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Invited Talk

Experiences with QBF Solvers

Sharad Malik

Princeton University

Abstract

Recent success with DPLL style search based SAT solvers has prompted ef-
forts in extending these techniques to solvers for Quantified Boolean Formulas
(QBFs). One of the motivations for developing QBF solvers is to tackle the
problem of determining the diameter of the state space of sequential circuits.
This is especially relevant for Bounded Model Checking (BMC), where this di-
ameter provides a bound for the unrolling required to make BMC complete.

I will first describe extensions to DPLL search techniques developed for QBF
solvers and experiences with using these solvers for the diameter problem. Next,
I will consider a special case of QBF, 2QBF, which limits the depth of quantifi-
cation to two and discuss specialized techniques for this restricted form. This
is again motivated by the diameter problem for which this form suffices. Then,
I will comment on the inherent complexity of QBF for tackling the diameter
problem. Finally I will describe a current effort to consider alternatives to
search based QBF solvers by considering the implementation of quantification
operators directly on logic circuits.
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BMC’03 Preliminary Version

Bounded Model Checking for All Regular
Properties

Markus Jehle Jan Johannsen Martin Lange
Nicolas Rachinsky

Institut für Informatik, LMU München, Germany

Abstract

The technique of bounded model checking is extended to the linear time µ-calculus,
a temporal logic that can express all monadic second-order properties of ω-words,
in other words, all ω-regular languages. Experimental evidence is presented show-
ing that the method can be successfully employed for properties that are hard or
impossible to express in the weaker logic LTL that is traditionally used in bounded
model checking.

Key words: model checking, satisfiability solving, expressiveness

1 Introduction

Bounded model checking is a verification technique for linear time properties.
Only paths of a certain length through a transition system are considered. It
is therefore not complete but only an approximation method relying on the
fact that unsatisfied formulas often have short counterexamples.

On the other hand, the boundedness plus the fact that models are linear
structures make the problem suitable for a reduction to SAT - the satisfiability
problem for propositional logic. It is known from a different symbolic tech-
nique, namely BDD-based model checking [5], that transition systems can be
encoded as boolean functions, and that these encodings can be significantly
smaller than explicit representations.

So far, bounded model checking has been employed for LTL [10] and vari-
ants thereof. But the expressive power of LTL is rather limited: it is equi-
expressive to First-Order Logic over ω-words,resp. star-free languages [14].

There are various temporal specification languages for ω-regular languages:
ETL [18] and QPTL [13] extend the syntax of LTL with Büchi automata, resp.
propositional quantifiers. The are not very usable because of an infinite set
of temporal connectives, resp. complexity issues. Dynamic LTL [7] simply
obtains ω-regular expressive power by adding ω-regular expressions to LTL;
industrially used logics like FTL [1] and PSL/Sugar [3] are geared towards

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs



usability and, thus, provide a very rich syntax; and the linear time µ-calculus
µTL [2] simply achieves ω-regular power by replacing the until operator by a
general-purpose least fixpoint quantifier.

Inspired by the success that bounded model checking for LTL has had so
far [4], we show how to do bounded model checking for µTL. The choice of
µTL is motivated in two ways. First, since it is a natural extension of LTL,
there is reason to believe that many optimisations that have been found for
bounded model checking LTL carry over to µTL. Second, just like the modal
µ-calculus, it provides a framework which other specification formalisms can
often easily be translated into. Hence, bounded model checking for µTL has
the potential to implicitly provide bounded model checking procedures for
other languages as well.

Unlike the modal µ-calculus, µTL does not have a strict alternation hier-
archy. Therefore, every µTL formula can be transformed into an equivalent
alternation-free formula. This translation is exponential in the alternation
depth of the original formula. However, formulas with a lot of alternation are
hardly seen as specifications because they are not easy to read. The encoding
into SAT presented here makes use of this result.

The rest of the paper is organised as follows. Section 2 recalls µTL. Sec-
tion 3 compares LTL and µTL using some example formulas. Section 4 defines
a bounded semantics for µTL along the same lines as the one for LTL [4]. Sec-
tion 5 contains the reduction from µTL formulas over paths of bounded length
into SAT. Section 6 reports on a prototype implementation of this translation
and presents experimental results.

What remains to do done is to check which known optimisations for LTL
bounded model checking can be transferred to µTL, to also find small com-
pleteness thresholds like it was done for LTL [4,6], etc.

2 Preliminaries

2.1 The Linear Time µ-Calculus µTL

Let P be a set of propositions which contains tt and ff and is closed under
complementation, i.e., for every q ∈ P there is an q̄ ∈ P with ¯̄q = q. Let V be
a set of monadic second-order variables. Formulas of µTL in positive normal
form are given by the following grammar.

ϕ ::= q | X | ϕ ∨ ϕ | ϕ ∧ ϕ | ©ϕ | µX.ϕ | νX.ϕ

where q ∈ P and X ∈ V . The set Sub(ϕ) of subformulas of ϕ is defined as
usual, e.g. Sub(µX.ϕ) := {µX.ϕ} ∪ Sub(ϕ).

Formulas are assumed to be well-named, i.e., no variable is bound more
than once in a formula. Then for each ϕ ∈ µTL there is a function fpϕ :
V ∩Sub(ϕ)→ Sub(ϕ) that maps each variable X occurring in ϕ to its defining
fixpoint formula σX.ψ. If fpϕ(X) is µX.ψ for some formula ψ, we say that X
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is of type µ, otherwise X is of type ν.

A total, labeled transition system (LTS) is a tuple T = (S,−→, I, S0)
where S is a set of states. −→ is a binary relation on states s.t. for every
s ∈ S there is a t ∈ S with s −→ t. I : P → 2S interprets the propositional
constants from P in T respecting tt, ff and complementation. S0 ⊆ S is the
set of all starting states.

A path through T is an infinite sequence π = s1s2 . . ., s.t. s1 ∈ S0 and for
all i ∈ N: si −→ si+1.

We write πk for the k-th state of π, Pos(π) for the set of states in π, and
Posk(π) for {πi ∈ Pos(π) | i ≤ k}.

Formulas of µTL are interpreted over a path π = s1s2 . . . of an LTS T .
Free variables are interpreted using an environment ρ : V → 2Pos(π). With
ρ[X 7→ T ] we denote the function that maps X to T and behaves like ρ on all
other arguments. Since π will always be derivable from the context we avoid
mentioning it explicitly.

[[q]]ρ := I(q)
[[X]]ρ := ρ(X)

[[ϕ ∨ ψ]]ρ := [[ϕ]]ρ ∪ [[ψ]]ρ
[[ϕ ∧ ψ]]ρ := [[ϕ]]ρ ∩ [[ψ]]ρ

[[©ϕ]]ρ := {πk | πk+1 ∈ [[ϕ]]ρ}

[[µX.ϕ]]ρ :=
⋂
{T ⊆ Pos(π) | [[ϕ]]ρ[X 7→T ] ⊆ T}

[[νX.ϕ]]ρ :=
⋃
{T ⊆ Pos(π) | T ⊆ [[ϕ]]ρ[X 7→T ]}

We write πk |=ρ ϕ if πk ∈ [[ϕ]]ρ. If ϕ is closed, i.e., it does not contain any free

variables we write πk |= ϕ instead. Finally, we write π |= ϕ if π1 ∈ [[ϕ]].

Lemma 2.1 For every closed ϕ ∈ µTL, there is a closed ϕ ∈ µTL s.t. for all
paths π of all LTSs T : π |= ϕ iff π 6|= ϕ.

Proof. The complement ϕ can inductively be constructed using complemen-

tation closure of atomic propositions, deMorgan’s laws and the rules ψ := ψ,

©ψ :=©ψ, µX.ψ(X) := νX.ψ(X), and νX.ψ(X) := µX.ψ(X). 2

We also allow ourselves to write ¬ϕ instead of ϕ.

Approximants of a formula σX.ϕ w.r.t. a linear time structure π and an
environment ρ : V → 2Pos(π) are defined for every i ∈ N as usual:

X0
ρ :=

{
∅ for σ = µ

Pos(π) for σ = ν
, X i+1

ρ = [[ϕ]]ρ[X 7→Xi
ρ]

The following is a standard results about fixpoint logics. It follows immedi-
ately from the Knaster-Tarski Theorem and the fact that the semantics of a
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formula with a free variable is a monotone function on the subset lattice of
states on a path.

Lemma 2.2 For all ϕ ∈ µTL and environment ρ we have:

[[µX.ϕ]]ρ =
⋃
i∈N

X i
ρ , [[νX.ϕ]]ρ =

⋂
i∈N

X i
ρ

We say that X depends on Y in ϕ, written Y ≺ϕ X, if Y is free in fpϕ(X).
We write ≤ϕ for the reflexive-transitive closure of ≺ϕ. The alternation depth
ad(ϕ) of ϕ is n if there is a maximal chain X0 ≤ϕ . . . ≤ϕ Xn with consecutive
variables having different fixpoint types. Let µTLk := {ϕ | ad(ϕ) ≤ k}.

Proposition 2.3 [17,8] Every closed ϕ ∈ µTL is equivalent to a closed
ϕ′ ∈ µTL0 s.t. |ϕ′| = O(|ϕ| · 24·ad(ϕ)).

3 µTL vs. LTL

Formulas of LTL are built from atomic propositions using the boolean oper-
ators ∧, ∨ and ¬, as well as the temporal operators © (next) and U (until)
with their usual semantics [10].

Proposition 3.1 For every formula ϕ ∈ LTL there is an equivalent ϕ′ ∈
µTL0 s.t. |ϕ′| = O(|ϕ|).

It follows that µTL model checking over labelled transition systems is also
PSPACE-hard [11] where the size of the input is the number of states in
explicit representation. In fact, it is also PSPACE-complete [16].

Proposition 3.2 [2] A language is ω-regular iff it is µTL-definable.

Together with Proposition 2.3 we obtain that µTL0 is already capable of defin-
ing all ω-regular properties.

In the following, we will give a few examples of properties that are either
µTL- but not LTL-definable, or that can be written down more succinctly in
µTL.

Example 1 “Formula ψ holds on every even state of a path” is not LTL-
definable, but can be expressed in µTL as νX.ψ ∧©©X.

Example 2 Suppose we have a set Q = {q0, . . . , qn−1} of atomic propositions
and require them to occur repeatedly in this order. This can be done in µTL
with the following formula of size linear in n.

ϕ := νX.q0 ∧©(q1 ∧©(q2 ∧ . . .©(qn ∧©X) . . .))

The property is still star-free, hence, LTL definable. But note that proposi-
tions do not exclude each other. Thus, an equivalent LTL formula would have
to assert the label of the next state in accordance with the labels of the last
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n states – for every starting point in the order q0, . . . , qn−1. Hence, its size
would be quadratic in n.

Example 3 The next formula describes the capacity property of a bounded
message buffer of size n. A word w ∈ {push, pop, nop}ω satisfies βn if for every
prefix v of w, the difference between the numbers of occurrences of push and
pop in v is between 0 and n. This is also a star-free property, but for growing
n it occurs arbitrarily high in the dot-depth hierarchy of star-free languages
[15], and thus it is notoriously hard to formalize in LTL. The formula βn is
ϕ0, where ϕi is inductively defined as follows.

ϕ0 := νX0.(push →©ϕ1) ∧ ¬pop ∧ (nop →©X0)

ϕi := νXi.(push →©ϕi+1) ∧ (pop →©Xi−1) ∧ (nop →©Xi) if 1 ≤ i < n

ϕn := νXn.¬push ∧ (pop →©Xn−1) ∧ (nop →©Xn)

The size of βn is obviously linear in n, whereas only exponential size LTL
formulas specifying this property are known [12].

4 A Bounded Semantics for µTL

Assume an LTS T = (S,−→, I, S0) to be fixed and of finite size. Every path
through T starting with a state in S0 induces a linear time structure π.

Definition 1 A path π of T is called a (k, `)-loop for ` ≤ k ∈ N if πk+1+i =
π`+i for all i ∈ N.

Note that if ϕ is satisfied by a path of a finite transition system (|S| < ∞),
then it is already satisfied by a path which is a (k, `)-loop for some `, k with
` ≤ k. This is a consequence of Proposition 3.2. Small upper bounds on k –
so-called completeness thresholds – remain to be found.

Definition 2 Given a k ∈ N, a path π of T and an environment ρ : V →
Pos(π), we define the k-bounded semantics [[ϕ]]kρ by distinguishing two cases:

Case 1, π is a (k, `)-loop for some ` ≤ k: Then the bounded semantics does
not differ from the unbounded semantics of Section 2, i.e. we define

[[ϕ]]kρ := [[ϕ]]ρ

Case 2, π is not a (k, `)-loop for any ` ≤ k: Then we define

[[q]]kρ := I(q) ∩ Posk(π)

[[X]]kρ := ρ(X) ∩ Posk(π)

[[ϕ ∨ ψ]]kρ := [[ϕ]]kρ ∪ [[ψ]]kρ

[[ϕ ∧ ψ]]kρ := [[ϕ]]kρ ∩ [[ψ]]kρ

[[©ϕ]]kρ := {πi | i < k and πi+1 ∈ [[ϕ]]kρ}
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[[µX.ϕ]]kρ :=
⋂
{T ⊆ Posk(π) and [[ϕ]]kρ[X 7→T ] ⊆ T}

[[νX.ϕ]]kρ := ∅

As for the unbounded case, we define bounded approximants for the iterative
evaluation of the bounded semantics of fixpoint formulas.

Definition 3 Bounded approximants for least fixpoint formulas µX.ϕ, a k ∈
N, a path π and an environment ρ are defined for all i ∈ N as

Xk,0
ρ := ∅ , Xk,i+1

ρ := [[ϕ]]k
ρ[X 7→Xk,i

ρ ]

For greatest fixpoint formulas, bounded approximants depend on the type of
the underlying path. If π is a (k, `)-loop for some ` ≤ k then we define

Xk,0
ρ := Posk(π) , Xk,i+1

ρ := [[ϕ]]k
ρ[X 7→Xk,i

ρ ]

Otherwise, we set Xk,i
ρ := ∅ for all i ∈ N.

The following lemmas form the basis for the correctness of the reduction in the
next section. Lemma 4.1 expresses the monotonicity of the bounded semantics,
and Lemma 4.2 states that the bounded approximants really approximate
the bounded semantics. They are proved by simultaneous induction on the
structure of µTL formulas, in a way similar to the corresponding statements
for the unbounded semantics.

Lemma 4.1 For all k ∈ N, all X ∈ V, all ϕ ∈ µTL, all paths π, all environ-
ments ρ and all P ⊆ Q ⊆ Posk(π) we have: [[ϕ]]kρ[X 7→P ] ⊆ [[ϕ]]kρ[X 7→Q].

Lemma 4.2 For all k ∈ N, all X ∈ V, all environments ρ, all ϕ ∈ µTL and
all paths π we have: [[µX.ϕ]]kρ =

⋃
i∈N

Xk,i
ρ and [[νX.ϕ]]kρ =

⋂
i∈N

Xk,i
ρ .

The following lemma states that the bounded semantics is an under-approx-
imation of the unbounded semantics. This entails that any counterexample
found by bounded model checking is an actual counterexample to the checked
specification.

Lemma 4.3 For all ϕ ∈ µTL, all environments ρ, all k ∈ N and all paths π
we have: [[ϕ]]kρ ⊆ [[ϕ]]ρ.

Proof. The only interesting case is the one of ϕ being µX.ψ, and the path π
is not a (k, `)-loop for any `. For this case, we prove by a side induction on i
that Xk,i

ρ ⊆ X i
ρ for all i ∈ N, from which the lemma follows by Lemmas 4.2

and 2.2. The induction basis for the claim is trivial. For the induction step,
note that

Xk,i+1
ρ = [[ψ]]kρ[X 7→Xk,i] ⊆ [[ψ]]ρ[X 7→Xk,i

ρ ] ⊆ [[ψ]]ρ[X 7→Xi
ρ] = X i+1

ρ

where the first inclusion follows by the main induction hypothesis, and the
second one by the side induction hypothesis and monotonicity. 2
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The next lemma shows that the bounded semantics is monotone in the bound
k. This entails that by increasing the bound, one does not lose any counterex-
amples that would have been found with a smaller bound.

Lemma 4.4 For all k ∈ N, all ϕ ∈ µTL, all environments ρ and all paths π
we have: [[ϕ]]kρ ⊆ [[ϕ]]k+1

ρ .

Proof. The only non-trivial case is the one of π not being a (k + 1, `)-loop
for any ` ≤ k+1. Again, the proof is by induction on ϕ. The only interesting
case is ϕ = µX.ψ, where we prove by side induction on i that Xk,i

ρ ⊆ Xk+1,i
ρ ,

from which the claim follows by Lemma 4.2. For i = 0 this is trivial again,
and the inductive step follows by

Xk,i+1
ρ = [[ψ]]k

ρ[X 7→Xk,i
ρ ]
⊆ [[ψ]]k+1

ρ[X 7→Xk,i
ρ ]
⊆ [[ψ]]k+1

ρ[X 7→Xk+1,i
ρ ]

= Xk+1,i+1
ρ

where the first inclusion follows by the main induction hypothesis, and the
second one by the side induction hypothesis and Lemma 4.1. 2

Lemma 4.5 For any σ ∈ {µ, ν}, any formula ϕ, environment ρ, and k ∈ N
we have [[σX.ϕ]]kρ = Xk,k

ρ .

Proof. This is a consequence of Lemma 4.2, since the chain of bounded ap-
proximants must become stationary after at most k steps. The reason is that
all bounded approximants are subsets of Posk(π), and |Posk(π)| = k. 2

By use of this lemma, for a fixpoint formula ϕ containing m nested fixpoint
operators, [[ϕ]]k can be computed in km steps. For alternation-free formulas in
µTL0 one can do better. We present the construction for least fixpoints, for
greatest fixpoints it is completely analogous.

Let ϕ = µX.ψ be a closed fixpoint formula, and let X = X1, . . . , Xr be
those variables in ϕ that depend on X, i.e., X ≤ϕ Xi for i = 1, . . . , r. Since
ϕ ∈ µTL0, all the variables Xi are of type µ. Now ϕ is transformed into a
system of equations

X1 = ψ1(X1, . . . , Xr)
...

