
First-Order Theorem Proving and Vampire

Laura Kovács (Chalmers University of Technology)

Andrei Voronkov (The University of Manchester)

Outline

Introduction

First-Order Logic and TPTP

Inference Systems

Saturation Algorithms

Redundancy Elimination

Equality

Unification and Lifting

From Theory to Practice

Colored Proofs, Interpolation and Symbol Elimination

Sorts and Theories

Cookies

First-Order Logic: Exercises

Which of the following statements are true?

1. First-order logic is an extension of propositional logic;
2. First-order logic is NP-complete.
3. First-order logic is PSPACE-complete.
4. First-order logic is decidable.
5. In first-order logic you can use quantifiers over sets.
6. One can axiomatise integers in first-order logic;
7. Compactness is the following property: a set of formulas having

arbitrarily large finite models has an infinite model;
8. Having proofs is good.
9. Vampire is a first-order theorem prover.

First-Order Logic: Exercises

Which of the following statements are true?

1. First-order logic is an extension of propositional logic;

2. First-order logic is NP-complete.
3. First-order logic is PSPACE-complete.
4. First-order logic is decidable.
5. In first-order logic you can use quantifiers over sets.
6. One can axiomatise integers in first-order logic;
7. Compactness is the following property: a set of formulas having

arbitrarily large finite models has an infinite model;
8. Having proofs is good.
9. Vampire is a first-order theorem prover.

First-Order Logic: Exercises

Which of the following statements are true?

1. First-order logic is an extension of propositional logic;
2. First-order logic is NP-complete.

3. First-order logic is PSPACE-complete.
4. First-order logic is decidable.
5. In first-order logic you can use quantifiers over sets.
6. One can axiomatise integers in first-order logic;
7. Compactness is the following property: a set of formulas having

arbitrarily large finite models has an infinite model;
8. Having proofs is good.
9. Vampire is a first-order theorem prover.

First-Order Logic: Exercises

Which of the following statements are true?

1. First-order logic is an extension of propositional logic;
2. First-order logic is NP-complete.
3. First-order logic is PSPACE-complete.

4. First-order logic is decidable.
5. In first-order logic you can use quantifiers over sets.
6. One can axiomatise integers in first-order logic;
7. Compactness is the following property: a set of formulas having

arbitrarily large finite models has an infinite model;
8. Having proofs is good.
9. Vampire is a first-order theorem prover.

First-Order Logic: Exercises

Which of the following statements are true?

1. First-order logic is an extension of propositional logic;
2. First-order logic is NP-complete.
3. First-order logic is PSPACE-complete.
4. First-order logic is decidable.

5. In first-order logic you can use quantifiers over sets.
6. One can axiomatise integers in first-order logic;
7. Compactness is the following property: a set of formulas having

arbitrarily large finite models has an infinite model;
8. Having proofs is good.
9. Vampire is a first-order theorem prover.

First-Order Logic: Exercises

Which of the following statements are true?

1. First-order logic is an extension of propositional logic;
2. First-order logic is NP-complete.
3. First-order logic is PSPACE-complete.
4. First-order logic is decidable.
5. In first-order logic you can use quantifiers over sets.

6. One can axiomatise integers in first-order logic;
7. Compactness is the following property: a set of formulas having

arbitrarily large finite models has an infinite model;
8. Having proofs is good.
9. Vampire is a first-order theorem prover.

First-Order Logic: Exercises

Which of the following statements are true?

1. First-order logic is an extension of propositional logic;
2. First-order logic is NP-complete.
3. First-order logic is PSPACE-complete.
4. First-order logic is decidable.
5. In first-order logic you can use quantifiers over sets.
6. One can axiomatise integers in first-order logic;

7. Compactness is the following property: a set of formulas having
arbitrarily large finite models has an infinite model;

8. Having proofs is good.
9. Vampire is a first-order theorem prover.

First-Order Logic: Exercises

Which of the following statements are true?

1. First-order logic is an extension of propositional logic;
2. First-order logic is NP-complete.
3. First-order logic is PSPACE-complete.
4. First-order logic is decidable.
5. In first-order logic you can use quantifiers over sets.
6. One can axiomatise integers in first-order logic;
7. Compactness is the following property: a set of formulas having

arbitrarily large finite models has an infinite model;

8. Having proofs is good.
9. Vampire is a first-order theorem prover.

First-Order Logic: Exercises

Which of the following statements are true?

1. First-order logic is an extension of propositional logic;
2. First-order logic is NP-complete.
3. First-order logic is PSPACE-complete.
4. First-order logic is decidable.
5. In first-order logic you can use quantifiers over sets.
6. One can axiomatise integers in first-order logic;
7. Compactness is the following property: a set of formulas having

arbitrarily large finite models has an infinite model;
8. Having proofs is good.

9. Vampire is a first-order theorem prover.

First-Order Logic: Exercises

Which of the following statements are true?

1. First-order logic is an extension of propositional logic;
2. First-order logic is NP-complete.
3. First-order logic is PSPACE-complete.
4. First-order logic is decidable.
5. In first-order logic you can use quantifiers over sets.
6. One can axiomatise integers in first-order logic;
7. Compactness is the following property: a set of formulas having

arbitrarily large finite models has an infinite model;
8. Having proofs is good.
9. Vampire is a first-order theorem prover.

Future and Our Motivation

1. Theorem proving will remain central in software verification and
program analysis. The role of theorem proving in these areas will
be growing.

2. Theorem provers will be used by a large number of users who do
not understand theorem proving and by users with very
elementary knowledge of logic.

3. Reasoning with both quantifiers and theories will remain the
main challenge in practical applications of theorem proving (at
least) for the next decade.

4. Theorem provers will be used in reasoning with very large
theories. These theories will appear in knowledge mining and
natural language processing.

