
A Framework for Model Checking against CTLK
Using Quantified Boolean Formulas?

Emily Yu, Martina Seidl, and Armin Biere

Institute for Formal Models and Verification,
Johannes Kepler University Linz, Austria

{zhengqi.yu, martina.seidl, biere}@jku.at

Abstract. We present a novel bounded model checking (BMC) tool
chain for multi-agent systems. This framework automatically translates
the verification of system models against properties formulated in com-
putation tree logics with epistemic modalities (CTLK) into quantified
Boolean formulas (QBFs). Our framework exploits recent QBF tech-
nology for solving those verification problems and for certifying the re-
sult, making the implementation of a dedicated CTLK solver obsolete.
The translation to QBF is based on existing theoretical work and im-
plemented in our novel tool MCMASqbf which extends the open-source
model checker MCMAS. First experimental results are very promising
and indicate the practical feasibility of our approach. Furthermore we
provide novel benchmarks to the QBF community.

Keywords: Bounded Model Checking · QBFs · Multi-agent Systems

1 Introduction

Multi-agent systems (MAS) are nowadays applied in various fields to describe
complex systems. For example, MAS are used to formalize the interactions of dif-
ferent components that act independently [8]. To verify their correctness, Com-
putation Tree Logic with knowledge (CTLK) has been introduced [10]. Besides
temporal operators like “Always”, “Until”, and “Finally”, CTLK also includes
formulas with knowledge modalities Kiφ expressing that “Agent i knows φ”.

With CTLK it becomes possible to perform model checking for MAS [13].
Model Checking [1, 5, 6] is an important technique for verifying safety-critical
systems against properties expressed in temporal logics like LTL or CTL. To
deal with the so-called state explosion problem of model checking, SAT-based
bounded model checking (BMC) [3] was introduced. To obtain more compact
encodings of BMC problems than possible with SAT, encodings of BMC to
quantified Boolean formulas (QBFs) have been presented [7]. Such encodings
exploit the power of existential and universal quantifiers to avoid duplications
of formula parts.

? This work was supported by by the Austrian FWF grant W1255-N23 and the LIT
AI Lab funded by the State of Upper Austria.

2 Yu et al.

ISPL file MCMASqbf
QCIR file

Prenexing + Cleansing

QBF SolverCertificate (AIGER)SAT Solver
TRUE/FALSE

cleansed qcir

SAT/UNSAT

Fig. 1: The complete MCMASqbf tool chain.

In this paper, we present a fully automatic tool chain for verifying descrip-
tions of multi-agent systems against properties in CTLK. Therefore, we imple-
mented MCMASqbf for translating such BMC problems to QBFs building upon
the bounded semantics of CTLK introduced in [16].

2 The MCMASqbf Tool Chain

Our tool MCMASqbf [14] extends MCMAS [12], an open-source model checker for
the verification of multi-agent systems supporting various temporal epistemic
logics. We reused the parser of MCMAS to obtain the interpreted system data
structures based on which we generate the QBF encodings. We implemented the
translation of bounded semantics of CTLK into QBFs based on the theoretical
work in [16] which includes both existential and universal fragments of the logic.
As an approximation to unbounded model checking, the bounded semantics
considers a finite state space where each path in the system is restricted to a
length of k. However, in the verification process the search space is extended
progressively as the formula is evaluated.

The input of MCMASqbf is an ISPL file which contains a description of the
system and a CTLK formula for the property to be checked. ISPL is an agent-
based, modular language based on the interpreted systems [9] formalism com-
monly used for MAS. Our extension is invoked with parameters

-QBFbmc [k] [QCIR-File] [ISPL-File],

where k is a value specifying the bound followed by an ISPL file and a QCIR
output file for the QBF. Our tool MCMASqbf is embedded in the tool chain
as shown in Figure 1. It produces QBFs in the most general variant of the
QCIR format [11], i.e., in non-prenex form which allows to position quantifiers
arbitrarily within a formula. Since there is no state-of-the-art QBF solver that
supports this general format, an additional prenexing step is necessary to shift
the quantifiers to the front. For example, the formula ∀x∃yφ ∧ ∀a∃bψ has to
be rewritten to ∀a, x∃b, y(φ ∧ ψ). Therefore, we implemented a simple tool that
performs not only quantifier shifting, but also the translation to the cleansed
QCIR format that requires the names of the Boolean variables to be numbers
and not strings. Now the QBF can be passed to any QBF solver that is able to
process formulas in the cleansed QCIR format. We applied the Quabs [15] that
can not only decide the truth value of the formula but also produce certificates.