Xr = ψr(X1, . . . , Xr)

(1)

where the formulas ψj contain no fixpoint subformulas that depend on the
variables X1, . . . , Xr, i.e., every fixpoint subformula of ψj(X1, . . . , Xr) is a
subformula of some closed fixpoint subformula of ψj(X1, . . . , Xr). The trans-
lation is obtained as follows: let

fpϕ(Xi) = µXi.ψi(X1, . . . , Xi, µY1.θ1, . . . , µYs.θs)

containing free variables among X1, . . . , Xi−1, where the subformulas µYj.θj
for Yj among Xi+1, . . . , Xr are those outermost fixpoint subformulas of ψi that
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contain any free variables from X1, . . . , Xi. This formula yields the equation
Xi = ψi(X1, . . . , Xi, Y1, . . . , Ys) in (1).

For the system of equations (1), the bounded simultaneous approximants

X
k,(j)
i for 1 ≤ i ≤ r and j ∈ N are inductively defined as follows:

X
k,(0)
i = ∅ X

k,(j+1)
i = [[ψi(X1, . . . , Xr)]]

k
ρj

(2)

where ρj is the environment that maps each variable Xh to X
k,(j)
h , for 1 ≤ h ≤

r.

Lemma 4.6 For a closed fixpoint formula µX.ϕ as above, [[µX.ϕ]]k = X
k,(kr)
1 .

Proof. The fixpoint of the simultaneous iteration (2) is the same as [[µX.ϕ]]k

by Békic̀’ Theorem. Moreover, (2) reaches its fixpoint after at most k · r
iterations, since there are r subsets of Posk(π) being computed, and in the
worst case, in each iteration only one of the sets increases by one element. 2

5 The Reduction to SAT

5.1 Symbolic Representations

Propositional Logic over a set V of propositional variables is the closure of V
under the boolean connectives ¬, ∨, and consequently also ∧, →, etc. Here
we assume a finite LTS T = (S,−→, I, S0) to be given symbolically, i.e., by
propositional formulas

• fstart : Bn → B with fstart(x̄) = tt iff x̄ ∈ S0,

• fq : Bn → B for every q ∈ P with fq(x̄) = tt iff x̄ ∈ I(q),
• ftrans : B2·n → B with ftrans(x̄, ȳ) = tt iff x̄ −→ ȳ.

where n := dlog |S|e. I.e. every state is identified by a unique number in
binary coding.

Most SAT solvers expect that the input formula is given in conjunctive
normal form (CNF). Our translation as defined below produces arbitrary for-
mulas, but it is well-known that such formulas can be translated into CNF
with only a linear blow-up in size and a linear number of additional variables.

5.2 The Translation

For a symbolically represented transition system T with 2n states, a formula
ϕ ∈ µTL0 and a k ∈ N we define a boolean formula 〈〈 T , ϕ 〉〉k in the following
variables:

• the path variables s̄i = si,1, . . . , si,n for 1 ≤ i ≤ k, coding the i-th state on
a path.

• auxiliary variables v(X)i for every second-order variable X and 1 ≤ i ≤ k.
These variables will not occur in the final formula 〈〈 T , ϕ 〉〉k, they are only
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used during the construction as placeholders for free variables in subformu-
las.

• the approximant variables a(X, j)ki and a(X, j)k,`i for every second-order
variable X and 1 ≤ i, ` ≤ k and j ∈ N. These variables express that state i
is in the bounded approximant Xk,(j).

First, we define a formula 〈〈 T 〉〉k saying that the path variables s̄1, . . . , s̄k
actually encode a path in T by

〈〈 T 〉〉k := fstart(s̄1) ∧
k−1∧
i=1

ftrans(s̄i, s̄i+1) .

Next, as usual we define formulas to distinguish between the cases where the
path is a (k, `)-loop for ` ≤ k, and where it is not, by

Loopk,` := ftrans(s̄k, s̄`) ¬Loopk :=
k∧
i=1

¬Loopk,i

and using these, we define the translation by

〈〈 T , ϕ 〉〉k := 〈〈 T 〉〉k ∧
((
¬Loopk ∧ 〈〈ϕ 〉〉k

)
∨

k∨
`=1

(
Loopk,` ∧ 〈〈ϕ 〉〉k,`

))
.

The formula 〈〈ϕ 〉〉k that actually encodes ϕ in the case of a non-loop is defined
as 〈〈ϕ 〉〉k1 ∧ Defs(ϕ)k, where the formulas 〈〈ψ 〉〉ki for subformulas ψ of ϕ and
1 ≤ i ≤ k express that the ith state satisfies ψ. For formulas without fixpoint
operators, these are inductively defined by:

〈〈 q 〉〉ki := fq(s̄i)

〈〈X 〉〉ki := v(X)i

〈〈ϕ ∨ ψ 〉〉ki := 〈〈ϕ 〉〉ki ∨ 〈〈ψ 〉〉ki
〈〈ϕ ∧ ψ 〉〉ki := 〈〈ϕ 〉〉ki ∧ 〈〈ψ 〉〉ki

〈〈©ϕ 〉〉ki :=

{
〈〈ϕ 〉〉ki+1 if i < k

ff otherwise

Next, we define the translation for a closed greatest fixpoint formula as the
constant ff,

〈〈 νX.ψ 〉〉ki := ff ,

and for a closed least fixpoint formula as the approximant variable

〈〈µX.ψ 〉〉ki := a(X, kr)ki ,

where r is the number of second-order variables Y in µX.ψ with X ≤ϕ Y .
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Note that in a fixpoint formula, the bound variable can occur several times.
Therefore a straightforward translation of the approximants by syntactic un-
folding would lead to an exponential blowup. To prevent this, we use the ap-
proximant variables to abbreviate the approximants, and the formula Defs(ϕ)k

takes care of their proper interpretation. It is defined as the conjunction of
the defining formulas Def (ψ)k, over all subformulas ψ of ϕ that are closed
least fixpoint formulas.

Another exponential blowup would occur if nested fixpoints were translated
straightforwardly inside out, since the unfolding of a formula with m nested
fixpoints would produce km subformulas. Therefore we use the transformation
of a closed least fixpoint subformula ψ into a system of r equations (1), as
described at the end of Section 4:

X1 = ψ1(X1, . . . , Xr)
...

Xr = ψr(X1, . . . , Xr)

The formula Def (ψ)k describes the evaluation of this system of equations by
the simultaneous approximants (2) by giving definitions for the corresponding
approximant variables. I.e., Def (ψ)k is the conjunction of the equivalences 1

a(X, s)ki ↔ F (Xj, s)
k
i over all 1 ≤ j ≤ r, 1 ≤ s ≤ kr and 1 ≤ i ≤ k, where

• F (Xj, 1)ki is the translation 〈〈ψj(X1, . . . , Xr) 〉〉ki with the variables v(Xh)
k
g

for 1 ≤ h ≤ r and 1 ≤ g ≤ k replaced by ff, and

• F (Xj, s)
k
i for s > 1 is 〈〈ψj(X1, . . . , Xr) 〉〉ki with the variables v(Xh)

k
g replaced

by a(Xh, s− 1)kg , for 1 ≤ h ≤ r and 1 ≤ g ≤ k.

Similarly, the translation 〈〈ϕ 〉〉k,` of ϕ in the case of a loop is defined as
〈〈ϕ 〉〉k,`1 ∧ Defs(ϕ)k,`, where the inductive definition of the formulas 〈〈ψ 〉〉k,`i
differs only in the clause for ©ψ, which becomes:

〈〈©ϕ 〉〉k,`i :=

{
〈〈ϕ 〉〉k,`i+1 if i < k

〈〈ϕ 〉〉k,`` otherwise

For both closed least and greatest fixpoint formulas we now define the trans-
lation by

〈〈σX.ψ 〉〉k,`i := a(X, kr)k,`i ,

where like above, r is the number of second-order variables Y in σX.ψ with
X ≤ϕ Y .

The formula Defs(ϕ)k,` is the conjunction of the formulas Def (ψ)k,` over
all closed least and greatest fixpoint subformulas of ϕ. For such a subfor-
mula, written as an equation system in the variables X1, . . . , Xr, the for-

1 If the formulas are transformed into CNF, these equivalences need not be written, but are
implicitly produced by the transformation. One only needs to identify the variable a(X, s)k

i

with the new variable abbreviating the formula F (Xj , s)k
i .
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mula Def (ψ)k,` is defined exactly as Def (ψ)k above, only that for a variable
of type ν, the defining formulas for the first approximant variables become
a(Xj, 1)k,`i ↔ F (Xj, 1)k,`i , where in this case F (Xj, 1)k,`i is the translation

〈〈ψj(X1, . . . , Xr) 〉〉k,`i with the variables v(Xh)
k,`
g for 1 ≤ h ≤ r and 1 ≤ g ≤ k

replaced by tt.

The number of variables in and the size of the translation is measured in
the numbers n, k, the size of the input formula s and the number of second-
order variables v. They are easily estimated, and are – in the worst-case – as
follows:

Proposition 5.1 The formula 〈〈 T , ϕ 〉〉k contains O(v2k3+kn) variables, and
is of size O(v2k3sn).

Even though the number of variables produced by our translation is rather
large, in particular regarding the cubic dependence on k, this might not be
too problematic, since the approximant variables occur in k+ 1 disjoint parts
of the formulas, each containing only O(k2) of them. Furthermore, note that
it is only cubic for µTL formulas with multiple occurrences of variables under
the scopes of different numbers of ©-operators. Hence, for LTL formulas the
translation produces at most a quadratic number of variables.

Finally, we can easily observe the correctness of our translation, which is
obvious from the definition for all cases except for the fixpoint formulas. But
for those the correctness follows from Lemma 4.6.

Proposition 5.2 The formula 〈〈 T , ϕ 〉〉k is satisfiable iff there is a path π in
T starting at an initial state, and for which π0 ∈ [[ϕ]]k.

6 Experimental Results

The algorithm presented here is part of the verification tool µ-Sabre that
is being developed at LMU Munich. The program is implemented in the
lazy functional language Haskell using the Glasgow Haskell Compiler
6.2.2, with the exception of a small part of the program, dealing with linking
of the SAT solver, that was implemented in C. The SAT solver used is version
2004.5.13 of zChaff [9].

The tests were carried out on a machine with two Intel R© XeonTM 2.4 GHz
processors and 4GB of RAM. The second processor remained unused.

In a first test series we consider the property “there is a path with a b
at an even position and a c at an odd position” on a family {Tn | n ∈ N}
of transition systems, s.t. Tn has got n states. The transitions between these
states and their labels are as follows.

a aa a b c

The only starting state is the leftmost. The property is written in µTL as
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n Var Cls Red SAT

22 6 k 42 k 0.24 0.09
32 13 k 97 k 0.86 1.87
42 23 k 191 k 2.88 4.49
52 36 k 298 k 6.29 26.83
62 52 k 435 k 12.13 3.00
72 71 k 647 k 21.10 21.01
82 92 k 847 k 35.09 107.17
92 116 k 1059 k 54.94 138.97

n Var Cls Red SAT

102 143 k 1322 k 91.29 22.05
112 173 k 1597 k 124.44 213.27
122 207 k 1915 k 178.86 462.75
132 242 k 2438 k 253.42 421.27
142 280 k 2831 k 338.51 1167.54
152 320 k 3229 k 469.33 630.07
162 366 k 3699 k 583.69 10.78
172 409 k 4128 k 805.48 865.44

Fig. 1. The even b / odd c example.

(µX.b∨©©X)∧ (µY.© c∨©©Y ). It may not be an interesting property
but we include it here because it cannot be formalised in LTL, c.f. Example 1.

The running times of our reduction (Red) and the SAT solver (SAT) are
presented in Figure 1. The time unit is seconds. We only present satisfiable
instances, i.e. those of even n. The table also contains the number of proposi-
tional variables (Var) and the number of clauses (Cls) in the resulting formulas
– truncated down to multiples of 1000 in order to save space.

Our other tests use a transition system Bn modeling a message buffer of
size n, holding messages that are single bits. Every state in Bn has 2n+3 bits:
The first two are the opcode for the next operation. The third bit is the output
of the previous operation; its value is only specified in states following a pop
operation. The remaining 2n bits represent the n buffer cells, each cell being
represented by one bit indicating whether the cell is occupied, and the other
being the value stored in the cell. The value of the second bit is unspecified
for unoccupied cells.

The boolean formulas fstart and ftrans are hand-coded, with fstart saying
that the buffer is initially empty, and ftrans specifying the changes in the buffer
depending on the opcode, e.g., one disjunct of ftrans(x, y) is

¬x1 ∧ ¬x2 ∧
∧

4≤i≤2n+3

(xi ↔ yi)

stating that a nop (having opcode 00) does not change the buffer content.

We test the property ¬βn−1 of Example 3 on Bn in order to have a satisfi-
able example. The minimal counterexample showing that βn−1 is violated is a
sequence of n push operations, thus in our second experiment we test whether
Bn |=n ¬βn, for various n. The results are shown in Figure 2. Again, the time
unit is seconds.

In the third experiment, in order to see the dependence of the performance
on the bound k, we test Bn |=k ¬βn−1 for various values of k ≥ n, for fixed
n = 12. The results are presented in Figure 3.

The example formula βn was chosen for two reasons: First, as mentioned
above, the property expressed can probably not easily and succinctly be stated
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n Var Cls Red SAT

6 15 k 55 k 0.35 0.24
7 28 k 98 k 0.75 3.47
8 48 k 163 k 1.68 2.67
9 75 k 256 k 3.56 4.71
10 114 k 384 k 7.31 11.18
11 165 k 554 k 14.36 13.34
12 231 k 775 k 27.20 27.16
13 316 k 1056 k 49.56 39.64

n Var Cls Red SAT

14 423 k 1407 k 89.46 56.11
15 554 k 1840 k 158.40 95.49
16 713 k 2364 k 253.85 188.07
17 905 k 2994 k 392.49 146.14
18 1133 k 3741 k 608.33 157.17
19 1401 k 4620 k 947.79 293.46
20 1715 k 5646 k 1362.74 226.30
21 2078 k 6833 k 2072.00 810.71

Fig. 2. The buffer example with k = n

k Var Cls Red SAT

12 231 k 775 k 27.09 27.02
14 309 k 1030 k 49.92 41.57
16 398 k 1321 k 86.66 42.10
18 498 k 1648 k 145.22 73.22
20 610 k 2011 k 218.77 66.15
22 732 k 2409 k 308.51 178.23
24 866 k 2843 k 425.32 380.42

k Var Cls Red SAT

26 1010 k 3312 k 590.76 34.09
28 1166 k 3818 k 780.84 182.86
30 1333 k 4359 k 1036.56 233.37
32 1511 k 4935 k 1317.30 216.08
34 1701 k 5548 k 1659.06 161.38
36 1901 k 6196 k 2171.02 718.25
38 2113 k 6880 k 2929.20 409.74

Fig. 3. The buffer example with n = 12.

in LTL. Second, it fully utilizes the syntactic possibilities of alternation-free
µTL, since βn has n nested fixpoints, and, due to the presence of the nop
operation, each bound variable (except for Xn) occurs twice.
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Using Satisfiability Modulo Theories for
Inductive Verification of Lustre Programs
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Abstract

The problem of verifying safety properties of Lustre programs with integer arith-
metic have been attacked in several different ways. Abstract interpretation is used
in NBAC, and inductive verification using a SAT solver is used in Luke.

This paper presents a method of using Satisfiability Modulo Theories (SMT)
as an incremental decision procedure for inductive verification of Lustre program.
We show that even a very naive approach using SMT is competitive and in some
instances complementary to other approaches.

Key words: Lustre, formal verification, temporal induction,
satisfiability modulo theories

1 Introduction

In recent years, a new type of decision procedure for decidable fragments of
first order logics have been developed in the field often called Satisfiability
Modulo Theories (SMT). SMT can be seen as an extension of satisfiability
for propositional logic with constraints in a specific theory, for instance linear
arithmetic over the integers or reals. A common approach for decision proce-
dures for these logics is to extend an ordinary SAT solver with the capabibility
to handle constraints in the theory. This is the approach used in systems like
CVCLite[1], DPLL(T)[12], haRVey[7] and MathSAT[3]. Some systems, like
ARIO[19] are using a Pseudo-Boolean SAT solver instead, but is still using
the same principles.

Here we will show how an incremental SMT procedure can be constructed
with simple means, and how this procedure can be used for inductive verifi-
cation of Lustre[15] programs. The resulting program will be demonstrated
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to be in many cases comparable in performance to tools using other methods,
and in some cases superior.

1.1 Satisfiability Modulo Theories

Satisfiability Modulo Theories (SMT) is the problem of checking satisfiabil-
ity of quantifier-free first order formulas with respect to a particular theory.
The theory of interest here is quantifier-free relations over linear arithmetic
expressions, where all variables are constrained to be integer. Without loss of
generality, we can restrict ourselves to relations of these types:∑

i aixi = b∑
i aixi ≤ b

where the xis are free variables, and ai and b are (integer) constants. Relations
like these will be called constraints in this paper. We can then create formulas
like these:

(x ≤ 0 ∨ y ≤ 0) ∧ −y ≤ −1

x = 0 ∧ (P → x ≥ 0) ∧ (¬P → x ≤ −1)

where x and y are integer variables and P is a propositional variable (0-ary
predicate). Deciding satisfiability for formulas is done in a iterative algorithm.
A SAT enumerator is used, which interprets the formula as purely proposi-
tional, and enumerates all satisfying truth assignments to propositional vari-
ables and constraints. These are then checked for satisfiability in the theory
of integer linear arithmetic.

As a small example take the formula

x = 0 ∧ (P → x ≥ 0) ∧ (¬P → x ≤ −1)

The SAT enumerator may start with the model {x = 0,¬P, x ≥ 0, x ≤ −1}.
Checking this model for satisfiability in the theory of integer linear arithmetic
means to check if the system

x = 0

x ≥ 0

x ≤ −1

has a solution. It has none, so the SAT enumerator creates a new propositional
model, say {x = 0, P, x ≥ 0,¬x ≤ −1}. Now the system

x = 0

x ≥ 0

x ≥ 0

have to be checked, and since it is satisfiable, the formula is satisfiable, and
we can create a model for it by merging a solution to the above constraint
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problem with the propositional model from the SAT enumerator. The SAT
enumerator is usually implemented as a SAT solver, and requesting a new
model is done by adding a “conflict clause” describing the reason for unsatis-
fiability to the propositional formula held by the SAT solver, prohibiting the
same propositional model from recurring.