Future and Our Motivation

1. Theorem proving will remain central in software verification and
program analysis. The role of theorem proving in these areas will
be growing.

2. Theorem provers will be used by a large number of users who do
not understand theorem proving and by users with very
elementary knowledge of logic.

3. Reasoning with both quantifiers and theories will remain the
main challenge in practical applications of theorem proving (at
least) for the next decade.

4. Theorem provers will be used in reasoning with very large
theories. These theories will appear in knowledge mining and
natural language processing.

Future and Our Motivation

1. Theorem proving will remain central in software verification and
program analysis. The role of theorem proving in these areas will
be growing.

2. Theorem provers will be used by a large number of users who do
not understand theorem proving and by users with very
elementary knowledge of logic.

3. Reasoning with both quantifiers and theories will remain the
main challenge in practical applications of theorem proving (at
least) for the next decade.

4. Theorem provers will be used in reasoning with very large
theories. These theories will appear in knowledge mining and
natural language processing.

Future and Our Motivation

1. Theorem proving will remain central in software verification and
program analysis. The role of theorem proving in these areas will
be growing.

2. Theorem provers will be used by a large number of users who do
not understand theorem proving and by users with very
elementary knowledge of logic.

3. Reasoning with both quantifiers and theories will remain the
main challenge in practical applications of theorem proving (at
least) for the next decade.

4. Theorem provers will be used in reasoning with very large
theories. These theories will appear in knowledge mining and
natural language processing.

First-Order Theorem Proving. Example

Group theory theorem: if a group satisfies the identity x2 = 1, then it
is commutative.

More formally: in a group “assuming that x2 = 1 for all x prove that
x · y = y · x holds for all x , y .”
What is implicit: axioms of the group theory.

∀x(1 · x = x)
∀x(x−1 · x = 1)
∀x∀y∀z((x · y) · z = x · (y · z))

First-Order Theorem Proving. Example

Group theory theorem: if a group satisfies the identity x2 = 1, then it
is commutative.
More formally: in a group “assuming that x2 = 1 for all x prove that
x · y = y · x holds for all x , y .”

What is implicit: axioms of the group theory.

∀x(1 · x = x)
∀x(x−1 · x = 1)
∀x∀y∀z((x · y) · z = x · (y · z))

First-Order Theorem Proving. Example

Group theory theorem: if a group satisfies the identity x2 = 1, then it
is commutative.
More formally: in a group “assuming that x2 = 1 for all x prove that
x · y = y · x holds for all x , y .”
What is implicit: axioms of the group theory.

∀x(1 · x = x)
∀x(x−1 · x = 1)
∀x∀y∀z((x · y) · z = x · (y · z))

Formulation in First-Order Logic

∀x(1 · x = x)
Axioms (of group theory): ∀x(x−1 · x = 1)

∀x∀y∀z((x · y) · z = x · (y · z))

Assumptions: ∀x(x · x = 1)
Conjecture: ∀x∀y(x · y = y · x)

In the TPTP Syntax
The TPTP library (Thousands of Problems for Theorem Provers),
http://www.tptp.org contains a large collection of first-order problems.
For representing these problems it uses the TPTP syntax, which is
understood by all modern theorem provers, including Vampire.

In the TPTP syntax this group theory problem can be written down as follows:

%---- 1 * x = 1
fof(left identity,axiom,

! [X] : mult(e,X) = X).
%---- i(x) * x = 1
fof(left inverse,axiom,

! [X] : mult(inverse(X),X) = e).
%---- (x * y) * z = x * (y * z)
fof(associativity,axiom,

! [X,Y,Z] : mult(mult(X,Y),Z) = mult(X,mult(Y,Z))).
%---- x * x = 1
fof(group of order 2,hypothesis,

! [X] : mult(X,X) = e).
%---- prove x * y = y * x
fof(commutativity,conjecture,

! [X] : mult(X,Y) = mult(Y,X)).

http://www.tptp.org

In the TPTP Syntax
The TPTP library (Thousands of Problems for Theorem Provers),
http://www.tptp.org contains a large collection of first-order problems.
For representing these problems it uses the TPTP syntax, which is
understood by all modern theorem provers, including Vampire.
In the TPTP syntax this group theory problem can be written down as follows:

%---- 1 * x = 1
fof(left identity,axiom,

! [X] : mult(e,X) = X).
%---- i(x) * x = 1
fof(left inverse,axiom,

! [X] : mult(inverse(X),X) = e).
%---- (x * y) * z = x * (y * z)
fof(associativity,axiom,

! [X,Y,Z] : mult(mult(X,Y),Z) = mult(X,mult(Y,Z))).
%---- x * x = 1
fof(group of order 2,hypothesis,

! [X] : mult(X,X) = e).
%---- prove x * y = y * x
fof(commutativity,conjecture,

! [X] : mult(X,Y) = mult(Y,X)).

http://www.tptp.org

Running Vampire of a TPTP file

is easy: simply use

vampire <filename>

One can also run Vampire with various options, some of them will be
explained later. For example, save the group theory problem in a file
group.tptp and try

vampire --thanks ReRiSE group.tptp

Running Vampire of a TPTP file

is easy: simply use

vampire <filename>

One can also run Vampire with various options, some of them will be
explained later. For example, save the group theory problem in a file
group.tptp and try

vampire --thanks ReRiSE group.tptp

Outline

Introduction

First-Order Logic and TPTP

Inference Systems

Saturation Algorithms

Redundancy Elimination

Equality

Unification and Lifting

From Theory to Practice

Colored Proofs, Interpolation and Symbol Elimination

Sorts and Theories

Cookies

First-Order Logic and TPTP
I Language: variables, function and predicate (relation) symbols. A

constant symbol is a special case of a function symbol.