A Framework for CTLK Model Checking with QBF 3

These certificates are And-Inverter-Graphs (AIGs) [4] representing the solution
to the BMC problem, and can be checked by a SAT solver for increasing trust
in the QBF solver. For this purpose, we use the SAT solver PicoSAT [2].

3 Case Study

As a case study, we consider the popular Train-Gate-Controller (TGC) exam-
ple [10]. In this scenario, there are multiple trains on different tracks and a
controller. The tracks intersect at one tunnel which has red-green lights con-
trolled by the controller, and only one train can operate in the tunnel at a time
when the light is green. The following code snippet describes this scenario for
one train modeled in ISPL:

Agent train1
Vars:
state: {wait, tunnel, away};
end Vars
Actions = {enter, leave, nothing};
Protocol:
state = wait: {enter, nothing};
state = tunnel: {leave, nothing};
state = away: {nothing};
end Protocol
Evolution:
state = wait if state = away and Action = nothing;
state = tunnel if state = wait and Action = enter and Environment.Action=enter1;
state = away if (state = tunnel and Action = leave and Environment.Action=leave1)
or (state=wait and Action=nothing);
end Evolution
end Agent

An interpreted system typically contains a set of agents (train1, . . .) with
possible local states (wait, tunnel, away), actions (enter, leave, nothing), as
well as protocols and evolution functions for describing the system behavior. The
global states are composed of each agent’s local states. Further an initial state
is also defined in the ISPL description. To translate the model checking problem
into QBFs, we firstly need to encode the interpreted system as follows:

– state space: dlog |Li|e Boolean variables are needed for representing the local
states Li of agent i. The same number of variables is needed for the local
successor state. The global current state v = (ve, v1, ..., vN) and the global
successor state v′ = (v′e, v

′
1, ..., v

′
N) are vectors of local states where N is the

number of agents and e refers to the environment.
– actions: For the actions,

∑
i∈{e,1..,N}dlog |Acti|e Boolean variables are needed.

– transition relation: For each agent, the protocol function and evolution func-
tion are encoded symbolically using vi and v′i. The global transition relation
is the composition of protocol and evolution functions based on v and v′.

We have implemented the encoding presented in [16] and our implementation
allows to generate a QBF as a QCIR file which then can be solved and certified
by existing QBF solvers. The property holds if the verification result of the QBF
solver shows the formula is satisfied, and vice versa.

4 Yu et al.

Table 1: Experimental results obtained for the Train-Gate-Controller case study.

N k φqbf (gates) C ttotal(s) tqs(s) tsat(s)

3 5 30616 990 0.961 0.056 0.023

3 10 110971 2945 3.445 0.222 0.088

3 15 252226 5950 8.018 0.673 0.201

3 20 464881 10005 14.942 1.178 0.370

5 5 57695 2354 1.785 0.112 0.050

5 10 206735 7299 6.469 0.487 0.156

5 15 464875 14994 15.057 1.261 0.359

5 20 848615 25439 28.560 2.820 0.685

8 5 100482 5480 3.127 0.226 0.084

8 10 357472 17460 11.299 0.982 0.280

8 15 798762 36240 26.195 2.794 0.627

8 20 1449852 61820 51.409 6.882 1.259

10 5 140217 9747 4.607 0.557 0.114

10 10 495812 30452 16.771 2.247 0.389

10 15 1101507 62707 38.680 6.073 0.871

10 20 1988802 106512 76.313 14.219 1.578

We verify the following property in our case study: along all paths in the
system, it is always the case that if train1 is in the tunnel then it knows that
the other trains cannot be operating in the tunnel at the same time. In CTLK,
this property can be expressed as follows:

φ = AG (in tunnel1 → Ktrain1

N∨
i=2

¬in tunneli)

To evaluate the performance of the tool chain, we ran several experiments on
an Intel Coretm i7-2600 machine with 3.40GHz CPU and 16GB RAM running
Ubuntu v18.04.2 (Linux kernel v4.15). We evaluated the bounded model checking
problem with different values of k, and in order to test the scalability of the
framework, we ran experiments with 5, 8, and 10 trains (we use N to represent
the number of trains).