1.2 The Lustre Programming Language

Lustre is a synchronous declarative language, whose basic data abstraction is
the stream. A Lustre program is a node, with zero or more input streams and
one or more output streams. A stream is a sequence of values, and Lustre
supports boolean, integer and real streams. A node can also have internal
streams. As a short example, consider this Lustre node.

node AddIf( X : int, B :bool ) returns ( Y : int );
let

Y = if B then X+1 else X;
tel

The node has two input streams X, and B and one output stream Y. Given
the input streams X = {1, 2, 3, 4, 5, . . .} and B = { false, true, false, true, false,
. . . } we would get the output stream Y = {1, 3, 3, 5, 5, . . .}. More information
on the Lustre language can be found in [15,14].

2 The Basic Procedure

The verification method we are going to use is temporal induction [18,2], which
is simply induction with depth over time, with one small addition to make it
complete for finite state systems. The induction proof consists of two parts;
the base case where we prove that the property hold in the k first states, and
the step case where we prove that if it holds in k successive states, it also
holds in the next state. The necessary modification from ordinary induction
is that we need to require in the step case that the states are unique.

Here we will use this procedure to verify safety properties for Lustre pro-
grams with unbounded integers. This creates a infinite state system for which
induction is not complete. In the case of Lustre, this is not such bad news as
it may seem. In fact, Lustre with unbounded integers is Turing-complete[11].
This means that there exists no complete methods for verification of Lustre
programs with unbounded integers.

There are several possible ways of doing induction, the induction scheme
we use here is ZigZag[10].

In order to support unbounded integers, a decision procedure for proposi-
tional logic extended with linear constraints over the integers will be used.
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2.0.1 Translation of Lustre Expressions

Boolean streams can be translated in a straightforward way to the logic de-
scription of the transition function. For instance the logical or operator p = a
or b can be translated to

(¬a ∨ p) ∧ (¬b ∨ p) ∧ (a ∨ b ∨ p)
Translating integer stream requires a little more care. To see why, let’s look
at the translation of integer if-then-else expressions in Lustre. An if-then-else
expression looks like this

e = if b then e1 else e2

These could be translated in a straightforward way to

b→ e = e1

¬b→ e = e2

but this is inefficient since when the SAT solver assigns a value to b only one
of the expressions e1 and e2 is relevant, and this means that only one of the
equalities should be checked for satisfiability. The solution used here to use
guarded constraints g → c where g is a propositional variable called a guard
and c is a constraint. This will make it possible to disregard constraints, since
when the SAT solver assigns the guard to false, the corresponding constraint
is irrelevant to the satisfiability of the formula. The formula for an if-then-else
can then (simplified) become

b→ g1 ∧ ¬g2

¬b→ ¬g1 ∧ g2

g1 → e = e1

g2 → e = e2

In general, this does not suffice to limit the size of the constraint problems,
to those which are relevant with respect to the truth assignment of conditions
in if-the-else expressions. Since e1 and e2 above can contain arbitrary integer
expressions including if-then-else expressions, we would like to be able to dis-
regard all constraints that occur in those expressions. A description of how
this is accomplished can be found in [11].

The translation starts with the parse tree, where the property (a boolean
Lustre stream) is at the root. The parse tree is traversed depth first, trans-
lating each node in turn. The clauses with the guarded constraints g → c are
never created. Instead, a mapping between the guards and their respective
constraints is maintained in the solver.

For every propositional model constructed by the SAT solver the truth
assignment of the guards is checked. A constraint problem is generated from
the constraints whose guards are true in the model. If the constraint prob-
lem is satisfiable, a model can be constructed by combining the propositional
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model with the model to the constraint problem. Otherwise a reason for the
unsatisfiability is extracted from the constraint problem.

A reason is a subset of constraints which causes the unsatisfiability. A
clause comprising the negation of the guards for the constraints in the reason
is added to the SAT formula, prohibiting the SAT solver from generating the
same (and hopefully many similar) models again. For good performance it is
vital to extract a good reason from the unsatisfiable constraint problems.

2.1 Analysing Unsatisfiable Constraint Problems

In the integer linear programming literature, the problem of detecting reasons
for unsatisfiable constraint problems is well known. An optimal reason is called
an IIS, or an Infeasible Irreducible System, where feasibility is synonymous
with satisfiability.

Definition 2.1 An Infeasible Irreducible System (IIS) is a minimal set of
infeasible constraints.

This means that a system is an IIS iff

• it is infeasible (unsatisfiable).

• it is not possible to remove any of the constraints from the set without
making it feasible (satisfiable).

Any infeasible system contains at least one IIS. Lets look at a few examples.
The system

(1) x1 > 0

(2) x2 − 2x1 = 1

(3) x2 ≤ 1

is an IIS, since it is infeasible, and it is impossible to remove any of the
constraints without making it feasible. The system

(1) x1 > 0

(2) x2 − 2x1 = 1

(3) x2 ≤ 1

(4) x1 < 0

on the other hand, is not an IIS. It is possible to remove both 2 and 3 without
making the system feasible. Note that if 4 is removed, neither 2 nor 3 can
be removed. This means that there are two IISs for this system, {1, 2, 3} and
{1, 4}. It is also possible to have an IIS with only one constraint as in this
example:

2x = 1

The system does not have any integer solutions, so it is infeasible, and an IIS.

27



There are several methods for discovering IISs, both for Linear Program-
ming problems [6,5] and for Integer Linear Programming problems [13]. Most
of those designed for Linear Programming will also work for Integer Linear
Programming [11]. Here we will use a very simple algorithm. Since in an IIS
it is not possible to remove any of the constraints without making the system
feasible, we can try to remove the constraints in the problem one by one. If a
constraint can be removed without making the system feasible we know that
the remaining constraints contain at least one IIS. If not, we know that the
constraint we removed last is a member in an IIS and must be replaced. This
algorithm is known as deletion filtering.

There are frequently several IISs in the constraint problem, and then the
order in which the constraints are removed determines which of the IISs will
be identified. The order chosen here is the order in which the constraints were
created during translation from Lustre. The motivation for this is that we
want a reason which is as closely related to the property as possible. The
translation is done depth-first in a parse tree with the property at the root,
and the ordering chosen seems to be a close approximation of what we would
like.

In general, to find an IIS in a constraint problem C the deletion filtering
algorithm need to solve one constraint problem for each constraint in C. This
can be very expensive, and there are other more efficient algorithms. In partic-
ular, the elastic filtering algorithm [6,5] is reported to be much more efficient.
Despite this, deletion filtering can be shown to work well in this context [11].

3 A Simple Incomplete Constraint Solver

Most of the constraint problems that are generated during search are unsatisfi-
able. This is not a surprise, since it is enough to find one satisfiable constraint
problem to generate a model from the formula. It is therefore important to
be able to detect unsatisfiable constraint problems efficiently. Most of these
problems turn out to have very simple “conflicts”, and a cheap procedure will
be able to detect these without incurring the cost of a full blown constraint
solver for integer linear programming. This section describes such a cheap pro-
cedure that can detect one type of simple unsatisfiable constraint problems,
and also find approximations of reasons for these problems.

3.1 Preliminaries

We have a total ordering on all variables ≺. A total ordering is one where if
i 6= j, then either vi ≺ vj or vj ≺ vi. A constraint is on normal form if the
greatest common divisor gcd(a1, . . . , an, b) of the factors and the right hand
side is 1. Any constraint can be rewritten to normal form by dividing every
coefficient and the right hand side by gcd(a1, . . . , an, b).

An equality is a definition if the coefficient of the greatest variable (in the
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chosen variable ordering) is 1 or −1. Definitions can be rewritten on the form
xk =

∑
i6=k aixi + b.

3.2 The algorithm

The basic idea is that if we have two constraints

x < b1

x > b2

these two constraints are infeasible iff b1 ≤ b2. An algorithm that uses this fact
take one constraint at a time, simplifies it by applying all known definitions
and eliminating a number of variables. If the new simplified constraint is
a definition, this definition is applied to all known constraints, eliminating
one more variable. Then the new constraint is added to the set of known
constraints. If any pair of known constraints that are of the form ±x ≤ b,
contradicts each other, an infeasiblility has been detected. The algorithm can

Algorithm 1 Detect infeasibilities

Require: C is a set of constraints
T ← ∅
for all c ∈ C do

Use all definitions in T to simplify c
if c is a definition then

simplify all constraints in T with the definition c
end if
T ← T ∪ {c}
if T has a pair (x ≤ b1,−x ≤ b2) where b1 < −b2 then

return infeasible
end if

end for
return unknown

find explanations of infeasibilities by keeping track of which definitions are
used when simplifying constraints. When a pair of conflicting constraints is
discovered, the reason is then besides the pair, the definitions that were used,
directly or indirectly, to simplify those two constraints to their final form.

When an infeasibility has been detected by the procedure, it is possible to
continue adding constraints from the constraint set, perhaps discovering more
infeasible subsystems.

For every SAT model, this incomplete procedure can be tried. Only in
those cases where it fails to find a conflict will a more expensive procedure
have to be used.
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4 An Incremental SMT Procedure

The procedure described above has been implemented with an incremental
interface, since it will be used for inductive verification. The incremental
SAT solver MiniSAT [9] have been extended to a SMT procedure, giving a
procedure with an interface described below in C++-like pseudocode.

Var addPropositionalVariable();

Adds a new propositional variable to the solver.

Var addGuardedConstraint(Constraint c);

Adds a new constraint to the solver and returns its guard, a propositional
variable.

void addClause(List< Literal > clause);

Adds a clause to the solver as a list of literals.

bool solve(List< Literal > assumptions);

Solves the problem. The method determines if the set of clauses added so far
are satisfiable under the assumption that all literals in assumptions are true. If
the formula is satisfiable, a model for it can be retrieved.

Conflict clauses representing reasons for unsatisfiable constraint problems
are added to the SAT solver permanently. This is done in part to ensure
completeness, and in part for simplicity.

5 Experimental Evaluation

A tool named Rantanplan[4] based on the ideas presented here have been com-
pared with two competitors: NBAC 2 , based on abstract interpretation[17],
and a modified version of Luke 3 version 0.4beta. Luke is a induction-based
program using an eager encoding to a SAT solver. The modification of Luke
consists of the SAT solver being exchanged from Satnik to MiniSat[9] for per-
formance reasons.

Rantanplan is based on Luke, and shares much of the code with Luke. The
program is available from http://www.dit.unitn.it/~anders/rantanplan/

together with the test suite used for the evaluation.

2 The version for unbounded integers released on the 3rd of November 2004 is used here.
3 At the time of writing available at http://www.cs.chalmers.se/Cs/Grundutb/Kurser/
form/luke.html.
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Tool Verified Alone in verifying

NBAC 96 18

Luke 98 1

Rantanplan 106 1

Table 1
The number of properties verified by the different tools.

5.1 Experimental setup

The tests were performed on a computer with a Intel Xeon 3GHz processor
with 1024 kB cache, and 4 GB RAM running Linux. NBAC was run with the
following flags: +eliminput --cudd "-maxmem 128" The memory limit for
CUDD has been increased to 128 MBytes since some examples exceeded the
default limit. +eliminput is necessary because some properties reason about
the input signals in the current time point.

Luke represents integers a vectors of bits using propositional literals. The
size of these bit vector can be changed by the user, and for these tests, Luke
was run with the default of 16 bit integers. For easy problems, the size of
the integers does not affect affects performance enough to change the results.
Difficult problems in these experiments are difficult even for very small sizes
of the integers, so the choice of bit vector size is not critical.

5.2 Test suite description

The test suite is comprised of a number of Lustre programs together with
properties on the programs. A test is one program/property pair. Since many
programs have several properties, the same program is used in several tests.
For programs which has more than one property, there is also a test where
the property is the conjunction of all properties on the program. The test
suite consists entirely of academic examples of Lustre programs. Several are
for instance models of cache coherence protocols [8].

The tests are chosen such that they can be verified with any tool, given
enough time. Those tests which can not be verified with one or more tools
have been eliminated. An overview of the results for all test is given in table
1. It should be noted that of the 127 tests in the test suite, 7 were not verified
by any tool.

Of these 127 tests, only 72 can be used for comparisons of execution times.
There are three reasons why tests have been excluded:

• NBAC can not handle invalid properties. A small comparison between Luke
and Rantanplan for invalid properties can be found in section 5.3.1.

• For both Luke and Rantanplan, some properties of some Lustre programs
can not be verified in isolation, but only together with all other properties
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Fig. 1. The number of boolean and integer variables for the examples.
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Fig. 2. Results for all Lustre examples.

of that program. NBAC on the other hand can only verify one property at
a time, making it difficult to compare performance.

• Some properties are valid for unbounded integers and invalid for bounded
integers as modeled in Luke.

The remaining 72 tests are of varying complexity. All tests are fairly small,
as can be seen in figure 1, which shows the number of integer and boolean
variables for the tests. The tests were run with a timeout of 100 seconds.

The results are presented here in the form of cumulative incidences of
completion. This is the probability that a randomly chosen test taken from
the test suite terminates as a function of time. Another way of interpreting the
data is that it is the ratio of terminated tests as a function of time. As can be
seen in figure 2, there is a group of tests where both NBAC and Luke struggles.
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Fig. 3. Results for easy Lustre examples.

In this group we find tests with more complex arithmetic. These tests include
arithmetic expressions with the sum of two or more integer variables, whereas
the rest only contains simple arithmetic expression where one of the operands
is a constant.

Removing the examples which takes more than 10 seconds in either NBAC
or Luke leaves the data in figure 3.

5.3 Explanation of the differences

The examples where NBAC and Luke have trouble all have one thing in com-
mon: They use the sum of two or more variables in expressions. All other
examples only add or subtract to variables by a constant. NBAC also have
trouble with conjunctions of several properties, where induction based meth-
ods improves for stronger properties. The examples which can not be verified
with all (three) tools are not part of the test suite, and this may bias the tests.
The original test suite consisted of 127 tests.

5.3.1 Invalid properties

NBAC does not have built-in support for discovering that a property is in-
valid. A tool NBAC2LUCKY will soon be publicly available to interface to
the symbolic simulator Lucky [16] to aid in finding counter-examples.

Induction is complete for invalid properties, so both Luke and Rantanplan
can find the shortest possible counter-example for an invalid property. Luke
outperforms Rantanplan on invalid properties with longer counter-examples,
as can be seen in figure 4. The test in the figure has counter-examples ranging
from 2 to 7 steps.
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SAT 3.2.1

5.4 Comparison with MathSAT

As there are several highly advanced SMT solvers available, it would be inter-
esting to make a comparison with at least one of those. Therefore, a feature
has been added to Rantanplan allowing the tool to output SMT formulas in
the MathSAT format. The formulas created are the base and step cases
needed to verify the property in question. These formulas have been run with
MathSAT version 3.2.1, and an overview of the results can be seen in figure
5. Each point in the scatter plot is a pair of execution times for Rantanplan
and MathSAT respectively. The execution times of MathSAT is the total
execution time for all base and step cases which are solved by Rantanplan in
order to verify a property. A possible explanation of why such a simple pro-
cedure as described here sometimes has a better performance would be that
MathSAT is not an incremental decision procedure, and therefore would have
to “relearn” conflicts for each new case.
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6 Conclusions and Future Work

We have seen that an incremental SMT procedure can be constructed with
very simple means, and still perform well for inductive verification of Lustre
programs in comparison with other methods. There is a class of problems
with larger linear integer Lustre expressions where our approach clearly out-
performs other methods.

In comparison with other SMT decision procedures the procedure de-
scribed here is not very advanced. That the performance is still comparable to
NBAC and Luke can be attributed to three key areas where special care have
been taken. The first is the translation from Lustre to the logic. Being able to
only take the relevant constraints into consideration for each SAT model gives
a huge performance boost in this tool. Next is the heuristic for discovering
reasons for unsatisfiability in constraint problem. There is typically several
reasons to choose from, and their ability to prune the search space varies
a great deal. Lastly the incomplete procedure for detection of unsatisfiable
constraint problems makes it much more efficient.

There are several improvements which can be expected to improved per-
formance further. These are among others early pruning, which is checking
satisfiability of partial propositional truth assignments. For cases such as lin-
ear arithmetic where this may be expensive, there is weakened early pruning
using an incomplete procedure to catch most usatisfiable constraint problems.
Another idea often used is preprocessing of the constraints, trying to discover
unsatisfiable combinations of constraints before the search starts. These and
other more recent innovations are sucessfully used in other SMT procedures,
and can be expected to be beneficial here as well.
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Abstract

New heuristics and strategies have enabled major advancements in SAT solving in
recent years. However, experimentation has shown that there is no winning solution
that works in all cases. A degradation of orders of magnitude can be observed if the
wrong heuristic is chosen. The problem is that it is impossible to know, in advance,
which heuristics are best for a given problem. Consequently, many ideas - those
that turn out to be useful for a small subset of the cases, but significantly increase
run times on most others - are discarded.

We propose the notion of Adaptive Solving as a possible solution to this problem.
In our framework, the SAT solver monitors the effectiveness of the search on-the-fly
using a Performance Metric. The metric gives a score according to its assessment of
the search progress. Based on this score, one or more heuristics are turned on or off.
The goal is to use a specific heuristic or strategy when it is advantageous, and turn
it off when it is not, before it does too much damage. We suggest several possible
metrics, and compare their effectiveness. Our adaptive solver achieves significant
speedups on a large set of examples. We also show that applying different heuristics
on different parts of the search space can improve run times even beyond what can
be achieved by the best heuristic on its own.

Key words: SAT solving

1 Introduction

Recent years have seen great amounts of research on SAT solving [6,12,15].
The problem is interesting theoretically, as well as important for practical
reasons. The high capabilities of advanced solvers has encouraged their use in
various fields such as verification, artificial intelligence, CAD, and more. This,
in turn, created great incentive to invest in research of SAT solving techniques.
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Our perspective on SAT solving comes from its use in Bounded Model
Checking [3] (BMC), where the verification problem of a hardware design is
translated into a Boolean formula such that a satisfying assignment, if one ex-
ists, represents a counterexample. Most tools that implement this framework
are based on DPLL-style SAT solvers. Although the ideas presented in this
work are general, and may easily be applied to other types of SAT solvers, our
results are tuned for BMC instances. We believe the method is most efficient
when applied to instances that have internal structure.