Variable names
start with upper-case letters.

I Terms: variables, constants, and expressions f (t1, . . . , tn), where f is a
function symbol of arity n and t1, . . . , tn are terms. Terms denote domain
(universe) elements (objects).

I Atomic formula: expression p(t1, . . . , tn), where p is a predicate symbol
of arity n and t1, . . . , tn are terms. Formulas denote properties of domain
elements.

I All symbols are uninterpreted, apart from equality =.

FOL TPTP
⊥, > $false, $true
¬F ˜F

F1 ∧ . . . ∧ Fn F1 & ... & Fn
F1 ∨ . . . ∨ Fn F1 | ... | Fn

F1 → Fn F1 => Fn
(∀x1) . . . (∀xn)F ! [X1,...,Xn] : F
(∃x1) . . . (∃xn)F ? [X1,...,Xn] : F

First-Order Logic and TPTP
I Language: variables, function and predicate (relation) symbols. A

constant symbol is a special case of a function symbol. Variable names
start with upper-case letters.

I Terms: variables, constants, and expressions f (t1, . . . , tn), where f is a
function symbol of arity n and t1, . . . , tn are terms. Terms denote domain
(universe) elements (objects).

I Atomic formula: expression p(t1, . . . , tn), where p is a predicate symbol
of arity n and t1, . . . , tn are terms. Formulas denote properties of domain
elements.

I All symbols are uninterpreted, apart from equality =.

FOL TPTP
⊥, > $false, $true
¬F ˜F

F1 ∧ . . . ∧ Fn F1 & ... & Fn
F1 ∨ . . . ∨ Fn F1 | ... | Fn

F1 → Fn F1 => Fn
(∀x1) . . . (∀xn)F ! [X1,...,Xn] : F
(∃x1) . . . (∃xn)F ? [X1,...,Xn] : F

First-Order Logic and TPTP
I Language: variables, function and predicate (relation) symbols. A

constant symbol is a special case of a function symbol. Variable names
start with upper-case letters.

I Terms: variables, constants, and expressions f (t1, . . . , tn), where f is a
function symbol of arity n and t1, . . . , tn are terms.

Terms denote domain
(universe) elements (objects).

I Atomic formula: expression p(t1, . . . , tn), where p is a predicate symbol
of arity n and t1, . . . , tn are terms. Formulas denote properties of domain
elements.

I All symbols are uninterpreted, apart from equality =.

FOL TPTP
⊥, > $false, $true
¬F ˜F

F1 ∧ . . . ∧ Fn F1 & ... & Fn
F1 ∨ . . . ∨ Fn F1 | ... | Fn

F1 → Fn F1 => Fn
(∀x1) . . . (∀xn)F ! [X1,...,Xn] : F
(∃x1) . . . (∃xn)F ? [X1,...,Xn] : F

First-Order Logic and TPTP
I Language: variables, function and predicate (relation) symbols. A

constant symbol is a special case of a function symbol. Variable names
start with upper-case letters.

I Terms: variables, constants, and expressions f (t1, . . . , tn), where f is a
function symbol of arity n and t1, . . . , tn are terms. Terms denote domain
(universe) elements (objects).

I Atomic formula: expression p(t1, . . . , tn), where p is a predicate symbol
of arity n and t1, . . . , tn are terms. Formulas denote properties of domain
elements.

I All symbols are uninterpreted, apart from equality =.

FOL TPTP
⊥, > $false, $true
¬F ˜F

F1 ∧ . . . ∧ Fn F1 & ... & Fn
F1 ∨ . . . ∨ Fn F1 | ... | Fn

F1 → Fn F1 => Fn
(∀x1) . . . (∀xn)F ! [X1,...,Xn] : F
(∃x1) . . . (∃xn)F ? [X1,...,Xn] : F

First-Order Logic and TPTP
I Language: variables, function and predicate (relation) symbols. A

constant symbol is a special case of a function symbol. Variable names
start with upper-case letters.

I Terms: variables, constants, and expressions f (t1, . . . , tn), where f is a
function symbol of arity n and t1, . . . , tn are terms. Terms denote domain
(universe) elements (objects).

I Atomic formula: expression p(t1, . . . , tn), where p is a predicate symbol
of arity n and t1, . . . , tn are terms.

Formulas denote properties of domain
elements.

I All symbols are uninterpreted, apart from equality =.

FOL TPTP
⊥, > $false, $true
¬F ˜F

F1 ∧ . . . ∧ Fn F1 & ... & Fn
F1 ∨ . . . ∨ Fn F1 | ... | Fn

F1 → Fn F1 => Fn
(∀x1) . . . (∀xn)F ! [X1,...,Xn] : F
(∃x1) . . . (∃xn)F ? [X1,...,Xn] : F

First-Order Logic and TPTP
I Language: variables, function and predicate (relation) symbols. A

constant symbol is a special case of a function symbol. Variable names
start with upper-case letters.

I Terms: variables, constants, and expressions f (t1, . . . , tn), where f is a
function symbol of arity n and t1, . . . , tn are terms. Terms denote domain
(universe) elements (objects).

I Atomic formula: expression p(t1, . . . , tn), where p is a predicate symbol
of arity n and t1, . . . , tn are terms. Formulas denote properties of domain
elements.

I All symbols are uninterpreted, apart from equality =.

FOL TPTP
⊥, > $false, $true
¬F ˜F

F1 ∧ . . . ∧ Fn F1 & ... & Fn
F1 ∨ . . . ∨ Fn F1 | ... | Fn

F1 → Fn F1 => Fn
(∀x1) . . . (∀xn)F ! [X1,...,Xn] : F
(∃x1) . . . (∃xn)F ? [X1,...,Xn] : F

First-Order Logic and TPTP
I Language: variables, function and predicate (relation) symbols. A

constant symbol is a special case of a function symbol. Variable names
start with upper-case letters.

