for several BDD packages. This work compares the hardware cache miss
rates, TLB miss rates, and page fault rates in building the output BDDs for
combinational circuits.

In contrast to the Sentovich study, our study focuses in characterizing the
BDD computations instead of doing a performance comparison of BDD packages.
In contrast to the Manne study, our work uses platform independent metrics
for performance evaluation instead of hardware speci�c metrics. Both types of
metrics are equally valid and complementary. Our study also di�ers from these
two prior studies in that our performance evaluation is based on the execution
of a model checker instead of benchmark circuits.

9 Summary and Conclusions

By applying a new evaluation methodology, we have not only achieved signi�cant
performance improvements, we have also identi�ed many interesting character-
istics of model checking computations. For example, we have con�rmed that
model checking and combinational circuit computations have fundamentally dif-
ferent performance characteristics. These di�erences include the e�ects of the
cache size, the garbage collection frequency, the complement edge representa-
tion, and the memory locality for the breadth-�rst BDD packages. For dynamic
variable reordering, we have introduced some new methodologies for studying
the e�ects of variable reordering algorithms and initial variable orders. From
these experiments, we have uncovered a number of open problems and future
research directions.

As this study is very limited in scope, especially for the dynamic variable
reordering phase, further validations of the hypotheses are necessary. It would
be especially interesting to repeat the same experiments on execution traces from
other BDD-based tools.

The results obtained in this study clearly demonstrate the usefulness of sys-
tematic performance characterization and validate our evaluation methodology.
We hope that the trace-drive framework and the machine-independent metrics
will help lay the foundation for future benchmark collection and performance-
characterization methodology.
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