Modern SAT solvers rely heavily on various heuristics and strategies such
as decision heuristics, restart strategies, learning strategies, clause deletion
strategies, etc [2,6,11,12,15,16]. However, many ideas that seem appealing in
theory turn out not to perform well in practice, decreasing the run time on
a few examples while increasing it on most others. As a result, these ideas
are discarded. Even successful heuristics are not useful in all cases, but it is
impossible to know beforehand which heuristics are most suitable for a given
example.

In this paper we propose the concept of Adaptive Solving. Adaptive Solving
optimizes the way different strategies are used, by applying them when they
are useful and turning them off when they are not. The adaptive solver tracks
the performance of the search and evaluates it using a Performance Metric.
Whenever the search seems not to be progressing well enough, it changes run-
time parameters by enabling or disabling heuristics. In this way the adaptive
solver is capable of making use of heuristics that do not work well in all cases.

We propose several metrics to be used in adaptive solving. These metrics
are easy to compute and incur a negligible overhead. They track different
aspects of the search and give a score accordingly. We compare their effec-
tiveness and present some insights to their use.

Our BMC tool is part of RuleBasePE [9], a parallel model checker de-
veloped at the IBM Haifa Research Laboratory. This tool uses our in-house
solver called Mage. We have implemented an adaptive version of Mage and
used it on a large number of examples. Results show that adaptive solving
reduces the overall run time by more than a third, and achieves speedups of
up to 12x on single examples.

Naturally, there are examples for which run time is increased as a result
of enabling or disabling a heuristic. The overall reduction is achieved by
significantly reducing run times on many examples, while increasing the run
time of others to a lesser degree. Results show that in general speedups are
better for larger examples, making the method highly scalable. Furthermore,
we show that even when a heuristic performs badly for a certain example,
applying it on parts of the search may give better results than not using it
at all. This means that adaptive application of heuristics gives performance
improvements over the best heuristic on its own.

Our implementation is an initial experiment in Adaptive Solving. It con-
trols only one heuristic, and uses only one metric at a time, and yet it achieved
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impressive speedups.

Related Work
Previous attempts have been made at assessing the progress of the solver’s
search for a satisfiable assignment. Aloul, Sierawski, and Sakallah view the
conjunction of conflict clauses as representing the space that is yet to be cov-
ered, with each added conflict clause reducing this space until it is empty.
Their Satometer [1] tool keeps a BDD representation of this conjunction. Of
course, the exact space cannot be calculated, so the tool uses an approxima-
tion. The drawback of this approach is its huge overhead - both in space and
in computation, which prevents it from being used as a performance metric.

Another related work is presented by Herbstritt and Becker in [7], where
decision heuristics are chosen dynamically, according to a set of probability
functions. The probabilities are changed according to several criteria. Our
work is more general because we address any run-time parameter of the solver,
not just the decision heuristic.

Nudelman et al [14] use machine learning to identify features of CNFs.
Using a large training set they learn the correlation between the hardness of
the problem and the result of different kinds of analyses of the CNF. Their
SATzilla tool [13] profiles the run times of several different solvers using the
same training set and features. When a new problem is to be solved, the tool
computes the different features and then chooses the solver predicted to have
the least run time. However, the features they use to choose the solver are not
applicable for us, because they are more relevant for random instances than
for structured ones, and because they need to be computed beforehand.

In Lagoudakis and Littman’s work [10], decision heuristics are chosen ac-
cording to a value function, which is calculated on the current state of the
search. The value function is created beforehand, using a training set. The
training set must be a significantly large set of examples that are similar in
some sense to the CNFs we want to solve. Using a training set is problematic
both because it incurs a high overhead, and because it is difficult to generate
an adequate training set, especially in the setting of SAT-based verification.

The remainder of the paper is structured as follows. Section 2 provides an
overview of DPLL-style SAT solver algorithms. Section 3 presents a variety of
performance metrics. Section 4 defines Adaptive Solving. Finally, Section 5
shows the experimental results, and Section 6 presents our conclusions.

2 Background on SAT Solving

Given a Boolean formula F over a set of variables V , the task of the SAT
solver is to find an assignment to all variables in V such that F is satisfied.
The formula is given in Conjunctive Normal Form (CNF). A CNF formula
is a conjunction of clauses, where each clause is a disjunction of literals. A
literal is an instance of a variable, x, or its negation, x.
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A literal may have one of three values: true, false, or undef (undefined). A
clause in which one literal is undefined and all the rest are false is called a unit
clause. Such a clause forces an assignment of true to the undefined literal, as
this is the only way to satisfy the formula.

2.1 SAT Solving Algorithms

Our implementation is geared towards DPLL-style solvers [5] with conflict
clause learning and non-chronological backtracking [2,11], although the adap-
tive solving concept can be applied to other solving schemes. We give a brief
description of DPLL with learning. For a more thorough discussion see [17].

while(1) {
if (decide_next_branch())

while (deduce() == CONFLICT) {
blevel = analyze_conflicts();
if (blevel == 0) return UNSAT;
else bactrack(blevel);

}
else

return SAT;
}

Fig. 1. Basic DPLL algorithm with learning

Figure 1 gives a bird’s eye view of a DPLL algorithm with learning. The
algorithm iteratively chooses a value for a variable (decide next branch()).
If all variables become assigned the algorithm halts, and outputs a satisfy-
ing assignment. Otherwise, the implications of this assignment are carried
through by the deduce() function. If deduce() reveals a conflict, the reason
for the conflict is analyzed and a conflict clause is added to the database. The
conflict clause summarizes the combination of values that lead to the conflict
and prevents this combination from being assigned a second time. The func-
tion analyze conflicts() returns a decision level to which the algorithm
backtracks. If this is level 0, it means that there exists a conflict even without
a single decision, which means that the formula is unsatisfiable. Otherwise,
the algorithm backtracks and continues the search.

2.2 Decisions

The decide next branch() function chooses a variable that is undefined and
assigns to it either true or false. This is called a decision, and the variable is
called the decision variable. The algorithm that controls the way this choice
is made is the decision heuristic. Each decision is associated with a number,
called the decision level. All the implications that result from one decision are
associated with the same decision level. When constant values are revealed,
they are associated with decision level zero.
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2.3 Boolean Constraint Propagation

Boolean Constraint Propagation (BCP) is the process of propagating the effect
of an assignment. This is the task of the function deduce() in Figure 1. Each
assignment may cause several clauses to become unit. Each unit clause implies
an assignment, which may in turn result in more unit clauses. During BCP,
this process is iterated until no further assignments can be implied.

Since modern solvers spend roughly 80% of their time carrying out BCP,
it is crucial that this process be implemented efficiently. The technique used
in Mage, as in zChaff and others, is to mark two literals in every clause as
watched literals. The rational is that a clause of length n (with n ≥ 2) can
become a unit clause only after n − 1 of its literals have been assigned false.
Only unit clauses can cause implications, so as long as the two watched literals
of a clause are undefined (or true) this clause is not unit, and there is no need
to examine it during BCP. Whenever a literal l is assigned false, all clauses in
which l is watched are examined to see whether they have become unit.

2.4 Clause Learning and Non-Chronological Backtracking

A conflict happens when BCP propagates a certain assignment and discovers
a clause with all its literals set to false. During conflict analysis, the chain of
implications that resulted in the conflict is analyzed, and the reason for the
conflict is summarized in a conflict clause. This clause describes a combination
of assignments that should not be repeated as they are conflicting. The conflict
clause is added to the clause database, thus pruning the search space that
remains to be traversed.

3 Performance Metrics

The performance of a SAT solver is measured by the time it takes to solve a
given instance. In order to evaluate whether a certain heuristic or strategy
is beneficial, the overall run time on many different formulas is compared.
The reality is that even for the best heuristics, there are examples on which
they do not work well. The role of the performance metric is to assess the
compatibility of the solver settings for a specific example during the run.

We propose the following requirements on performance metrics:

(i) The metric can be evaluated during the solver’s run.

(ii) It can be calculated efficiently, i.e. with low overhead, and with minimal
additional space consumption.

(iii) The metric gives a score that (roughly) corresponds to the effectiveness
of the search.

The nature of the SAT problem is such that it is unrealistic to expect to
find a metric that will give a perfect correlation to the end result. However,
based on our understanding of the way the solver operates, we suggest several
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candidates, which are listed below. Each metric is evaluated on a sample of
the run, consisting of a constant number of decisions.

3.1 Decision Level

When a decision causes a conflict, the solver backtracks to a previous decision
level and cancels all the assignments made in between. In this case the decision
level of the next decision will be some smaller number. Otherwise, if there
was no conflict, the decision level increments by one.

The DL metric looks at the average decision level in a single sample (in
our case - 2048 decisions). The solver reaches high decision levels when it
makes a large number of decisions without conflicts, or when the conflicts do
not set it back by much. As a result many variables keep their value for long
periods of time. This could mean that the solver spends significant amounts
of time searching in a small part of the state space. On the other hand, a low
average may indicate a high conflict rate. Since each conflict clause restricts
the space that remains to be searched, a high conflict rate is a good sign. This
leads us to expect that an efficient run is one in which the average decision
level is relatively low.

It should be noted that the average decision level is greatly influenced by
the internal structure of the solver and the chosen decision heuristic. When
experimenting with this metric, we found that the average decision level in
zChaff was, in general, twice as high as the average level for Mage when
running on the same formula.

3.2 Conflict Clause Size

As mentioned earlier, every conflict clause that is added is a constraint that
reduces the state space that remains to be searched. In general, smaller conflict
clauses are capable of posing a greater restriction. So, although it is possible
for a specific small clause to be less useful than a very large one, in general
we expect that very small conflict clauses advance the search more rapidly
towards its goal.

Our second metric, CCS, is the average length of all the conflict clauses
that were learned in a sample - the smaller the better. Note that the score
does not explicitly reflect the actual number of conflict clauses, which could
be a metric on its own.

3.3 Binary Conflict Clauses

Some Solving strategies emphasize preference towards short conflict clauses [4]
and binary clauses in particular [15]. This makes sense in light of the fact that
these clauses have the highest potential of generating implications (a single
assignment makes the clause unit). We therefore expect that adding many
binary clauses to the database greatly advances the search.

42



The BIN metric measures the percentage of binary conflict clauses out of
the total number of conflict clauses learned in a given sample.

We have also considered looking at ternary clauses as a part of this metric.
However, extensive experimentation revealed that the percentage of ternary
conflict clauses is linearly correlated to the percentage of binary clauses. In
all of our examples, these two numbers are almost equal, and they increase
and decrease in the same manner from one sample to the next. We concluded
that there is no added benefit in tracking ternary conflict clauses.

3.4 BCP Ratio

When a watched literal l in a clause c becomes false, the BCP process must
go over the literals in c and look for a new watched literal. In the worst case
scenario, all the literals in c are examined. The BCP metric measures the
ratio between the number of literals examined (all together) and the number
of clauses visited, i.e., it calculates the average number of literals examined
per clause. This ratio is indicative of the speed at which implications are
carried out. Since the BCP operation is the major part of the computation,
it is important to keep this number low.

3.5 Unary Clauses Learning

The analyze conflicts() function is capable of producing unary conflict
clauses. This amounts to learning the value some variable must have in order
to satisfy the formula. The variable is then assigned a permanent value. When
this happens, the algorithm backtracks to decision level zero and applies BCP
to discover all implications of this assignment. Any assignment resulting from
this BCP process is also permanent.

The UNARY metric tracks the rate at which permanent values are as-
signed. It gives the number of such values assigned in the last sample. An
examination of the behavior of this metric reveals that learning happens in
bursts. Typically, there are extended periods of time with little or no learning,
and then suddenly tens or even hundreds of variables are assigned a value.

4 Adaptive Solving

As mentioned earlier, there is no one heuristic that works well in all cases,
whether it is a decision heuristic or any other heuristic that is used during
the search. Our solution is an Adaptive Solver that is capable of adapting its
run-time parameters to the specific CNF it is solving. During the search, the
solver looks for signs that the run-time parameters with which it is running
are not optimal, and changes them on-the-fly.

An Adaptive Solver works according to the following scheme:
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• The run is divided into samples, where each sample consists of the compu-
tation performed during a certain number of decisions.

• At the end of each sample, a performance metric is used to evaluate the
effectiveness of the search in this sample.

• A switching condition decides whether the solver is progressing.

• If the switching condition evaluates to true, one or more parameters of the
run are changed. We call this a switch.

The specifics of an adaptive solving algorithm include the size of a sample,
the choice of a performance metric, the choice of parameters to change, and
the condition for switching. The possibilities for all these are endless. In the
end, the right choice of these elements can make the difference between success
and failure. Furthermore, the choices for each element depend on the specifics
of the SAT solver implementation. There are no clear cut rules for building
an adaptive solver. The rest of this section describes, and motivates, some of
the choices made for Mage, and the insights gained from experimentation.

4.1 The Parameter

The choice of parameters to switch is important. The idea is to choose a
parameter that has a high impact on the run time. At the same time, there
is no point in adaptively switching a parameter that is always useful. Luck-
ily, there is no shortage of such options. There are numerous heuristics and
strategies that are not used in practice because they are beneficial only for
some examples, but detrimental for most.

In our adaptive implementation of Mage, we chose the -sign option as
the parameter to control. As this is an initial experimentation in Adaptive
Solving, only one aspect of the SAT solving algorithm was controlled adap-
tively. This option controls the way a value is chosen for a decision variable
in the decide next branch() function. Normally, after choosing a variable
to decide upon, the function chooses whether to assign it true or false by ex-
amining the scores of the corresponding literals. The default is to assign true
to the literal with the highest score. Activating the -sign option will make
decide next branch() assign true to the literal with the lower score.

Experimentation shows that in general, it is better to choose the literal
with the higher score. In most examples this will result in shorter run times.
However, for some examples, choosing the lower scored literal can result in a
speedup of up to 4x (see results in Section 5).

4.2 Switching Conditions

We implemented a mechanism to compute all of the metrics mentioned in
Section 3. The sample size we chose is 2048 decisions. When using a smaller
sample we found that the metric score did not stabilize, and another switch
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would occur too soon 3 .

For each of the DL, CCS, BIN, and BCP metrics, we chose an initial bound,
so that a switch is made when the metric score exceeds the bound. The initial
bound was chosen by running a large number of examples without adaptive
solving, and inspecting the scores each metric produces. After the runs com-
pleted, we saw which were the best in terms of run times. We looked at the
average score of the “bad” runs, and the average score of the “good” ones,
and chose the initial bound for each metric to be some number in between.

In the case of the UNARY metric a switch is made if the number of added
permanent values is low over a period of several samples. Because of the
effect mentioned earlier, in which permanent values are added in bursts, the
condition for this metric was set to: “perform a switch if in 14 out of the
last 16 samples the number of permanent values added was low” (less than
3). Again, this scheme was developed by examining the runs of good and bad
examples. We noticed, for example, that even for the worst cases there may
be one or two added values in each sample, which is why we do not require
this number to be zero.

Initial experimentation revealed that for some of the hard problems the
metric scores were consistently high, and the adaptive solver was switching
parameters throughout the run. This caused a significant increase in run
times. It seems that in order for a heuristic to be effective, it needs to run
for a certain period of time without interruption. Consequently, we placed
several mechanisms to prevent the adaptive solver from switching too often:

• When a switch is made the metric bound is incremented (or decremented),
so that in order for another switch to occur the metric score will have to be
slightly worse than it was in the last switch.

• After each switch, further switching is prevented during the next 20 samples.

• A limit is placed on the number of switches allowed during a single run.

5 Experimental Results

We conducted extensive experimentation on our adaptive version of Mage.
Our benchmark suite includes 50 examples from the IBM Benchmarks Suite [8].
This is a collection of CNF files that originate from the verification of various
industrial designs using SAT-based BMC. The benchmark is very diverse, with
both long and short examples, satisfiable and unsatisfiable, various depths, etc.

Our Adaptive Solver enables switching only after 20, 000 decisions have
been executed, so that no switches are made for easy problems. The bench-
marking suite includes only examples that require more than 20, 000 decisions.
We also made sure that the examples we consider do not abort because of time-
out. This is done so that the time we choose to time out on will not influence

3 The sample size is an exponent of 2 because this makes the implementation more efficient.
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the speedup results. Although it may seem impressive to report that there
are several examples on which the native version timed-out while the adap-
tive version succeeded, in reality this only depends on the time-out constant.
Instead of reducing this constant to generate such “impressive” examples, we
chose to enlarge it to the point where all of the examples we want to run do
not time-out. This required a relatively high timeout of 10, 000 seconds. The
only two runs that time out on 10, 000, are examples that run with the -sign

option and no Adaptive Solving. This version does not influence the analysis
of the results for the adaptive algorithm, it is merely used to demonstrate that
the -sign option is overall detrimental.

The analysis of the results is done by comparing the overall speedup, i.e.,
the speedup on the sum of the run times of all examples. This number is
indicative of the effect Adaptive Solving has on a large number of examples
of various sizes, such as in the case of a full verification project. This analysis
places more weight on the larger examples. This is suitable for our experimen-
tation, because our goal is to reduce the run times of large examples without
hurting the small ones too much, thus reducing the overall time needed for
a verification project to be completed. Calculating the average speedup, for
example, would place more emphasis on reducing a two-second run to one
second, than adding an hour to an example that runs two hours. This may be
suitable for theoretical analysis, but it is not suitable for an industrial tool.
Because this is a prototype implementation of a new idea, however, we also
give the minimum and maximum speedups. We consider these an indication
to the potential of Adaptive Solving.

Our experimentation was conducted on an Intel Pentium 4, with a single
2GHz CPU, 1GB RAM, running Linux. Tables 2, 3 give the run time results
for all 50 examples, in seconds. It compares the run times between seven
versions. Native is Mage running with its default parameters and no adaptive
algorithms. In particular, the -sign option is not used, so in all decisions
the sign with the highest score is chosen. Sign is Mage running with the
-sign option all of the time. Versions DL, CCS, BIN, BCP, and UNARY
correspond to adaptive versions each using the metric implied by its name
(see Section 3). The Native and Sign versions do not calculate any of the
metrics. Initial experimentation showed that the overhead incurred by the
computation of the metric scores is negligible (only a few seconds even for the
largest examples). Because the difference is so small we omit the results for a
version that computes all metrics but does not apply adaptive solving.