I Terms: variables, constants, and expressions f (t1, . . . , tn), where f is a
function symbol of arity n and t1, . . . , tn are terms. Terms denote domain
(universe) elements (objects).

I Atomic formula: expression p(t1, . . . , tn), where p is a predicate symbol
of arity n and t1, . . . , tn are terms. Formulas denote properties of domain
elements.

I All symbols are uninterpreted, apart from equality =.

FOL TPTP
⊥, > $false, $true
¬F ˜F

F1 ∧ . . . ∧ Fn F1 & ... & Fn
F1 ∨ . . . ∨ Fn F1 | ... | Fn

F1 → Fn F1 => Fn
(∀x1) . . . (∀xn)F ! [X1,...,Xn] : F
(∃x1) . . . (∃xn)F ? [X1,...,Xn] : F

More on the TPTP Syntax

I Comments;
I Input formula names;
I Input formula roles (very important);
I Equality

%---- 1 * x = x
fof(left identity,axiom,(
! [X] : mult(e,X) = X)).

%---- i(x) * x = 1
fof(left inverse,axiom,(
! [X] : mult(inverse(X),X) = e)).

%---- (x * y) * z = x * (y * z)
fof(associativity,axiom,(

! [X,Y,Z] :
mult(mult(X,Y),Z) = mult(X,mult(Y,Z)))).

%---- x * x = 1
fof(group of order 2,hypothesis,

! [X] : mult(X,X) = e).
%---- prove x * y = y * x
fof(commutativity,conjecture,

! [X,Y] : mult(X,Y) = mult(Y,X)).

More on the TPTP Syntax
I Comments;

I Input formula names;
I Input formula roles (very important);
I Equality

%---- 1 * x = x
fof(left identity,axiom,(
! [X] : mult(e,X) = X)).

%---- i(x) * x = 1
fof(left inverse,axiom,(
! [X] : mult(inverse(X),X) = e)).

%---- (x * y) * z = x * (y * z)
fof(associativity,axiom,(

! [X,Y,Z] :
mult(mult(X,Y),Z) = mult(X,mult(Y,Z)))).

%---- x * x = 1
fof(group of order 2,hypothesis,

! [X] : mult(X,X) = e).
%---- prove x * y = y * x
fof(commutativity,conjecture,

! [X,Y] : mult(X,Y) = mult(Y,X)).

More on the TPTP Syntax
I Comments;
I Input formula names;

I Input formula roles (very important);
I Equality

%---- 1 * x = x
fof(left identity,axiom,(
! [X] : mult(e,X) = X)).

%---- i(x) * x = 1
fof(left inverse,axiom,(
! [X] : mult(inverse(X),X) = e)).

%---- (x * y) * z = x * (y * z)
fof(associativity,axiom,(

! [X,Y,Z] :
mult(mult(X,Y),Z) = mult(X,mult(Y,Z)))).

%---- x * x = 1
fof(group of order 2,hypothesis,

! [X] : mult(X,X) = e).
%---- prove x * y = y * x
fof(commutativity,conjecture,

! [X,Y] : mult(X,Y) = mult(Y,X)).

More on the TPTP Syntax
I Comments;
I Input formula names;
I Input formula roles (very important);

I Equality

%---- 1 * x = x
fof(left identity,axiom,(
! [X] : mult(e,X) = X)).

%---- i(x) * x = 1
fof(left inverse,axiom,(
! [X] : mult(inverse(X),X) = e)).

%---- (x * y) * z = x * (y * z)
fof(associativity,axiom,(

! [X,Y,Z] :
mult(mult(X,Y),Z) = mult(X,mult(Y,Z)))).

%---- x * x = 1
fof(group of order 2,hypothesis,

! [X] : mult(X,X) = e).
%---- prove x * y = y * x
fof(commutativity,conjecture,

! [X,Y] : mult(X,Y) = mult(Y,X)).

More on the TPTP Syntax
I Comments;
I Input formula names;
I Input formula roles (very important);
I Equality

%---- 1 * x = x
fof(left identity,axiom,(
! [X] : mult(e,X) = X)).

%---- i(x) * x = 1
fof(left inverse,axiom,(
! [X] : mult(inverse(X),X) = e)).

%---- (x * y) * z = x * (y * z)
fof(associativity,axiom,(

! [X,Y,Z] :
mult(mult(X,Y),Z) = mult(X,mult(Y,Z)))).

%---- x * x = 1
fof(group of order 2,hypothesis,

! [X] : mult(X,X) = e).
%---- prove x * y = y * x
fof(commutativity,conjecture,

! [X,Y] : mult(X,Y) = mult(Y,X)).