Table 1 reports the results of our case study. The obtained cleansed QBFs in
prenex form contain up to 2M gates in the QCIR format, while the certificates in
AIGER contain only up to 100K gates plus the inputs and outputs related to the
QBF variables (C in Table 1). The solving time ttotal includes the time for the
whole tool chain including the QBF solving time tqs and the time for checking
the certificates tsat. While the solving times are quite small, much time is needed
for the encoding and the cleansing. Here, many optimizations are possible.

4 Discussion

We presented a complete tool chain for solving bounded model checking of multi-
agent systems against CTLK specifications using QBF solving technology. First

A Framework for CTLK Model Checking with QBF 5

experiments are very promising, allowing us not only to solve the BMC problems
but also to obtain quite small certificates from the QBF solvers. Further, this
work provides practical benchmarks in the general QCIR format to the QBF
community.

As future work, we plan to integrate the model checker with a QBF solver
more tightly using an incremental QBF approach to speed up model checking.
The translation algorithm can also be optimized further, by for instance picking
an arbitrary value of k as a starting point and increase k step-wise in a loop.
Furthermore, sub-formulas can be encoded separately then verified, and the ver-
ification results can be cached in order to speed up the whole model checking
process when applied in a real-world setting.

References

1. Baier, C., Katoen, J.: Principles of model checking. MIT Press (2008)
2. Biere, A.: Lingeling, Plingeling, PicoSAT and PrecoSAT at SAT Race 2010. Tech.

rep., FMV Reports Series, Inst. FMV, JKU Linz, Austria (2010)
3. Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic model checking without

bdds. In: Proc. of TACAS’99. LNCS, vol. 1579, pp. 193–207. Springer
4. Biere, A., Heljanko, K., Wieringa, S.: AIGER 1.9 and beyond. Tech. rep., FMV

Reports Series, Inst. FMV, JKU Linz, Austria (2011)
5. Clarke, E.M., Grumberg, O., Kroening, D., Peled, D., Veith, H.: Model Checking.

MIT press (2018)
6. Clarke, E.M., Henzinger, T.A., Veith, H., Bloem, R. (eds.): Handbook of Model

Checking. Springer (2018)
7. Dershowitz, N., Hanna, Z., Katz, J.: Bounded model checking with QBF. In: Proc.

of SAT’05. LNCS, vol. 3569, pp. 408–414. Springer (2005)
8. Dorri, A., Kanhere, S.S., Jurdak, R.: Multi-agent systems: A survey. IEEE Access

6, 28573–28593 (2018)
9. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning About Knowledge.

MIT Press, Cambridge, MA, USA (2003)
10. van der Hoek, W., Wooldridge, M.J.: Tractable multiagent planning for epistemic

goals. In: AAMAS. pp. 1167–1174. ACM (2002)
11. Jordan, C., Klieber, W., Seidl, M.: Non-cnf QBF solving with QCIR. In: AAAI

Workshop: Beyond NP. AAAI Workshops, vol. WS-16-05. AAAI Press (2016)
12. Lomuscio, A., Qu, H., Raimondi, F.: MCMAS: A model checker for the verification

of multi-agent systems. In: CAV. LNCS, vol. 5643, pp. 682–688. Springer (2009)
13. Lomuscio, A., Raimondi, F.: The complexity of model checking concurrent pro-

grams against CTLK specifications. In: DALT. LNCS, vol. 4327, pp. 29–42.
Springer (2006)

14. MCMAS-QBF: (2019), http://fmv.jku.at/ftscs19
15. Tentrup, L.: Non-prenex QBF solving using abstraction. In: Proc. of SAT’16.

LNCS, vol. 9710, pp. 393–401. Springer (2016)
16. Zhou, C., Chen, Z., Tao, Z.: QBF-based symbolic model checking for knowledge

and time. In: TAMC. LNCS, vol. 4484, pp. 386–397. Springer (2007)