Table 1 gives a summary of the results. In this table the “Time” rows
display the sum of run times on all the examples in the benchmark (in sec-
onds). The “Speedup” for each version is the runtime of Native divided by
the runtime of that version. The “Min” and “Max” rows show the minimum
and maximum speedups achieved by each version on a single example. The
results for satisfiable and unsatisfiable examples are given separately, and the
“ALL” section summarizes all the examples.
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Table 1 shows that BIN and UNARY are the best metrics, giving speedups
of 1.6 and 1.5 respectively. The BCP and CCS versions give modest speedups,
and DL has a negligible speedup. For the CCS, BIN, and UNARY versions,
the speedup is better on SAT instances than on UNSAT. On SAT instances
alone, UNARY gives a 2x speedup, while on the UNSAT instances, there is
hardly any gain. On the other hand, the BCP version works better on UNSAT
instances. The -sign option is, indeed, not recommended as a default option,
since it significantly increases the overall run time.

Examining the minimum and maximum speedups reveals how the overall
speedup is achieved – by significantly reducing run times on some examples
and only slightly increasing run times on others. For example, the worst dam-
age the BIN version causes is a speedup of 0.75 (which equals to an increase
of about a third), while its best performance is almost 12x faster. Note that
all of the examples in the benchmark suite are non-trivial. The best speedup
was achieved on an example that runs 3821 seconds on the Native version,
and 325 seconds with the BIN version.

A phenomenon we encountered, and can be seen in tables 2, 3 is that in
many cases the adaptive version performs better than either Native or Sign.
From this we learn that different sub-spaces of the search space require differ-
ent settings. This encourages us that Adaptive Solving has great potential.

Version Native Sign DL CCS BIN BCP UNARY

UNSAT Time 8662 14579 8609 7726 6702 7057 7933

Speedup - 0.594 1.006 1.121 1.292 1.227 1.091

Min - 0.097 0.771 0.874 0.831 0.830 0.913

Max - 4.354 1.641 3.878 4.042 2.951 4.017

SAT Time 14955 25256 13067 9228 8269 12637 7313

Speedup - 0.592 1.144 1.620 1.808 1.157 2.044

Min - 0.067 0.168 0.509 0.751 0.411 0.523

Max - 4.437 3.900 5.287 11.749 1.326 5.900

ALL Time 23618 39835 21676 16954 14971 19695 15247

Speedup - 0.593 1.089 1.393 1.578 1.182 1.549

Min - 0.067 0.168 0.509 0.751 0.411 0.523

Max - 4.437 3.900 5.287 11.749 2.951 5.900

Table 1
Summary of run time results for all adaptive versions

6 Conclusions

We view the Adaptive Solving algorithm presented here as a starting point
rather than a finished product. As mentioned before, there are many design
decisions in the implementation of an Adaptive Solver that can make a differ-
ence in its performance. Our choices are by no means guaranteed to be the
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best possible.

Nevertheless, the prototype algorithm was able to achieve up to 12x speedup
in run times on satisfiable examples, up to 4x speedup on unsatisfiable exam-
ples, and an overall 1.6 speedup on the whole benchmark suite. The speedup
on the sum of all run times is particularly significant in the setting of SAT-
based verification, since it represents the impact Adaptive Solving can have
on a whole verification project. Our results show that the overall time needed
for the project can be reduced, by having some of the runs finish significantly
faster and others slightly slower. The result is a verification effort that is
completed in less time, and reveals bugs much faster.

We showed that the -sign option has an overall detrimental effect on run
times. Although there are some examples for which this option is useful,
when using it on all of our examples the overall run time is much larger. It is
impossible to predict beforehand which examples will benefit from this option.
For this reason it has not been used in practice until now. The Adaptive Solver
is thus capable of making the best out of a heuristic that overall did not prove
beneficial. Our implementation controlled only one such heuristic, but there
are many others that could be used. We plan to investigate how to combine
this strength on multiple options.

An interesting phenomenon is that on some examples, although the -sign

option performs badly, using it on parts of the search space gave better results
than not using it at all. This shows that different sub-spaces require different
approaches, and clearly demonstrates that the potential of Adaptive Solving
is greater than that of the parameters it controls.

As for the performance metrics – we continue to search for better metrics.
We have discovered that some metrics perform better on satisfiable instances,
while others are better for unsatisfiable instances. This implies that a combi-
nation of metrics may be more beneficial.

The details of the adaptive algorithm need to be tuned according to the
specific implementation of the solver. The organization of the database and
the decision heuristics used by a solver influence the right choices for the
adaptive algorithm. This means that implementing the exact same algorithm
on different solvers, may yield different results.

There are many directions that require further research. Finding the best
metric and parameters to use is crucial. The algorithm used to determine when
to switch options has also not been perfected. Beyond this, we would also like
to experiment with incorporating learning algorithms into the process.
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1 Introduction

Bounded Model Checking (BMC, [3]) is a model checking approach for linear
time properties typically expressed in Linear Time Logic (LTL). BMC reduces
the search for a counterexample to an LTL property to propositional satisfiabil-
ity (SAT). Given a Kripke structure M, an LTL formula ψ, and a bound k, BMC
tries to refute M |= Aψ by proving the existence of a witness of length k to ¬ψ.
That is, BMC tries to find a witness to M |=k E¬ψ. The k-bounded witness to
M |=k E¬ψ is a path in M with at most k states. It can be either a finite prefix of
a path for a safety property or a looping path (a k-loop) in the general case.

The standard technique to check an LTL property [22,11] constructs a B üchi au-
tomaton that accepts all the counterexamples to the LTL formula, and then checks
the composition of the property automaton and the original model for language
emptiness. The size of the automaton is exponential in the length of the LTL prop-
erty, and this technique is in PSPACE [17]. Language emptiness is often checked
by a BDD-based fixpoint computation.

BMC is known to be a complementary method to the BDD-based LTL model
checking: Many problems that are hard for the BDD-based method can be solved
easily by BMC [7]. However, it is hard to predict in advance the cases where BMC
is more efficient than the BDD-based method [19].

The original Bounded Model Checking [3], although complete in theory, is
limited in practice to falsification of LTL properties. BMC can prove that an LTL
property ψ passes on a model M only if a bound, κ, is known such that, if no
counterexample of length up to κ is found (M 6|=κ E¬ψ,) then M |= Aψ. Several
methods exist to compute a suitable κ, all of them depending on M, ψ, and the
BMC encoding scheme. Some methods are straightforward, but are usually poor.
(For an invariant property, one could use an upper bound on the number of reach-
able states as κ.) The optimum value of κ, however, is usualy very expensive to
obtain: Finding it is at least as hard as checking whether M |= Aψ [6].

Several practical approaches that over-approximate the value of κ are based on
the recurrence diameter/radius of the model [3]. In [15], the authors use the forward
and backward recurrence radii to prove invariant properties. Their approach is
based on the observation that if a counterexample to an invariant exists, then there
is a simple path from an initial state to a failure state that goes through no other
initial or failure state. An invariant holds if all states of all paths of length k starting
from the initial states satisfy the invariant, and moreover, there is no simple path
of length k + 1 starting at an initial state or leading to a failure state, and not
going through any other initial or failure states. In this approach the forward and
backward recurrence radii can be found by solving a sequence of SAT instances
rather than QBF instances. Hence, they are easier to compute. However, the bound
based on recurrence radii is not as tight as the one based on the radii.

The approach of [12] does not explicitly compute the backward radius, but it
only examines counterexamples of length up to it to prove termination in invariant
checking. For a given value of k, the algorithm iterates over approximations of
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the states that are reachable from the initial states, R. The algorithm starts by
setting R to be the set of initial states. At each iteration of the algorithm, an over-
approximation of the states that are reachable from R in one step is added to R. If
no more states are added to R and R does not intersect the target states, the safety
property holds in M. It can be shown that k is less than or equal to the backward
radius of M.

For safety properties one can compose a suitable automaton with the model to
be verified. In this way, model checking is reduced to reachability and the termi-
nation criteria for invariants can be applied. General LTL properties, on the other
hand, require the ability to prove language emptines (i.e., detect cycles), and there-
fore call for different approaches to check termination.

One such approach [2] involves a translation that reduces the check for simple
liveness to the check for an invariant on an augmented model. The translation adds
two components to the model: one for loop detection and the other to monitor the
property. This addition doubles the state variables and correspondingly increases
the number of reachable states and the length of the longest shortest/simple paths.

A tight bound on proving simple liveness properties is proved in [13]; the upper
bound for checking a simple liveness property in BMC is (¬p-predicated radius +
¬p-predicated diameter). The ¬p-predicated radius (diameter) is the radius (diam-
eter) of the model after deleting all states in which p holds.

In [1], we presented a termination criterion based on the observation illustrated
in Figure 1: A counterexample to A F G¬p consists of two paths: A simple path
form an initial state S0 to a state that satisfies p (Slp in Fig. 1), and a simple path
leading back to a state that satisfies p (Sfp in Fig. 1) along which all other states
satisfy ¬p. If no counterexample is found up to the sum of the bounds on the above
simple paths, then A F G¬p holds. Our termination criterion takes into account the
position of the states that satisfy the fairness constraint p and does not augment the
model.

After the preliminaries of Section 2, in Section 3 we improve on the criterion of
[1] by introducing an additional check that often reduces the length of counterex-
amples that must be explicitly examined. In Section 4 we study the effect of the
translation from LTL to automata on the length of counterexamples and termina-
tion. In Section 5 we extend the technique to deal directly with generalized B üchi
automata. The results of our experiments are reported in Section 6, and conclusions
are offered in Section 7.

53



2 Preliminaries

LTL Model Checking is the problem of checking whether a specification, expressed
by an LTL formula ψ, holds on all paths of a model M, M |= Aψ. The LTL
formulae over atomic propositions AP are defined as follows

• Atomic propositions, true, and false are LTL formulae.
• If ψ and φ are LTL formulae, then so are ¬ψ, ψ ∧ φ, ψ ∨ φ, Xψ, and ψ Uφ.

An LTL formula that does not contain the temporal operators (X and U) is proposi-
tional. We write ψ Rφ for ¬(¬ψ U¬φ), Fψ for true Uψ, and Gψ for false Rψ.

In LTL model checking, the behavior of the model is usually described by a
Kripke structure. A Kripke structure K = 〈S, δ, I, L〉 consists of a finite set of
states S whose connections are described by the transition relation δ ⊆ S × S.
If (s, t) ∈ δ, then there is a transition form state s to state t in K. The transition
relation δ is total, i.e., for every state s ∈ S there is a state t ∈ S such that (s, t) ∈ δ.
I ⊆ S is the set of initial states of the model. The labeling function L : S → 2AP

indicates what atomic propositions hold at each state. We write δ(s, t) for (s, t) ∈ δ;
that is, we regard δ as a predicate. Likewise, we write I(s) to indicate that s is an
initial state, and, for p ∈ AP , p(s) to indicate that p ∈ L(s).

A path π in K, whether finite or infinite, is a non-empty sequence (s0, s1, . . .)
of states in K such that δ(si, si+1) for all 0 ≤ i < |π|, where |π| is the path length.
We let π(i) = si be the i-th state of π, πi = (s0, . . . , si) be the prefix of π and
πi = (si, si+1, . . .) be the suffix of π.

LTL formulae are interpreted over infinite paths. An atomic proposition p holds
along a path π = (s0, s1, . . .) if p(s0) holds. Satisfaction for true, false, and the
Boolean connectives is defined in the obvious way; π |= X f iff π1 |= f , where
πi = (si, si+1, . . .); and π |= f U g iff there exists i ≥ 0 such that πi |= g, and for
j < i, πj |= f .

The diameter d of K is the length of the longest shortest path in K. That is,
the diameter is the maximum finite distance between two states. The (forward)
radius r of K is the maximum finite distance in K of a state from the closest states
in I . In other words, the radius is the maximum number of forward transitions
needed to reach a state reachable from the intitial states. The backward radius is
the maximum number of backward transitions from a given set of states needed to
reach a state backward-reachable from those states.

A simple path between any two states s and t in K is a cycle free path. The
recurrence diameter rd ofK is the longest simple path inK. The recurrence radius
rr of K is the longest simple path in K that starts form a state in I .

A finite sequence of states can represent an infinite path if it contains a loop. A
path (s0, . . . , sk) is a (k, l)-loop path if there is a transition from state sk to state sl
for some l ≤ k. A path is a k-loop path if it is a (k, l)-loop path for some l ≤ k.

A safety property is such that every counterexample to it has a finite prefix that,
however extended to an infinite path, yields a counterexample. Sistla [16] provides
a syntactic characterization of LTL safety formulae: Every propositional formula
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is a safety formula, and if f and g are safety formulae, then so are f ∨ g, f ∧ g, X f ,
G f , and f R g. Not all safety properties are captured by this definition.

Though in principle a counterexample to a linear-time property is always an
infinite sequence of states, for safety properties it is sufficient and customary to
present an initialized simple path that leads to a bad state—one from which all
extensions to infinite paths result in counterexamples.

A Büchi automaton over alphabet Σ is a quadruple A = 〈Q,∆, q0, F 〉, where
Q is the finite set of states, ∆ ⊆ Q×Σ×Q is the transition relation, q0 ∈ Q is the
initial state, and F ⊆ Q is a set of accepting states (or fair set). A run of A over an
infinite sequence w = (w0, w1, . . .) ∈ Σω is an infinite sequence ρ = (ρ0, ρ1, . . .)
overQ, such that ρ0 = q0, and for all i ≥ 0, (ρi, wi, ρi+1) ∈ ∆. A run ρ is accepting
if there exists qj ∈ F that appears infinitely often in ρ. Every LTL formula ψ can be
translated into a B üchi automaton Aψ such that Aψ accepts exactly the paths that
satisfy ψ [9,18]. In the automata-based approach to LTL Model Checking [20], a
B üchi automaton that accepts counterexamples to the LTL formula is constructed.
Then, the existence of an initialized fair cycle in the composition of the model and
that automaton indicates failure of the specification.

3 An Improved Criterion for Language Emptiness

LetK = 〈S, δ, I, L〉 be a Kripke structure, and let p ∈ AP be an atomic proposition.
Let pathk (simplePathk) be the predicate that is true if (s0, . . . , sk) is a (simple)
path in K. The method of [1] is based on the following result.

Theorem 3.1 Let these predicates over s0, . . . , sk denote sets of paths in K:

αk = I(s0) ∧ simplePathk ∧ p(sk) (1a)
βk = simplePathk+1 ∧ ¬p(sk) ∧ p(sk+1) (1b)

β ′k = simplePathk+1 ∧
∧

0≤i≤k

¬p(si) ∧ p(sk+1) (1b′)

[[K,¬ F G¬p]]k = I(s0) ∧ pathk ∧
∨

0≤l≤k

[δ(sk, sl) ∧
∨

l≤i≤k

p(si)] . (1c)

Let m be the least value of k for which β ′k is unsatisfiable, and n the least value of
k for which (αk ∨ βk) is unsatisfiable. Then, [[K,¬ F G¬p]]k is unsatisfiable unless
it is satisfiable for k ≤ n +m− 1.

With reference to Fig. 1, n bounds the length of the path from S0 to Slp, while
m bounds the length of the path from S lp to Sfp .

The value of m in Theorem 3.1 can be unnecessarily large in certain structures.
As an example, consider Figure 2, in which some unreachable states of a structure
are shown. If S8 is the only state satisfying p, then m = 8 because of the simple
path from S0 to S8. However, such a path cannot be used to close the loop (from
Slp to Sfp in Fig. 1) because its initial state does not satisfy p. The longest simple
path whose first state satisfies p, such that p does not hold in any subsequent state
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Fig. 2. Capturing the value of m

has length 5; it is therefore sufficient to take m = 5. To capture this observation,
we add (1b′′) to Theorem 3.1.

β ′′k = simplePathk+1 ∧ p(s0) ∧
∧

1≤i≤k+1

¬p(si) (1b′′)

Predicate (1b′′) does not replace (1b′): If we move p in Figure 2 from state S8 to
state S2, β ′k will capture the smallest value of m. In general, if the distance between
p-states in the loops is shorter than the stem paths leading to them, β ′′ will be more
effective than β ′; conversely, when the p states appear only on the stem paths, β ′

will often give the smaller value of m. Hence, we let m be the minimum value of
k for which either β ′k or β ′′k becomes unsatisfiable.

Termination criteria benefit in general from knowledge of what states are un-
reachable. Performing full reachability analysis would make subsequent BMC re-
dundant and is often too costly. However, reachability analysis of the B üchi au-
tomaton is usually quite cheap and identifies a subset of the unreachable states of
the composite model. This subset can later be used as a constraint on the paths
examined to decide termination by requesting that no state in those paths belong to
the unreachable subset.

4 Tight Büchi Automata

In [14], the authors show that the construction of [5] yields a B üchi automaton that
is tight, and therefore guarantees that shortest counterexamples in the composition
of automaton and model will map onto shortest counterexamples in the original
model. This property is not shared by the B üchi automata produced by the trans-
lation of [18] which we used in [1] to check for termination. For that reason, the
algorithm proposed in [1] used the automaton approach only for termination check;
for counterexample detection it used the BMC encoding of [3].

It is then natural to ask whether tight automata would benefit the scheme of [1],
since they would allow one to unify the models used for proof and falsification of
a property. We shall show, however, in Section 6 that most of the times the use of
tight automata increases the termination length, often substantially.

One reason for this increase in termination length, which comes from increases
of both m and n in Theorem 3.1, is to be found in the sharp increase in the number
of states and transitions that the use of tight automata causes. In addition, a tight
automaton has exactly one acceptance condition for each until operator in the LTL
formula. By contrast, approaches like the one of [18] often reduce the number of
acceptance conditions. A final important reason is related to the notion of automa-
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ton strength [4]. Tight automata are almost always strong, while the automata of
[18] are mostly weak and terminal. It can be shown that for terminal automata
m = 0 in Theorem 3.1. For weak automata, this property does not hold, but exper-
iments show that m = 0 most of the time. (In both cases, it is the β ′′ predicate that
is responsible for these low values.)