Proof by Vampire (Slightliy Modified)
Refutation found. Thanks to Tanya!
203. $false [subsumption resolution 202,14]
202. sP1(mult(sK,sK0)) [backward demodulation 188,15]
188. mult(X8,X9) = mult(X9,X8) [superposition 22,87]
87. mult(X2,mult(X1,X2)) = X1 [forward demodulation 71,27]
71. mult(inverse(X1),e) = mult(X2,mult(X1,X2)) [superposition 23,20]
27. mult(inverse(X2),e) = X2 [superposition 22,10]
23. mult(inverse(X4),mult(X4,X5)) = X5 [forward demodulation 18,9]
22. mult(X0,mult(X0,X1)) = X1 [forward demodulation 16,9]
20. e = mult(X0,mult(X1,mult(X0,X1))) [superposition 11,12]
18. mult(e,X5) = mult(inverse(X4),mult(X4,X5)) [superposition 11,10]
16. mult(e,X1) = mult(X0,mult(X0,X1)) [superposition 11,12]
15. sP1(mult(sK0,sK)) [inequality splitting 13,14]
14. ˜sP1(mult(sK,sK0)) [inequality splitting name introduction]
13. mult(sK,sK0) != mult(sK0,sK) [cnf transformation 8]
12. e = mult(X0,X0) (0:5) [cnf transformation 4]
11. mult(mult(X0,X1),X2)=mult(X0,mult(X1,X2))[cnf transformation 3]
10. e = mult(inverse(X0),X0) [cnf transformation 2]
9. mult(e,X0) = X0 [cnf transformation 1]
8. mult(sK,sK0) != mult(sK0,sK) [skolemisation 7]
7. ? [X0,X1] : mult(X0,X1) != mult(X1,X0) [ennf transformation 6]
6. ˜! [X0,X1] : mult(X0,X1) = mult(X1,X0) [negated conjecture 5]
5. ! [X0,X1] : mult(X0,X1) = mult(X1,X0) [input]
4. ! [X0] : e = mult(X0,X0)[input]
3. ! [X0,X1,X2] : mult(mult(X0,X1),X2) = mult(X0,mult(X1,X2)) [input]
2. ! [X0] : e = mult(inverse(X0),X0) [input]
1. ! [X0] : mult(e,X0) = X0 [input]

I Each inference derives a formula from zero or more other formulas;
I Input, preprocessing, new symbols introduction, superposition calculus
I Proof by refutation, generating and simplifying inferences, unused formulas . . .

Proof by Vampire (Slightliy Modified)
Refutation found. Thanks to Tanya!
203. $false [subsumption resolution 202,14]
202. sP1(mult(sK,sK0)) [backward demodulation 188,15]
188. mult(X8,X9) = mult(X9,X8) [superposition 22,87]
87. mult(X2,mult(X1,X2)) = X1 [forward demodulation 71,27]
71. mult(inverse(X1),e) = mult(X2,mult(X1,X2)) [superposition 23,20]
27. mult(inverse(X2),e) = X2 [superposition 22,10]
23. mult(inverse(X4),mult(X4,X5)) = X5 [forward demodulation 18,9]
22. mult(X0,mult(X0,X1)) = X1 [forward demodulation 16,9]
20. e = mult(X0,mult(X1,mult(X0,X1))) [superposition 11,12]
18. mult(e,X5) = mult(inverse(X4),mult(X4,X5)) [superposition 11,10]
16. mult(e,X1) = mult(X0,mult(X0,X1)) [superposition 11,12]
15. sP1(mult(sK0,sK)) [inequality splitting 13,14]
14. ˜sP1(mult(sK,sK0)) [inequality splitting name introduction]
13. mult(sK,sK0) != mult(sK0,sK) [cnf transformation 8]
12. e = mult(X0,X0) (0:5) [cnf transformation 4]
11. mult(mult(X0,X1),X2)=mult(X0,mult(X1,X2))[cnf transformation 3]
10. e = mult(inverse(X0),X0) [cnf transformation 2]
9. mult(e,X0) = X0 [cnf transformation 1]
8. mult(sK,sK0) != mult(sK0,sK) [skolemisation 7]
7. ? [X0,X1] : mult(X0,X1) != mult(X1,X0) [ennf transformation 6]
6. ˜! [X0,X1] : mult(X0,X1) = mult(X1,X0) [negated conjecture 5]
5. ! [X0,X1] : mult(X0,X1) = mult(X1,X0) [input]
4. ! [X0] : e = mult(X0,X0)[input]
3. ! [X0,X1,X2] : mult(mult(X0,X1),X2) = mult(X0,mult(X1,X2)) [input]
2. ! [X0] : e = mult(inverse(X0),X0) [input]
1. ! [X0] : mult(e,X0) = X0 [input]

I Each inference derives a formula from zero or more other formulas;

I Input, preprocessing, new symbols introduction, superposition calculus
I Proof by refutation, generating and simplifying inferences, unused formulas . . .

Proof by Vampire (Slightliy Modified)
Refutation found. Thanks to Tanya!
203. $false [subsumption resolution 202,14]
202. sP1(mult(sK,sK0)) [backward demodulation 188,15]
188. mult(X8,X9) = mult(X9,X8) [superposition 22,87]
87. mult(X2,mult(X1,X2)) = X1 [forward demodulation 71,27]
71. mult(inverse(X1),e) = mult(X2,mult(X1,X2)) [superposition 23,20]
27. mult(inverse(X2),e) = X2 [superposition 22,10]
23. mult(inverse(X4),mult(X4,X5)) = X5 [forward demodulation 18,9]
22. mult(X0,mult(X0,X1)) = X1 [forward demodulation 16,9]
20. e = mult(X0,mult(X1,mult(X0,X1))) [superposition 11,12]
18. mult(e,X5) = mult(inverse(X4),mult(X4,X5)) [superposition 11,10]
16. mult(e,X1) = mult(X0,mult(X0,X1)) [superposition 11,12]
15. sP1(mult(sK0,sK)) [inequality splitting 13,14]
14. ˜sP1(mult(sK,sK0)) [inequality splitting name introduction]
13. mult(sK,sK0) != mult(sK0,sK) [cnf transformation 8]
12. e = mult(X0,X0) (0:5) [cnf transformation 4]
11. mult(mult(X0,X1),X2)=mult(X0,mult(X1,X2))[cnf transformation 3]
10. e = mult(inverse(X0),X0) [cnf transformation 2]
9. mult(e,X0) = X0 [cnf transformation 1]
8. mult(sK,sK0) != mult(sK0,sK) [skolemisation 7]
7. ? [X0,X1] : mult(X0,X1) != mult(X1,X0) [ennf transformation 6]
6. ˜! [X0,X1] : mult(X0,X1) = mult(X1,X0) [negated conjecture 5]
5. ! [X0,X1] : mult(X0,X1) = mult(X1,X0) [input]
4. ! [X0] : e = mult(X0,X0)[input]
3. ! [X0,X1,X2] : mult(mult(X0,X1),X2) = mult(X0,mult(X1,X2)) [input]
2. ! [X0] : e = mult(inverse(X0),X0) [input]
1. ! [X0] : mult(e,X0) = X0 [input]

I Each inference derives a formula from zero or more other formulas;
I Input, preprocessing, new symbols introduction, superposition calculus

I Proof by refutation, generating and simplifying inferences, unused formulas . . .

Proof by Vampire (Slightliy Modified)
Refutation found. Thanks to Tanya!
203. $false [subsumption resolution 202,14]
202. sP1(mult(sK,sK0)) [backward demodulation 188,15]
188. mult(X8,X9) = mult(X9,X8) [superposition 22,87]
87. mult(X2,mult(X1,X2)) = X1 [forward demodulation 71,27]
71. mult(inverse(X1),e) = mult(X2,mult(X1,X2)) [superposition 23,20]
27. mult(inverse(X2),e) = X2 [superposition 22,10]
23. mult(inverse(X4),mult(X4,X5)) = X5 [forward demodulation 18,9]
22. mult(X0,mult(X0,X1)) = X1 [forward demodulation 16,9]
20. e = mult(X0,mult(X1,mult(X0,X1))) [superposition 11,12]
18. mult(e,X5) = mult(inverse(X4),mult(X4,X5)) [superposition 11,10]
16. mult(e,X1) = mult(X0,mult(X0,X1)) [superposition 11,12]
15. sP1(mult(sK0,sK)) [inequality splitting 13,14]
14. ˜sP1(mult(sK,sK0)) [inequality splitting name introduction]
13. mult(sK,sK0) != mult(sK0,sK) [cnf transformation 8]
12. e = mult(X0,X0) (0:5) [cnf transformation 4]
11. mult(mult(X0,X1),X2)=mult(X0,mult(X1,X2))[cnf transformation 3]
10. e = mult(inverse(X0),X0) [cnf transformation 2]
9. mult(e,X0) = X0 [cnf transformation 1]
8. mult(sK,sK0) != mult(sK0,sK) [skolemisation 7]
7. ? [X0,X1] : mult(X0,X1) != mult(X1,X0) [ennf transformation 6]
6. ˜! [X0,X1] : mult(X0,X1) = mult(X1,X0) [negated conjecture 5]
5. ! [X0,X1] : mult(X0,X1) = mult(X1,X0) [input]
4. ! [X0] : e = mult(X0,X0)[input]
3. ! [X0,X1,X2] : mult(mult(X0,X1),X2) = mult(X0,mult(X1,X2)) [input]
2. ! [X0] : e = mult(inverse(X0),X0) [input]
1. ! [X0] : mult(e,X0) = X0 [input]

I Each inference derives a formula from zero or more other formulas;
I Input, preprocessing, new symbols introduction, superposition calculus

I Proof by refutation, generating and simplifying inferences, unused formulas . . .

Proof by Vampire (Slightliy Modified)
Refutation found. Thanks to Tanya!
203. $false [subsumption resolution 202,14]
202. sP1(mult(sK,sK0)) [backward demodulation 188,15]
188. mult(X8,X9) = mult(X9,X8) [superposition 22,87]
87. mult(X2,mult(X1,X2)) = X1 [forward demodulation 71,27]
71. mult(inverse(X1),e) = mult(X2,mult(X1,X2)) [superposition 23,20]
27. mult(inverse(X2),e) = X2 [superposition 22,10]
23. mult(inverse(X4),mult(X4,X5)) = X5 [forward demodulation 18,9]
22. mult(X0,mult(X0,X1)) = X1 [forward demodulation 16,9]
20. e = mult(X0,mult(X1,mult(X0,X1))) [superposition 11,12]
18. mult(e,X5) = mult(inverse(X4),mult(X4,X5)) [superposition 11,10]
16. mult(e,X1) = mult(X0,mult(X0,X1)) [superposition 11,12]
15. sP1(mult(sK0,sK)) [inequality splitting 13,14]
14. ˜sP1(mult(sK,sK0)) [inequality splitting name introduction]
13. mult(sK,sK0) != mult(sK0,sK) [cnf transformation 8]
12. e = mult(X0,X0) (0:5) [cnf transformation 4]
11. mult(mult(X0,X1),X2)=mult(X0,mult(X1,X2))[cnf transformation 3]
10. e = mult(inverse(X0),X0) [cnf transformation 2]
9. mult(e,X0) = X0 [cnf transformation 1]
8. mult(sK,sK0) != mult(sK0,sK) [skolemisation 7]
7. ? [X0,X1] : mult(X0,X1) != mult(X1,X0) [ennf transformation 6]
6. ˜! [X0,X1] : mult(X0,X1) = mult(X1,X0) [negated conjecture 5]
5. ! [X0,X1] : mult(X0,X1) = mult(X1,X0) [input]
4. ! [X0] : e = mult(X0,X0)[input]
3. ! [X0,X1,X2] : mult(mult(X0,X1),X2) = mult(X0,mult(X1,X2)) [input]
2. ! [X0] : e = mult(inverse(X0),X0) [input]
1. ! [X0] : mult(e,X0) = X0 [input]

I Each inference derives a formula from zero or more other formulas;
I Input, preprocessing, new symbols introduction, superposition calculus

I Proof by refutation, generating and simplifying inferences, unused formulas . . .