Terminal automata accept co-safety languages. Since we detect properties that
are syntactically safety properties, we apply the termination criterion for invari-
ants to most safety properties even without resort to the strength of the automaton.
However, the occasional safety property will fail the syntactic check, and, more
importantly, properties producing weak automata are common, and are handled by
our language emptiness criterion. A special criterion for weak properties can be
devised; however, its impact on performance is small.

Tight automata are also to be considered as replacement of the traditional BMC
encoding of [3] for counterexample detection. In fact, we have found that the en-
coding of [8,10], which are closely related to the use of tight automata, often im-
prove the speed of counterexample search.

5 Checking Multiple Fairness Conditions

The approach of Theorem 3.1 for checking language emptiness only considers
B üchi automata with one fair set. B üchi automata with multiple fair sets are known
as generalized B üchi automata. The acceptance condition of a generalized B üchi
automaton is a set of fair sets F ⊆ 2Q. A run of a generalized B üchi automaton is
accepting if some state pi of each of the sets Fi ∈ F appears infinitely often.

One solution to handle multiple fair sets F = {F1, . . . , Fr} is to convert a gen-
eralized B üchi automaton G to an equivalent B üchi automaton A. The standard
construction composes a counter with G. The counter has r = |F| states, is ini-
tialized to 1, and is incremented from i to i + 1 when a state in Fi is visited. It is
reset from r to 1 when a state in Fr is visited. A fair state inA is a state in which G
satisfies F1 and the counter’s value is 1.

The conversion expands the size of the automaton by a factor related to the
number of fair sets. The effectiveness of our termination criterion depends on the
order at which the fair sets in F are visited and in general is reduced as the number
of fair sets increases because the fair cycles of the non-generalized automaton tend
to grow longer and longer.

To counter this effect, instead of using a counter, we add a state variable xj for
each fair set Fj which keeps track of when a state in Fj is visited.

xj(0) = pj(0)

xj(t) = pj(t) ∨ xj(t− 1) ∧ ¬x(t− 1) .

A fair state in the B üchi automaton is one thata satisfies x =
∧r

j=1
xj . We can then

check the conditions of Theorem 3.1 on x. We call this method the Flag method.
Another solution is to extend Theorem 3.1 to handle multiple fair sets. One way
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Table 1
Using β′′

β ′ β ′′ Both

Model m n T (s) m n T (s) m n T (s)

Arbiter 7 - 128.7 6 - 117.8 6 - 130.3

Abp 2 - 215.2 2 - 214.7 2 - 270.3

D4 11 11 37.37 0 11 29.99 0 11 28.33

Fabric1 8 8 2.71 0 8 1.28 0 8 1.26

Fabric2 8 8 32.15 0 8 20.69 0 8 20.33

Feistel 2 9 2.77 0 9 2.63 0 8 2.59

FPMult 3 3 3.26 0 3 2.67 0 3 2.49

Huffman1 1 1 21.83 0 1 17.29 0 1 17.01

Huffman2 3 3 54.25 0 3 42.56 0 3 43.01

Huffman3 10 10 100.57 0 10 14.24 0 10 13.68

Miim1 3 3 0.17 0 3 0.14 0 3 0.17

Miim2 - - 109.59 0 - 108.37 0 - 108.97

PPC60X bus - - TO 0 - 1002.2 0 - 1010.93

Smult - - 8.95 0 - 8.77 0 - 8.64

TicTacToe1 11 11 476.22 0 11 261.75 0 11 262.02

TicTacToe2 1 1 518.78 0 1 423.68 0 1 424.42

Tlc 0 15 2.07 0 15 2.13 0 15 2.12

Vsa16 - - 283.03 0 - 296.61 0 - 294.33

to achieve that is to check language emptiness for the fairness condition
⋃
F∈F F .

This approach, which we call the Or approach, will in general be conservative in
estimating the termination length, but does not require any increase in the number
of states of the automaton. Besides, taking the union of the fair sets may decrease
the distance between fair states along the loops and hence reduce the value of m.

Yet another way to deal with multiple fairness constraints is to apply Theo-
rem 3.1 to each fairness condition in turn. This One method also produces conser-
vative values for m and n, but compared to the Or approach, will be more effective
when one fairness constraint cannot be satisfied in isolation.

6 Experimental Results

The results presented in this section are for models that are from industry, and
from the Texas-97 and VIS Verification Benchmark sets [21]. For each model, we
count each LTL property as a separate experiment. For all experiments, we set
the maximum value of k to 30 and we check for termination at each step. The
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Table 2
Using Automaton Reachability analysis

Model No Yes Model No Yes

CacheCo 29.28 21.68 D4 29.31 26.34

Ethernet 109.53 96.7 Heap 513.12 421.92

HourGlass 504.55 478.87 Needham 1540.1 1369.8

PI BUS 377.75 366.92 ProdCell 85.47 118.44

ReqAck 101.85 113.27 TwoFifo 95.75 87.98

TwoQ 235.37 225.58 VsaR1 353.99 366.61

Table 3
Comparing tight and non-tight automata

Non-tight Tight

Model St Strength m n T (s) m n T (s)

Coherence U strong 17 - TO 24 - TO

Ifetch1 P weak 0 2 0.31 - - 25.77

Ifetch2 P terminal 0 3 0.15 - - 26.78

FPMult1 P terminal 0 3 5.77 2 - 25.7

FPMult2 P terminal 0 3 2.79 2 - 30.79

Microwave P weak 0 0 0.1 0 8 0.3

Pathfinder P weak 0 0 0.1 0 - 22.00

PI BUS P weak 0 1 0.57 0 - 945.33

ReqAck U weak 0 - 20.15 - - 27.22

s1269-1 P weak 0 8 0.22 0 9 0.39

s1269-2 P weak 0 8 0.20 0 16 1.1

s1269-3 P terminal 0 1 0.09 0 - 81.39

s1423 P terminal 0 4 0.16 3 4 0.13

UsbPhy P weak 0 - 143.9 1 - 88.55

experiments were run on an IBM IntelliStation with a 1.7 GHz Pentium IV CPU
and 2 GB of RAM running Linux. The datasize limit was set to 1.5 GB.

The first column in every table is the name of the model. The columns labeled
m and n in each table give the values of m and n in Theorem 3.1 respectively; if an
entry in these columns is a dash, it indicates that no value is captured. The columns
labeled T give the runtimes in seconds; boldface is used to highlight best runtimes;
a TO in this column indicates a time greater than 1800 s. CPU times in all tables
are for both counterexample detection and termination checks.

In Table 1 one sees that applying β ′′ reduces the value of m. For model D4, for
instance, the value of m that is captured by β ′ is 11 while the value that is captured
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Table 4
Safety properties

General LTL Safety

Model St tl T (s) St tl T (s)

Fabric P 8 20.42 P 8 17.51

Huffman1 P 1 17.36 P 1 11.56

Huffman2 P 3 43.2 P 3 31.82

Huffman3 P 11 17.05 P 10 9.85

Lock U - 750.45 U - 129.34

Rrobin U - TO U - 160.19

VsaR P 5 361.83 P 5 285.69

by β ′′ is 0. Hence, the search for counterexample will stop after k=10 if β ′′ is used
compare to k=21 if only β ′ is used. In many cases the overhead for checking β ′′ in
addition to β ′ is well within the noise margin.

Table 2 compares the use of reachability analysis of the automaton when search-
ing for the values ofm and n (columns labeled Yes) to its omission (columns labeled
No). Reachability analysis of the automaton usually reduces runtime, but it does
not help in reducing the values of m and n.

Table 3 compares tight to non-tight Büchi automata when searching for a simple
path. The column labeled St in this table indicates whether each property passes
(P), or remains undecided (U). The column labeled Strength is the automaton
strength. From this table, we can conclude that using tight automata increases the
termination length. The termination length for the model s1423 increases from 3 to
6 when using a tight automaton. In model Coherence, the value of m is increased
from 17 to 24 when applying a tight automaton. In model Ifetch, using a tight
automaton does not even capture the value of m for a given value of k.

Table 4 illustrates the importance of a dedicated criterion for safety properties.
All properties in this table are passing properties. The column labeled St has the
same meaning as in Table 3; the column labeled tl, when present, reports the ter-
mination length.

Tables 5 and 6 show the results of applying different methods when handling
multiple fairness conditions. The columns headings identify one of the Or, One,
Flag, Counter, and Trans methods. The last one is the method that applies the
translation of liveness into safety [2]. Safety checking is performed using both
Bounded Model Checking algorithm (bmc) and the BDD-based LTL model check-
ing algorithm in VIS (ltl).

Table 5 compares the first three methods. Table6 compares all methods on a
smaller set of examples, because for Counter and Trans we manually translated the
examples. The upper part of Table 6 shows the results of applying the methods
Or, One, and Flag. The lower part shows the results of applying the Counter and
Translation methods.
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Table 5
Comparison of Or, One, and Flag

# OR One Flag

Model fair m n T (s) m n T (s) m n T (s)

Am2910-1 1 0 1 6.02 0 1 6.62 0 1 5.12

Am2910-2 1 0 - 43.24 0 - 46.35 0 - 45.35

Arbiter 3 6 - 298.77 0 - 105.95 - - 32.51

Chameleon 5 0 - TO 0 1 0.1 0 0 0.02

Cups 7 2 - TO 0 1 0.19 0 0 0.04

D12 6 0 - 22.33 0 3 0.71 6 7 1.17

D16 4 - - TO 0 1 1.49 - - TO

Dcnew 2 2 - TO 0 0 0.7 0 - TO

Nim 2 1 - 86.21 0 1 0.14 1 - 49.35

NulMdm 2 - - 133.11 0 1 196.67 - - 107.29

Philo 11 6 - TO 0 - TO 0 0 0.03

PnPong1 3 1 9 1.36 0 6 1.47 3 11 5.3

PnPong2 3 1 5 0.14 0 1 0.12 1 4 0.15

Pong-1 3 - - 99.32 0 - 287.1 1 5 0.35

Pong-2 3 - - 336.25 0 - 438.25 - - 318.42

ReqAch 2 1 - 3.79 0 - 5.19 2 - 3.12

Rether 5 0 - 59.15 0 - 379.02 0 0 0.07

Rether 5 0 - 29.16 0 - 392.42 0 0 0.09

Short 3 0 2 0 0 0 0 0 0 0

Soap 2 - - TO 0 1 0.35 - - 1523.43

Tlc-1 3 0 9 0.37 3 14 21.15 2 18 35

Tlc-2 2 0 15 2.11 0 15 6.9 4 18 13.95

Vendng1 2 14 - TO 0 - TO 13 - 1041.63

Vendng2 2 2 2 0.14 0 2 0.11 - - TO

Vendng3 2 2 19 1240.29 0 2 0.18 13 - TO

In Table 5, 20 out of 25 properties are decided passed by at least one method
within the given limit of time and value of k. Both methods One and Flag are
the fastest in 8 experiments; Or is the fastest in only 3 experiments. No methods
dominates the other in reducing the length of m and n. In model PnPong1, the
One method captures the smallest values of m and n. While in model Tlc-1, the Or
method captures the smallest values ofm and n. The Flag method proves properties
pass in zero value of k in 6 experiments.

Table 6 shows that, the values of m and n that are found by the Flag method
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Table 6
Comparison of Or, One, Flag, Counter, and Trans.

# Or One Flag

Model fair m n T (s) m n T (s) m n T (s)

Crd1 5 0 14 8.5 0 14 25.05 7 18 212.64

Crd2 5 0 26 720.51 0 1 0.05 7 - 659.39

µ1 2 4 6 0.15 0 6 0.64 0 9 0.39

µ2 2 0 0 0 0 1 0.01 5 6 0.11

µ3 2 3 4 0.3 0 3 0.12 5 7 1.84

Pong 3 - - 101.86 0 - 299.74 1 5 0.35

Short 3 0 2 0 0 0 0 0 0 0

Counter Trans(bmc) Trans(ltl)

Model m n T (s) k T (s) T (s)

Crd1 18 19 66.73 22 493.25 0.21

Crd2 22 - 128.73 30 890.56 0.15

µ1 9 12 1.6 13 5.32 0.05

µ2 7 9 0.22 18 31.56 0.05

µ3 6 11 1.91 19 92.07 0.09

Pong - - 36.88 30 48.71 TO

Short 4 4 0.02 10 0.57 0.01

are smaller than those found by the Counter method. This is because the Counter
method depends on the order in which the fair sets are visited, while the Flag
method does not.

The Trans method blows up the state space and increases the diameter and
radius of the model. In almost all the experiments in Tables 6, the Trans method,
using bmc, is the slowest one. In almost all these experiments, ltl is very fast. We
have not tried large models yet with the Tran and Counter methods because they
required considerable manual work to convert them, but we expect that for larger
examples bmc will prove faster more often.

7 Conclusions

We have presented an improved criterion for termination in Bounded Model Check-
ing, which significantly reduces termination length. An improvement to our termi-
nation check could be restricting the search using the Flag method to paths that end
in a state that satisfies at least one fairness constraint. We are currently evaluating
this improvement.

We have also shown that the use of the reachability analysis of the property
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automaton speeds up the termination check, but does not reduce the termination
length. Even though tight automata find shortest k-loop counterexamples, they
increase the termination length.

We have presented different methods for checking multiple fairness conditions
when checking language emptiness using BMC. The Flag and One methods are
the best among them. Both Flag and Counter methods are based on recording the
visiting of fair states. However, the performance of the Counter method depends
on the order of visit of the fair sets. The Flag method helps limiting the search for a
simple path to the ones satisfy all fairness constraints. Hence, it helps finding small
values for m and n, but it may increases the searching time.

The efficiency of the One method also depends on the order in which fair sets
are checked; in practice, we found that it is more efficient to check the fair states
that come from the property automaton before those supplied with the model.
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Abstract

The standard translation of a Bounded Model Checking (BMC) instance into a
satisfiability problem, (a.k.a SAT), might produce misleading results in the case
when the model under verification contains finite paths. Models with finite paths
might be produced unknowingly when using modern verification languages such as
PSL-Sugar [1]. Specifically, the use of language constructs such as restrict, assume
etc. might lead to such models. Thus the user may receive misleading results from
SAT based tools.

In this paper we describe in what circumstances the finite path problem occurs
and present an improved translation of the BMC problem into a SAT instance. The
new translation does not suffer from the discussed shortcoming. Our translation is
only slightly longer then the usual one introducing one extra Boolean variable in
the model.

We also show that this translation may improve the SAT solver runtime even for
models without finite paths.

Key words: BMC, PSL, Finite paths

1 Introduction

Since its introduction in the seminal paper [5], SAT-based Bounded Model
Checking (BMC) has become an important tool in the verification engineer
toolbox. However, traditional translation of a Bounded Model Checking in-
stance into a satisfiability problem (a.k.a SAT) is not perfect. In particular it
might produce misleading results when the model under verification contains
a finite path that violates the specification.

In this paper we describe this problem and in what circumstances it might
occur. Models with finite paths might be produced unknowingly when using
modern verification languages such as PSL-Sugar [1]. Specifically, the use of
language constructs such as restrict, assume etc. might lead to such models.

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science
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Thus the user may receive misleading results from SAT based tools. We also
present an improved translation of the BMC problem into a SAT instance
that does not suffer from the discussed shortcoming. Our translation is only
slightly longer then the usual one introducing one extra Boolean variable in
the model.

Our improved translation not only fixes the problem when finite paths
exists, it may also improve the performance of the SAT solver even for models
with no finite paths.

The rest of the paper is divided as follows: Section 2 overviews the stan-
dard translation of the BMC problem to a SAT problem. Section 3 presents
examples of models with finite paths. Section 4 presents our solution. Sec-
tion 5 details run time results that show that the new translation can assist
in runtime and Section 6 presents our conclusions.

2 Translating a BMC Problem to a SAT Problem

The usual way a BMC problem is translated to a SAT instance is quite simple.
Before describing the translation itself, we introduce several notations:

2.1 Notations

Denote by si a vector of propositional variables encoding the state of the
model in cycle i. Denote by INIT (o) the propositional formula translation
the initial set, i.e. INIT (s0) encodes ”The state s0 is in the set of initial
states”. Denote by TR(o, o) the function encoding the transition relation, i.e.
TR(si−1, si) encodes ”There is a transition from state si−1 to state si”. A
computation path is a sequence of states s0, s1, . . . , sn such that s0 is in the
initial set and for each two consecutive states si−1, si there is a transition from
state si−1 to state si (i.e. TR(si−1, si) = 1).

Finally we introduce the notion of a bad state. Recall that BMC can be
applied to formulas of the form always p. Since the specification is of the type
always p 1 , the specification can be seen as an invariant, a bad state is a state
that violates the specification invariant. For example, if the specification is
always p, a bad state will be any state not satisfying p. Denote by BAD(o)
the formula translation of the bad states, i.e., BAD(si) encodes ”The state si
is a bad state”.

A bug is a bad state that is reachable by a computation path.

1 In fact, many other formulas can be transformed to formulas of the type always p, possibly
adding to small monitoring automata to the model. SAT based BMC methods can then
handle all safety formulas [3], and even liveness formulas (although in the latter case, the
complexity price is significant).

66



2.2 The translation

The standard translation of BMC into a satisfiability problem is to find a
satisfying assignment to the following equation:

INIT (s0) ∧ (
k∧
i=1

TR(si−1, si)) ∧ (
k∨
i=0

BAD(si))(1)

A bug can be reached within k cycles iff the traditional BMC formula is
satisfiable. Furthermore, a satisfying assignment to the BMC formula can be
translated in a straightforward manner to a counter-example trace leading to
the bug.

In practice, the verification engineer fixes the length parameter k, for ex-
ample k = 10. The tool produces the formula and feeds it into a SAT solver.
If the formula is satisfiable then a bug is found, otherwise, the result is seen
as ”k-passed”, i.e., the model does not contain a bug in paths up to length
k. Some modern verification tools (such as IBM’s RuleBase [4]) also provide
automatic modes in which the bound k is automatically increased until a bug
is found or the system runs out of resources.