Proof by Vampire (Slightliy Modified)
Refutation found. Thanks to Tanya!
203. $false [subsumption resolution 202,14]
202. sP1(mult(sK,sK0)) [backward demodulation 188,15]
188. mult(X8,X9) = mult(X9,X8) [superposition 22,87]
87. mult(X2,mult(X1,X2)) = X1 [forward demodulation 71,27]
71. mult(inverse(X1),e) = mult(X2,mult(X1,X2)) [superposition 23,20]
27. mult(inverse(X2),e) = X2 [superposition 22,10]
23. mult(inverse(X4),mult(X4,X5)) = X5 [forward demodulation 18,9]
22. mult(X0,mult(X0,X1)) = X1 [forward demodulation 16,9]
20. e = mult(X0,mult(X1,mult(X0,X1))) [superposition 11,12]
18. mult(e,X5) = mult(inverse(X4),mult(X4,X5)) [superposition 11,10]
16. mult(e,X1) = mult(X0,mult(X0,X1)) [superposition 11,12]
15. sP1(mult(sK0,sK)) [inequality splitting 13,14]
14. ˜sP1(mult(sK,sK0)) [inequality splitting name introduction]
13. mult(sK,sK0) != mult(sK0,sK) [cnf transformation 8]
12. e = mult(X0,X0) (0:5) [cnf transformation 4]
11. mult(mult(X0,X1),X2)=mult(X0,mult(X1,X2))[cnf transformation 3]
10. e = mult(inverse(X0),X0) [cnf transformation 2]
9. mult(e,X0) = X0 [cnf transformation 1]
8. mult(sK,sK0) != mult(sK0,sK) [skolemisation 7]
7. ? [X0,X1] : mult(X0,X1) != mult(X1,X0) [ennf transformation 6]
6. ˜! [X0,X1] : mult(X0,X1) = mult(X1,X0) [negated conjecture 5]
5. ! [X0,X1] : mult(X0,X1) = mult(X1,X0) [input]
4. ! [X0] : e = mult(X0,X0)[input]
3. ! [X0,X1,X2] : mult(mult(X0,X1),X2) = mult(X0,mult(X1,X2)) [input]
2. ! [X0] : e = mult(inverse(X0),X0) [input]
1. ! [X0] : mult(e,X0) = X0 [input]

I Each inference derives a formula from zero or more other formulas;
I Input, preprocessing, new symbols introduction, superposition calculus

I Proof by refutation, generating and simplifying inferences, unused formulas . . .

Proof by Vampire (Slightliy Modified)
Refutation found. Thanks to Tanya!
203. $false [subsumption resolution 202,14]
202. sP1(mult(sK,sK0)) [backward demodulation 188,15]
188. mult(X8,X9) = mult(X9,X8) [superposition 22,87]
87. mult(X2,mult(X1,X2)) = X1 [forward demodulation 71,27]
71. mult(inverse(X1),e) = mult(X2,mult(X1,X2)) [superposition 23,20]
27. mult(inverse(X2),e) = X2 [superposition 22,10]
23. mult(inverse(X4),mult(X4,X5)) = X5 [forward demodulation 18,9]
22. mult(X0,mult(X0,X1)) = X1 [forward demodulation 16,9]
20. e = mult(X0,mult(X1,mult(X0,X1))) [superposition 11,12]
18. mult(e,X5) = mult(inverse(X4),mult(X4,X5)) [superposition 11,10]
16. mult(e,X1) = mult(X0,mult(X0,X1)) [superposition 11,12]
15. sP1(mult(sK0,sK)) [inequality splitting 13,14]
14. ˜sP1(mult(sK,sK0)) [inequality splitting name introduction]
13. mult(sK,sK0) != mult(sK0,sK) [cnf transformation 8]
12. e = mult(X0,X0) (0:5) [cnf transformation 4]
11. mult(mult(X0,X1),X2)=mult(X0,mult(X1,X2))[cnf transformation 3]
10. e = mult(inverse(X0),X0) [cnf transformation 2]
9. mult(e,X0) = X0 [cnf transformation 1]
8. mult(sK,sK0) != mult(sK0,sK) [skolemisation 7]
7. ? [X0,X1] : mult(X0,X1) != mult(X1,X0) [ennf transformation 6]
6. ˜! [X0,X1] : mult(X0,X1) = mult(X1,X0) [negated conjecture 5]
5. ! [X0,X1] : mult(X0,X1) = mult(X1,X0) [input]
4. ! [X0] : e = mult(X0,X0)[input]
3. ! [X0,X1,X2] : mult(mult(X0,X1),X2) = mult(X0,mult(X1,X2)) [input]
2. ! [X0] : e = mult(inverse(X0),X0) [input]
1. ! [X0] : mult(e,X0) = X0 [input]

I Each inference derives a formula from zero or more other formulas;
I Input, preprocessing, new symbols introduction, superposition calculus
I Proof by refutation, generating and simplifying inferences, unused formulas . . .