V AR xx : 0..7;

ASSIGN
init (xx) := 0;
next(xx) := case

xx = 7 : 0;
else : {xx, xx+ 1};

esac;

assume always((xx ! = 7) | (next(xx) = 2));

Fig. 1. Simple model with a finite path

3 Models with Finite Paths

Model checking is usually performed on infinite paths models [6]. A finite
computation path may result from a computation ending in a state for which
no other state satisfies the transition relation. For example, the model de-
picted in Figure 1 has finite paths: a finite path may occur if xx reaches 7.
In that case, xx must both become 0 to satisfy the next(xx) assignment, and
become 2 to satisfy the assume statement. Clearly no value can satisfy both
constraints therefore the path has no continuation and is finite.
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In modern verification languages such as PSL-sugar, finite paths might
occur from constructs such as assume and restrict statements, using next
variables on the right hand side of an assignment statement, and from assume
or restrict verification directives. We would like to stress that even though
the example in Figure 1 is contrived, models with finite paths often occur in
practice because engineers find assumptions to be a very useful convenience
and that was our motivation in doing this work.

When dealing with a model that has finite computation paths, it is cus-
tomary to define a bug as valid only if it is part of an infinite path. Still,
it is also reasonable and desirable to define it as valid even it has no infinite
extension for several reasons:

(i) In many cases the verification engineer is interested in bugs occurring on
finite paths. In fact, the verification engineer often introduces verification
directives (such as restrict) that might turn many or even all paths to
finite ones. This is done in order to reduce the state space significantly
and to ”concentrate” the verification effort on parts of the state space that
the verification engineer considers sensitive. For example, a verification
engineer may use such directives in order to ignore paths with known
bugs, so the verification engineer may turn an assert into an assume,
however, any bug that occurs prior to the violation of the assume is
relevant and should be reported.

(ii) Some of the main verification techniques used by modern tools, do not
guarantee that a bug found is on an infinite path. The most notable
are BDD-based On The Fly verification (e.g. IBMs Discovery engine
inside RuleBase), and SAT based Bounded Model Checking. While both
techniques can be adapted to ensure that a bug found can be reached on
an infinite path, the cost (in terms of time and memory consumption) of
this adaptation is significant, many times much bigger than the cost of
finding the bug in the first place.

To see that SAT based BMC does not ensure that the bug found is on
an infinite path, simply note that the BMC formula refers only to the first k
cycles and there is no guarantee as to what happens after cycle k. There are
SAT based algorithms that solve the unbounded MC problem but they do not
scale to large designs as BMC.

Therefore, the approach today is to find bugs on finite as well as infinite
path. While this approach does not follow the strict temporal logic defini-
tions it enables the verification engineer to enjoy stronger tools (such as BDD
based On The Fly algorithm, or SAT based BMC), as well as easier use of
verification directives statements (such as restrict). See for example [7] that
discusses the temporal logic semantics on finite paths and considers validity
of bugs which appear only on finite paths.
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Verification engineers that use BMC to find bugs expect BMC to be con-
sistent : the expectation is that if BMC does not find a bug on a run with a
bound of k , then it can not find bugs on any run with bound k′ < k .The
consistency of BMC is a very important attribute, since it enables the verifi-
cation engineer to increase k in increments grater than one without the risk
of missing a bug.

The traditional BMC formula does not treat finite paths well enough. For
example, the model in Figure 2 is deterministic, and therefore contains only
one path. This single path is finite and of length 5 since at cycle 5 (when
the first cycle being cycle 0) it holds that xx = 5. If xx = 5 the path
has no continuation since no state can satisfy both the next(xx) assignment
statement and the assume statement.

V AR xx : 0..7;

ASSIGN
init (xx) := 0;
next(xx) := case

xx = 7 : 0;
else : xx+ 1;

esac;

assume always((xx ! = 5) | (next(xx) ! = 6));

Fig. 2. An example of a model with all paths being finite

3.1 The Bounded Paths Problem

The equation Eq. 1 encodes the following statement: ”There is a computation
path of length k, and somewhere on this path a bad state is encountered”.
Note however, that in a model in which all paths that violate the specification 2

are finite and are of length k−1 or less the formula is unsatisfiable although a
bug might be encountered before cycle k− 1. For example, look at the model
in Figure 2 with the specification always(xx < 3). The model violates the
specification in the fifth cycle (the first cycle being cycle 0). However, if the
verification engineer sets the bound k to 10, then Eq. 1 will be unsatisfiable
because there are no paths of length 10. Thus the verification engineers seeing
that the formula is unsatisfiable will classify the model as ”10-passed”, which is
clearly wrong. Increasing the bound will not help and decreasing the bound is

2 We neglect paths in which the bug is cycle larger than k, and cannot be found in this
run of BMC in any case.

69



counter-intuitive for the engineer and it is impractical to ask him to consider it.
So the end result will be a bug miss which is a very severe outcome. In other
words, using SAT on a model which contains PSL assumptions absolutely
requires handling this case.

By this example we can see that the presence of finite paths causes BMC
to lose its consistently attribute, this is problematic even if the verification
engineer is not interested in bugs that occur on finite paths, the reason is that
the verification engineer cannot tell that a bug is on a finite path (the path
may be long enough), and therefore can suffer from the following scenario:

(i) A BMC run with a bound of k passes since it ignores a violation in a
finite k′-length path (k′ < k).

(ii) As a result of a change in the design, the verification engineer runs BMC
again and by chance uses a bound of k′′ < k′. A bug is reported and
the verification engineer assumes that this is a new bug, entered by the
change in the design.

Such a scenario is obviously problematic.

4 Solution to finite path problem

A simple solution is to start with k = 1 and increment k by 1 on each iteration
of the verification tool, then we are sure to catch the bug on the first k it
appears. The problem with this solution is of course that it is extremely
time consuming since many invocations of the verification tool are needed.
A second solution is to encode into a propositional formula the statement
”Either there is a path of length 1 leading to a bad state, or there is a path
of length 2 leading to a bad state or... there is a path of length k leading to a
bad state”. This solution, while only invokes the SAT solver once, invokes it
on a significantly longer formula (in fact of quadratic length compared to the
original formula), which is extremely costly.

4.1 The Improved Translation

A better solution to the finite path problem can be achieved by changing
slightly the traditional BMC formula. We introduce one extra Boolean vari-
able to the model called AlreadyFailed. This variable records whether a bug
has been hit on particular path. Mathematically:

• For an initial state s0

AlreadyFailed(s0)↔ BAD(s0)

• For any other state si,
AlreadyFailed(si)↔ (AlreadyFailed(si−1) ∨BAD(si))
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The BMC equation now becomes:

INIT (s0) ∧ (
k∧
i=1

(TR(si−1, si) ∨ AlreadyFailed(si−1))) ∧ (
k∨
i=0

BAD(si))(2)

Thus by adding this extra variable and changing the translation we are
ensured of identifying a bug even if it is sitting on a finite path and the bound
k we choose to submit to the model checker is greater than the length of that
path.

In fact it is possible to simplify this translation in two ways:

(i) we can replace the definition of AlreadyFailed by
AlreadyFailed(s0)→ BAD(s0)
AlreadyFailed(si)→ (AlreadyFailed(si−1) ∨BAD(si))

(ii) we can replace the term
∨k
i=0BAD(si) in Eq. 2 with AlreadyFailed(sk).

However, these replacements may not necessarily provide a better runtime.

4.2 Implementation details

The new translation presented in Eq. 2 can in theory be applied always, even
if the model under verification does not contains finite paths. In practice, It is
not clear the effect of this translation to the performance of the SAT solver. It
can slow the SAT solver since some optimizations cannot be performed when
this translations is used, and since we added a new variable to the formula. On
the other hand it may improve the SAT solver performance especially when
the formula is satisfiable. The intuition is that the SAT solver attempts to
find an assignment for all the variable replications until cycle k even if the bug
is on cycle k′ < k, In the new translation the SAT solver takes advantage of
the AlreadyFailed variable replications to assign arbitrary values to variable
replications belonging to cycles greater than k′, and therefore may find the
assignments faster.

For models with finite paths this is a necessity. Therefore the actual im-
plementation has the following details:

The translation checks if the model contains PSL constructs that cause
finite paths and chooses the translation according to that:

(i) When there can be finite paths there are several options:
(a) It is recommended to use the new translation (Eq. 2).
(b) The user can use the traditional translation, while advancing k by 1

each run. this way no bug is missed. However, this seems to be a
very slow technique.

(c) The user can force the use of the traditional translation (Eq. 1) using
larger steps. However, the risk of missing a bug is taken after a
conscientious decision.

(ii) When there can be no finite paths, the only issue in choosing the trans-
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lation is the SAT solver performance. There are several options:
(a) Use the new translation (Eq. 2). This is recommended if it the user

think that the SAT solver will find a satisfying assignment.
(b) Use the traditional translation. This is recommended when the user

think that the SAT solver will not find a satisfying assignment.
(c) Use both translations and run two SAT solvers in concurrent, killing

the slowest after the quickest gives a response. This is recommended
for users that have the hardware resources.

The trace that is generated may contain states after the cycles that the bug
occurred. In case the translation in Eq. 2 was used, those states can violate
the constraints of TR(o, o) and hence confuse the engineer. A postprocessing
program has to remove those states from the trace before presenting it to the
user.

5 Experimental results

As mentioned in Section 3 models with finite paths require the translation of
Eq. 2 in order to identify an error so regardless of runtime improvement it is
necessary to use the new translation. However, the new translation can also
improve runtime. Table 1 details a comparison of the new and old translation
in runs when the bound k = 100. This is a typical situation when a verifica-
tion engineer starts verifying a new design. In this case, the engineer assumes,
as is usually the case, that a bug exists in the first 100 cycles. All the SAT
problems in Table 1 are satisfiable. They are taken from some proprietary
industrial designs and from the IBM benchmarks [2]. Table 1 shows that in
most of the cases, except for D1, the new translation significantly reduces the
runtime. A reasonable explanation for such results is the fact that when a bug
exists in a relatively small cycle then the new translation makes it much easier
for the SAT solver to find a satisfying assignment for the formula variables in
the higher cycles.

Table 2 details another realistic usage methodology. In practice, users run
successive SAT in bound increments of 10 or 20 until a bug is found or a
desirable cycle limit is reached. When the model contains finite paths the
traditional translation can only be used with increments of 1. In order to use
larger increments the new translation has to be used. All the models in the
table contain finite paths. The first column in Table 2 specifies if the SAT
problem is satisfiable or not. The second column specifies in which cycle the
bug is found or the desirable limit was reached. The fourth column details the
runtime using the old translation with 1 cycle increments. The fifth and last
columns detail the runtime with the new translation using 10 and 20 cycle
increments. In all of the examples we tried, incrementing the bound by 20 or
by 10 was faster than incrementing by 1. Note that there is no reason to use
the new translation with increments of 1 since its advantage is when the bug
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is not on the last cycle.

New trans. k=100 Old trans. k=100

batch 1 11 140 3201

D1 23 13

batch 29 142 192

batch 20 826 4039

batch 22 3203 13383

batch 18 490 3293

D2 237 250

Table 1
New translation Vs. Old translation. The runtime is displayed in seconds.

SAT/UnSAT No. Cyc. Old Trans. New Trans. New Trans

inc. 1 inc. 10 inc. 20

D1 SAT 40 18773 948 3221

D3 UnSAT 60 37199 3112 2115

D4 UnSAT 60 18818 884 411

D5 UnSAT 10 1176 196 —

D6 UnSAT 15 8265 4787 —

D7 UnSAT 100 14712 685 394

D8 SAT 31 991 556 159

D9 UnSAT 60 >145000 1916 1763

D10 UnSAT 100 40012 5622 3059

Table 2
comparing various increments of the new translation versus increments of 1 in the

old translation. The runtime is displayed in seconds.

6 Conclusions

In this paper we presented a new encoding to SAT based BMC that enables
BMC to effectively handle models with finite paths. This encoding is nec-
essary for preserving the consistency of BMC on a model with finite paths
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without serious performance degradation. In a certain cases, we have shown
that the use of the new encoding increases the SAT solvers performance.

In the future, we plan to implement this new encoding in conjunction with
incremental SAT based BMC [8][9].

References

[1] Property Specification Language: Reference Manual. Version 1.1, Accellera,
June 2004.

[2] The IBM Formal Verification Benchmarks,
http://www.haifa.il.ibm.com/projects/verification/
RB Homepage/bmcbenchmarks.html,2004.

[3] Ilan Beer, Shoham Ben-David, Avner Landver: On-the-Fly Model Checking of
RCTL Formulas. CAV 1998.

[4] Shoham Ben-David, Cindy Eisner, Daniel Geist, Yaron Wolfsthal: Model
Checking at IBM. Formal Methods in System Design 22(2): 101-108 (2003)

[5] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, Yunshan Zhu: Symbolic
Model Checking without BDDs. TACAS 1999.

[6] Edmund Clarke, Orna Grumberg, Doron Peled, Model Checking, MIT Press,
2000.

[7] Cindy Eisner, Dana Fisman, John Havlicek, Yoad Lustig, Anthony McIsaac and
David Van Campenhout, Reasoning with Temporal Logic on Truncated Paths,
CAV04.

[8] H. Jin, F. Somenzi. An incremental algorithm to check satisfiability for bounded
model checking. BMC04

[9] Ofer Strichman: Pruning Techniques for the SAT-Based Bounded Model
Checking Problem. CHARME 2001.

74



BMC 2005 Preliminary Version

Computing Over-Approximations
with Bounded Model Checking

Daniel Kroening1

Computer Science Department
ETH Zürich
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Abstract

Bounded Model Checking (BMC) searches for counterexamples to a propertyφ with a
bounded lengthk. If no such counterexample is found,k is increased. This process termi-
nates whenk exceeds the completeness thresholdCT (i.e.,k is sufficiently large to ensure
that no counterexample exists) or when the SAT procedure exceeds its time or memory
bounds. However, the completeness threshold is too large for most practical instances or
too hard to compute.

Hardware designers often modify their designs for better verification and testing results.
This paper presents an automated technique based on cut-point insertion to obtain an over-
approximation of the model that 1) preserves safety properties and 2) has aCT which is
small enough to actually proveφ using BMC. The algorithm uses proof-based abstraction
refinement to remove spurious counterexamples.

1 Introduction

In the hardware industry, formal verification is well established. Introduced in
1981,Model Checking[10,12] is one of the most commonly used formal verifi-
cation techniques in a commercial setting. However, it suffers from the state ex-
plosion problem. In case of BDD-based symbolic model checking this problem
manifests itself in the form of unmanageably large BDDs [7].

This problem is partly addressed by a formal verification technique calledBoun-
ded Model Checking(BMC) [6], introduced by Biere and others. In BMC, the tran-
sition relation for a complex modelM and its specificationφ are jointly unwound
up to a depthk to obtain a formula, which is then checked for satisfiability using
a propositional SAT procedure such as Chaff [25]. In the case thatφ is a safety
property, the formula is satisfiable iff there exists a counterexample of lengthk,
i.e.,M 6|=k φ. If not so,k is increased to search for longer counterexamples. This
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process terminates either if the SAT procedure exceeds its time or memory bounds,
a counterexample is found, ork exceeds acompleteness thresholdCT [17]. In the
later case,k is sufficiently large to ensure that no counterexample exists, and thus,
we concludeM |= φ. BMC has been used successfully to find subtle errors in very
large industrial circuits [27,14].

The disadvantage of BMC is that it is typically only applicable for refutation;
the best known completeness threshold for properties of typeGp is thereachability
diameterof M , i.e., the longest shortest path from any initial state to any reachable
state in the state graph. In practice, the diameter is usually too hard to compute,
and furthermore, is often exponential in the number of state variables in the model.
Therecurrence diameter[6] is an over-approximation of the reachability diameter.
However, it is still difficult to compute and typically much larger than the reacha-
bility diameter.

Thus, in practice, the principal method forprovingsafety properties isabstrac-
tion. Abstraction techniques reduce the state space by mapping the set of states of
the actual, concrete system to an abstract, and smaller, set of states in a way that
preserves the relevant behaviors of the system.

In the hardware domain, the most commonly used abstraction technique islo-
calization reduction[19,28,8]. The abstract model̂M is created from the given
circuit by removing a large number of latches together with the logic required
to compute their next state. The latches that are removed are called theinvisible
latches. The latches remaining in the abstract model are calledvisible latches. The
initial abstract model is created by making the latches present in the property as
visible, and the rest as invisible.

The abstract model is then passed to a model checker, typically BDD-based,
such as SMV. Localization reduction is aconservativeover-approximation of the
original circuit for reachability properties. This implies that if the abstraction sat-
isfies the property, the property also holds on the original circuit. The drawback of
the conservative abstraction is that when model checking of the abstraction fails,
it may produce a counterexample that does not correspond to any concrete coun-
terexample. This is called aspurious counterexample.

In order to determine if the counterexample can be simulated on the concrete
model, a Bounded Model Checking instance is typically formed: the concrete tran-
sition relation for the design and the given property are jointly unwound to obtain
a Boolean formula. The number of unwinding steps is given by the length of the
abstract counterexample. The Boolean formula is then checked for satisfiability us-
ing a SAT procedure [28]. The transitions in the abstract trace are sometimes added
to reduce the search space. The disadvantage is that other counterexamples of the
same length may only be detected with additional refinement. If the instance is sat-
isfiable, the counterexample is real and the algorithm terminates. If the instance is
unsatisfiable, the abstract counterexample is spurious, andabstraction refinement
has to be performed.

The basic idea of the abstraction refinement technique is to create a new abstract
model which contains more detail (e.g., more visible latches) in order to prevent the

76



spurious counterexample. This process is iterated until the property is either proved
or disproved. There are numerous methods to refine the abstraction. If the abstract
counterexample is used for refinement, the process is known as theCounterexample
Guided Abstraction Refinementframework, or CEGAR for short [19,2,9,15,28].

Thus, successful application of abstraction refinement with localization reduc-
tion usually requires three components:

(i) A BDD-based model checker that has enough capacity for the abstract model,

(ii) a Bounded Model Checker with enough capacity to perform the simulation of
the abstract trace,

(iii) a way to refine the abstraction in case the simulation fails.

In practice, despite of the abstraction, the first step often turns out to be the bottle-
neck, especially if the property depends on many latches.

This paper proposes the use of a technique commonly applied by many hard-
ware engineers in an informal and manual setting: If a design is too complex for
either simulation or verification, engineers cut or partition the circuit. Formally,
this corresponds to removing parts of the circuit and replacing the missing signals
by non-deterministically chosen inputs. This cut-point need not necessarily remove
latches, and also may preserve logic dependent only on latches that were removed.
The resulting circuit is an over-approximation of the original circuit with respect to
safety properties.

Contribution
This paper proposes to use cut-point insertion [18] in order to compute an ab-

stract modelM̂ with two features: 1)M̂ over-approximatesM , and thus, safety
properties are preserved, and 2) we can syntactically (and thus, efficiently) identify
a completeness thresholdCT that is small enough to allow BMC with boundCT .
Thus, if no counterexample is found, we can concludeM |= φ. If a counterexam-
ple is found, we check if it is spurious. If so, the cut-points are refined in order to
eliminate the spurious trace. Similar to [22], we use the proof of unsatisfiability of
the failed simulation run for refinement.

We therefore can omit the BDD-based model checker in the abstraction refine-
ment loop, and rely on BMC as the only reasoning engine. This allows proving
many properties with BMC only.

Related Work
Baumgartner et al. [5] perform a structural analysis similar to the one used for

this paper in order to obtain a completeness threshold. In contrast to the algorithm
proposed in this paper, an abstraction of the circuit in order to obtain a smaller
completeness threshold is not applied. The results are extended in [4].

The concept of the completeness threshold for BMC was introduced in [17]. A
completeness threshold for arbitrary LTL properties is given in [11]. Optimizations
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to the diameter test that take the predicates in the property into account are given
in [1].

Another popular technique to obtain a complete version of BMC is to use BMC
to prove an inductive invariant [26]. The technique uses constraints to enforce
simple (i.e., loop free) paths that are similar to the constraints used to perform
recurrence diameter tests.

Somenzi et al. [20] use such constraints to obtain a complete BMC to be used
on an abstract model in an abstraction refinement framework. As noted in [20],
the depth that has to be searched using BMC can be exponentially larger than the
reachability diameter.

Numerous methods have been proposed to refine an abstraction done by local-
ization reduction. In [13], Clarke et al. propose the use of ILP solvers and machine
learning techniques to choose a suitable set of latches for the abstract model. De-
tails on how to improve the simulation step beyond the basic BMC instance are
given in [3].

In [8], Chauhan et al. propose to analyze the conflict graph of the failed BMC
run to obtain refinement information. A similar approach is used by McMillan [22]:
the unsatisfiable core of the failed BMC run is analyzed to obtain the new set of
latches used for localization reduction. The abstract model is verified using BDDs.

The first complete model checking approach based on SAT without any ab-
straction is presented by McMillan in [21]. A SAT solver is modified to perform
pre-image computation. The approach enumerates states in the pre-image. Ex-
plicit state enumeration is avoided with an enlargement of the assignment which is
derived from the conflict graph.

In [23], McMillan presents the use of interpolants in order to obtain a complete
model checker based on a BMC-like reasoning engine.

Outline
In section2, we provide background information about bounded model check-

ing, the completeness threshold, localization reduction, and automatic abstraction
refinement. We describe the abstraction we apply in section3. Experimental results
are reported in section4.

2 Background

2.1 The Completeness Threshold and the Diameter

Let M denote a finite transition system defined by a finite set of statesS, a set of
initial statesI ⊆ S, and a transition relationR ⊆ S × S. By M |= φ we denote
that any computation ofM satisfies the propertyφ, and byM |=k φ we denote that
all computations of lengthk or less do not violateφ.

Definition 2.1 TheCompleteness Threshold[17], denoted byCT , for a finite tran-
sition systemM and a propertyφ, is any natural number such that if there is no
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computation of lengthCT that violatesφ, φ holds for any computation done byM :

M |=CT φ −→M |= φ

If M |= φ, then the smallest suchCT is 0, and otherwise it is the length of
the shortest counterexample. Thus, computing the smallestCT is as hard as de-
termining if M |= φ holds. In practice, one therefore aims at computing over-
approximations of the smallestCT .

Definition 2.2 TheDiameterof a finite transition systemM , denoted byd(M), is
the length of the longest shortest path (defined by its number of edges) between any
two reachable states ofM .

Definition 2.3 The Initialized Diameterof a finite transition systemM , denoted
by dI(M), is the length of the longest shortest path from any initial state to any
reachable state ofM .

It was already observed in [6] that d(M) is a sufficiently large bound to prove
properties of the formAGp. This bound can be improved by using the initialized
diameterdI(M). A bound for properties of the formAFp was identified in [17]. A
method to compute aCT for arbitrary LTL properties is found in [11].

Computing the Diameter
Testing if a particulark is the diameter corresponds to a QBF instance. Despite

of the progress QBF solvers made, attempts to solve such instances have failed so
far. Biere et al. suggested in [6] the use of SAT to compute the recurrence diameter,
which is an over-approximation of the diameter. However, for most interesting cir-
cuits, the recurrence diameter is either too large or too hard to compute. Mneimneh
and Sakallah [24] modify a SAT solver to compute the diameter by path enumera-
tion.

2.2 Over-Approximating the Diameter with Structural Analysis

Model checking is frequently applied to circuits, which are typically given as a net-
list. Baumgartner et al. [5] suggest to exploit the structure of these net-lists in order
to compute an over-approximation of the diameter.

Definition 2.4 A Net-list is a directed graph(V,E, T ), whereV is a finite set of
vertices,E ⊆ V × V is the set of edges, andT (v) is the type of the vertexv ∈ V .
The type is one ofand (AND-gate), inv (inverter), reg (register),inp (primary
input). The in-degree of vertices of typeand is at least one, of typeinv andreg
exactly one, and of typeinp exactly zero.

Notation
Given two verticesv1 andv2, we writev1

E→ v2 iff (v1, v2) ∈ E, andv1
E
; v2

iff there is a path fromv1 to v2 in E.
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. . . . . .

∆O = ∆1 + ∆2

∆1 ∆2

Fig. 1. Sequential composition of two components. A bound for the diameter of the com-
position is the sum of the individual diameters.

We writev1
E
;G v2 if T (v1) = T (v2) = reg and there is a path fromv1 to v2 in

E that only goes through vertices (gates) of type{and, inv}. We require any such
path to be acyclic, i.e., the logic between the latches must be combinational.

The definition of semantics for such a net-list is straight-forward. The conver-
sion of circuits given in Verilog to such a net-list corresponds to synthesis.

Definition 2.5 TheLatch Dependency Graph(LDG) of a net-listN = (V ′, E ′, T )
is a directed graph(V,E), whereV = {v ∈ V ′ |T (v) = reg} is the set of latches
in N , and there is an edge between two latchesv1 andv2 in the LDG iff there is a

path fromv1 to v2 in N that only uses gates, i.e.,v1
E→ v2 ⇐⇒ v1

E′
;G v2.

Definition 2.6 A Componentinside a circuit is a connected subgraph of the LDG.
The Component Graphis the graph generated by replacing each component by a
single vertex.

We denote the bound we derive for the diameter of a componentC by ∆(C).
Obviously2k is such a bound ifk is the number of latches inC.

In [5], bounds for the diameter for various types of components are derived that
are based on the structure of the component, e.g., for ROMs, constant latches, and
acyclic components. In particular, it is observed that the sum of the bounds of the
diameters of two components that are composed sequentially is a bound for the
composition:

Theorem 2.7 LetC1 andC2 be two components, and∆(C1) and∆(C2) be bounds
for the diameter ofC1 andC2, respectively. The sum of the two bounds is a bound
for the diameter of the sequential compositionC1 → C2 (Figure1):

∆(C1 → C2) = ∆(C1) + ∆(C2)

2.3 Abstraction via Cut-Point Insertion

Cut-Point Insertioncorresponds to replacing a signal in the net-list by a new pri-
mary input [18]. The resulting circuitM̂ is an over-approximation of the original
circuit M , and a conservative abstraction for reachability properties. As already
noted in [4], the completeness threshold of̂M is not a completeness threshold for
M ; the abstract circuit typically has a much smaller diameter. The diameter never
increases by cut-point insertion.
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Fig. 2. Abstraction-refinement loop using BMC and the Completeness Threshold

3 A Complete BMC with Over-Approximation

3.1 Overview

Figure2 shows an overview of the technique used in this paper. The algorithm
follows the proof-based abstraction refinement loop used in [22]. We use cut-point
insertion as described in section2.3as the abstraction technique. As initial abstrac-
tion, we insert cut-point such that all cycles in the net-list of the abstract model are
eliminated. This results in a very small completeness threshold.

In contrast to most related papers that implement abstraction refinement, we
do not use a BDD-based model checker to verify the abstract modelM̂ . Instead,
we compute a completeness thresholdCT of M̂ . This is described in detail in
section3.2. We then perform BMC on̂M with boundCT .

If the property holds onM̂ , we can conclude it also holds onM , and the algo-
rithm terminates. Otherwise, we obtain an abstract counterexample from the BMC
run. The loop then proceeds as in the related work. The refinement step is slightly
different and described in section3.3.

3.2 ComputingCT in the Presence of Cycles

We extend the results introduced in [5] in order to obtain a completeness threshold
for a larger class of designs. The main issue for the diameter over-approximation
are cycles in the latch dependency graph. For cycle-free components, the most
important results are summarized in section2.2.

Thus, consider a circuit with cycles in the latch dependency graph. Such cycles
are very common and typically arise from counters, or from forwarding logic in
pipelined circuits. In order to over-approximate the diameter of such circuits, we
define the concept of theweightedcomponent graph.

Definition 3.1 The weighted component graphis a component graph (as in defi-
nition 2.6) in which a weightω is assigned to each edge. We writeC1 →ω C2 iff
there is an edge fromC1 to C2 with weightω. Let V1 denote the set of latches in
C1 such that there is a path to a latch inC2 in the LDG. LetV2 denote these latches
in C2. The weight corresponds to the number of signals that connectV1 andV2.
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︸ ︷︷ ︸
∆I stages

1

0 1 ∆I − 1

Fig. 3. The diameter of a component with aone bit self-loop is bounded by2 ·∆I , where
∆I denotes a bound on the diameter of the component without the loop.

As a special case, consider a circuitI with a diameter∆I . Without loss of
generality, the circuit is represented by a pipeline withn := ∆I stages. Now add a
single-bit feedback loop (Figure3), which forms circuitO. The signal that forms
the feedback loop is computed in the last stage ofI and used as input for the first
stage ofI. There are arbitrary connections from stagei to stagei+ 1, but no other
connections.

Claim 3.2 The diameter of a simple pipeline pipeline withn stages and a single-bit
feedback loop is bounded by2 · n.

We provide a proof of claim3.2in the appendix. This result can be generalized
by eliminating the outer cycles bit by bit.

Claim 3.3 Let C1, . . . , Cn denote a list of pair-wise different components that a)
form a cycle in the dependency graph and b) contain no sub-cycle, i.e.,Ci →
Cj ⇐⇒ j = i + 1 ∨ (i, j) = (n, 1). The diameter of the component formed
by this cycle is bounded by2k times the sum of the bounds of the diameters of the
components, wherek is the weight of any edgej on the cycle:

∆(C1 →ω1 C2 →ω2 . . .→ωn−1 Cn →ωn C1) = 2ωj · Σn
i=1∆(Ci)

The proof is done by re-arranging the components such that the desired edge
represents the back-cycles and then by applying Claim3.2k times.

Example 3.4 If the cycle consists of one component only (Figure5), the diameter
of the component and the loop is bounded by∆I · 2k, where∆I denotes a bound
on the diameter of the component without the loop, andk denotes the weight of the
loop. A k-bit counter is an example of this case.

If the cycle has more than one component, it is desirable to break the cycle on
an edge with minimal weight, as the bound is exponential in the weight of the edge.
This is depicted in Figure5: The cycle can be removed using either edge.

Figure 6 shows two cycles that share a component. Such a cycle cannot be
removed with the method above. The diameter is approximated using the number
of latches in all components.
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∆I

k

∆O = 2k ·∆I

Fig. 4. The diameter of a component with self-loop is bounded by∆I · 2k, where∆I

denotes a bound on the diameter of the component without the loop, andk the weight of
the loop.

. . . . . .

k

∆1 ∆2
j

Fig. 5. The cycle can be broken using either the edge with weightk or j. The edge with
minimal weight should be chosen.

C3C1 C2

Fig. 6. Two cycles sharing a vertexC2. The cycles cannot be removed.

3.3 Refining the Abstraction

If a spurious counterexample is detected, we obtain the unsatisfiable core of the
BMC instance used for the simulation. Similar to in [22], we identify the signals
that are in this core (in [22], the latches are identified). We refine the cut-points by
removing those cut-points that correspond to a signal found in the core. We do not
introduce new cut-points.

4 Experimental Results

We have implemented the algorithm described in section3. We make our imple-
mentation available for experimentation by other researchers.

We apply the algorithm to various circuits already used in [16] to determine its
effectiveness. The benchmarks are taken from an implementation of an out-of-order
RISC microprocessor with Tomasulo scheduler. We compare the performance of
the new algorithm with the performance of plain Bounded Model Checking. All ex-
periments are performed on an Intel Xenon machine with 2.5 GHz running Linux.

Bounded Model Checking is used for refutation only, i.e., it cannot conclude
that there is no error trace. Instead, it checks the property up to a given number of
cycles. In [16], the property checked was consistency with a C program. We check
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bug Run time BMC Run time
Benchmark latches

length min. 10 20 30 40 abstraction

ALU PIPE1 419 2 0.2s 3.5s 26.7s 132.5s * 0.2s

ALU PIPE2 419 - - 107.7s 495.1s * * 1.1s

RF1 1024 - - 7.4s 30.4s 56.3s 83.4s 7.0s

RF2 1024 1 0.4s 4.6s 7.8s 23.4s * 7.5s

ROB1 2963 - - 2.0s 5.4s 7.8s 22.1s 225.6s

ROB2 2963 - - 182.8s * * * 310.2s

ROB3 2963 16 1.8s 1.7s 4.2s 6.3s 8.7s 6.3s

ROB4 2963 64 * 4.3s 38.3s 124.0s 387.0s 33.3s

Table 1
Experimental Results. If no bug length is given, the property holds. The run time for BMC

is given for various depths. The ”min” column contains the run time for BMC for the
shortest counterexample, if applicable. A star (*) denotes that the timeout of 1000s was

exceeded.

safety properties instead, which is easier. Table1 summarizes the experimental
results. A short description of each circuit can be found in [16].

In conclusion, traditional BMC typically outperforms the new algorithm if the
property is to be refuted. This is to be expected, as refutation is done using a
regular BMC instance in the refinement loop. However, the experiments also show
the benefit of the technique if the property is to be shown. In many cases, the
refinement loop can show the property with a small bound.

5 Conclusion

We present an abstraction refinement loop that solely relies on BMC as its only rea-
soning engine. We use cut-point insertion in order to obtain an abstract model with
a small completeness threshold. The completeness threshold is over-approximated
with a structural analysis that permits cyclic circuits. If the abstraction is too coarse,
cut-points are removed, which results in fewer spurious behavior but also a larger
completeness threshold.

Our preliminary experimental results show that the technique performs well
on circuits that implement a pipeline. We make our implementation available for
experimentation by other researchers.2

Future Work
As future work, we plan to extend the algorithm that computesCT in order to

allow arbitrary latch dependency graphs. We also plan to improve the refinement

2 http://www.inf.ethz.ch/personal/daniekro/ebmc/
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algorithm such that cut-points are also added, not only removed.
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A Proofs

LetDi denote the range of values that the registers in stagei can take. LetPi(t) ∈
Di denote the value in pipeline stagei at timet. For i > 0, Pi only depends on
Pi−1. Let fi denote the function that represents this dependence:

Pi(t) = fi(Pi−1(t− 1))(A.1)

Let Γ(t) ∈ B denote the value of the feedback bit at timet. The feedback bit is
computed usingPn−1 only. We useγn−1 to denote the function that represents this
dependency.

Γ(t) = γn−1(Pn−1(t))(A.2)

This definition can be extended inductively to the other stages:

γi(x) := γi+1(fi+1(x))(A.3)

Thus, the data valuex ∈ Di in stagei will produceγi(x) as feedback bit once
it arrives in the last stage.

Definition A.1 We callγi(x) thecolor of stagei.

Lemma A.2 For all 0 ≤ i ≤ j < n, the color of stagej at timet is the color of
stagei at timet− j + i:

γn−1(Pn−1(t)) = γi(Pi(t− j + i))

The proof of this lemma is easily done by induction onn− 1− i.
Let ι(t) denote the value of the primary inputs in cyclet. The value computed

for the first stage depends only on the feedback bit and these primary inputs. Let
the value computed for the first stage be denoted byf0(ι, γ) ∈ D0.

Lemma A.3 The value in any stage at timet ≥ n only depends on primary inputs
and on the color of the same stagen cycles earlier.

Proof. First, observe thatPi(t) with t ≥ n only depends on the value of primary
inputs during cyclet− i− 1 and on the value of the feedback bit at timet− i− 1:
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Pi(t) = fi ◦ . . . ◦ f0(ι(t− i− 1),Γ(t− i− 1))(A.4)

By expanding the definition in Eq.A.2, we obtain:

Pi(t) = fi ◦ . . . ◦ f0(ι(t− i− 1), γn−1(Pn−1(t− i− 1)))(A.5)

We can use LemmaA.2 with j = n− 1 to rewrite Eq.A.5 and obtain:

Pi(t) = fi ◦ . . . ◦ f0(ι(t− i− 1), γi(Pi(t− n)))(A.6)

The color of stagei at timet− n is γi(Pi(t− n)), which concludes the claim.2

We now show the main claim3.2.

Proof. [Claim 3.2] We show that we can bring the pipeline into any reachable state
s within 2 · n clock cycles or less.

If s is reachable, there must be a paths0, . . . , st from an initial states0 to state
s = st. Let t denote the length of the path. Ift ≤ 2 · n, there is nothing to show.

Otherwise, we bring the circuit into states as follows: (1) We start with the
same initial states0. (2) In the nextn cycles, by picking appropriate primary inputs,
we bring the pipeline into a state such that the colors at timen match the colors in
statest−n. Such primary inputs exist, or otherwise,st−n is not reachable. (3) In
cyclesn to 2n−1, we bring the pipeline into the desired state by simply re-playing
the primary inputs used to obtainst−n+1, . . . , st. This is sufficient according to
lemmaA.3. 2
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