Proof by Vampire (Slightliy Modified)
Refutation found. Thanks to Tanya!
203. $false [subsumption resolution 202,14]
202. sP1(mult(sK,sK0)) [backward demodulation 188,15]
188. mult(X8,X9) = mult(X9,X8) [superposition 22,87]
87. mult(X2,mult(X1,X2)) = X1 [forward demodulation 71,27]
71. mult(inverse(X1),e) = mult(X2,mult(X1,X2)) [superposition 23,20]
27. mult(inverse(X2),e) = X2 [superposition 22,10]
23. mult(inverse(X4),mult(X4,X5)) = X5 [forward demodulation 18,9]
22. mult(X0,mult(X0,X1)) = X1 [forward demodulation 16,9]
20. e = mult(X0,mult(X1,mult(X0,X1))) [superposition 11,12]
18. mult(e,X5) = mult(inverse(X4),mult(X4,X5)) [superposition 11,10]
16. mult(e,X1) = mult(X0,mult(X0,X1)) [superposition 11,12]
15. sP1(mult(sK0,sK)) [inequality splitting 13,14]
14. ˜sP1(mult(sK,sK0)) [inequality splitting name introduction]
13. mult(sK,sK0) != mult(sK0,sK) [cnf transformation 8]
12. e = mult(X0,X0) (0:5) [cnf transformation 4]
11. mult(mult(X0,X1),X2)=mult(X0,mult(X1,X2))[cnf transformation 3]
10. e = mult(inverse(X0),X0) [cnf transformation 2]
9. mult(e,X0) = X0 [cnf transformation 1]
8. mult(sK,sK0) != mult(sK0,sK) [skolemisation 7]
7. ? [X0,X1] : mult(X0,X1) != mult(X1,X0) [ennf transformation 6]
6. ˜! [X0,X1] : mult(X0,X1) = mult(X1,X0) [negated conjecture 5]
5. ! [X0,X1] : mult(X0,X1) = mult(X1,X0) [input]
4. ! [X0] : e = mult(X0,X0)[input]
3. ! [X0,X1,X2] : mult(mult(X0,X1),X2) = mult(X0,mult(X1,X2)) [input]
2. ! [X0] : e = mult(inverse(X0),X0) [input]
1. ! [X0] : mult(e,X0) = X0 [input]

I Each inference derives a formula from zero or more other formulas;
I Input, preprocessing, new symbols introduction, superposition calculus
I Proof by refutation, generating and simplifying inferences, unused formulas . . .

Proof by Vampire (Slightliy Modified)
Refutation found. Thanks to Tanya!
203. $false [subsumption resolution 202,14]
202. sP1(mult(sK,sK0)) [backward demodulation 188,15]
188. mult(X8,X9) = mult(X9,X8) [superposition 22,87]
87. mult(X2,mult(X1,X2)) = X1 [forward demodulation 71,27]
71. mult(inverse(X1),e) = mult(X2,mult(X1,X2)) [superposition 23,20]
27. mult(inverse(X2),e) = X2 [superposition 22,10]
23. mult(inverse(X4),mult(X4,X5)) = X5 [forward demodulation 18,9]
22. mult(X0,mult(X0,X1)) = X1 [forward demodulation 16,9]
20. e = mult(X0,mult(X1,mult(X0,X1))) [superposition 11,12]
18. mult(e,X5) = mult(inverse(X4),mult(X4,X5)) [superposition 11,10]
16. mult(e,X1) = mult(X0,mult(X0,X1)) [superposition 11,12]
15. sP1(mult(sK0,sK)) [inequality splitting 13,14]
14. ˜sP1(mult(sK,sK0)) [inequality splitting name introduction]
13. mult(sK,sK0) != mult(sK0,sK) [cnf transformation 8]
12. e = mult(X0,X0) (0:5) [cnf transformation 4]
11. mult(mult(X0,X1),X2)=mult(X0,mult(X1,X2))[cnf transformation 3]
10. e = mult(inverse(X0),X0) [cnf transformation 2]
9. mult(e,X0) = X0 [cnf transformation 1]
8. mult(sK,sK0) != mult(sK0,sK) [skolemisation 7]
7. ? [X0,X1] : mult(X0,X1) != mult(X1,X0) [ennf transformation 6]
6. ˜! [X0,X1] : mult(X0,X1) = mult(X1,X0) [negated conjecture 5]
5. ! [X0,X1] : mult(X0,X1) = mult(X1,X0) [input]
4. ! [X0] : e = mult(X0,X0)[input]
3. ! [X0,X1,X2] : mult(mult(X0,X1),X2) = mult(X0,mult(X1,X2)) [input]
2. ! [X0] : e = mult(inverse(X0),X0) [input]
1. ! [X0] : mult(e,X0) = X0 [input]

I Each inference derives a formula from zero or more other formulas;
I Input, preprocessing, new symbols introduction, superposition calculus
I Proof by refutation, generating and simplifying inferences, unused formulas . . .

Statistics

Version: Vampire 3 (revision 2038)
Termination reason: Refutation

Active clauses: 14
Passive clauses: 28
Generated clauses: 124
Final active clauses: 8
Final passive clauses: 6
Input formulas: 5
Initial clauses: 6

Splitted inequalities: 1

Fw subsumption resolutions: 1
Fw demodulations: 32
Bw demodulations: 12

Forward subsumptions: 53
Backward subsumptions: 1
Fw demodulations to eq. taut.: 6
Bw demodulations to eq. taut.: 1

Forward superposition: 41
Backward superposition: 28
Self superposition: 4

Memory used [KB]: 255
Time elapsed: 0.005 s

Vampire

I Completely automatic: once you started a proof attempt, it can
only be interrupted by terminating the process.

I Champion of the CASC world-cup in first-order theorem proving:
won CASC 28 times.

Vampire

I Completely automatic: once you started a proof attempt, it can
only be interrupted by terminating the process.

I Champion of the CASC world-cup in first-order theorem proving:
won CASC 28 times.

Main applications

I Software and hardware verification;
I Static analysis of programs;
I Query answering in first-order knowledge bases (ontologies);
I Theorem proving in mathematics, especially in algebra;

I Verification of cryptographic protocols;
I Retrieval of software components;
I Reasoning in non-classical logics;
I Program synthesis;
I Writing papers and giving talks at various conferences and

schools . . .

Main applications

I Software and hardware verification;
I Static analysis of programs;
I Query answering in first-order knowledge bases (ontologies);
I Theorem proving in mathematics, especially in algebra;
I Verification of cryptographic protocols;
I Retrieval of software components;
I Reasoning in non-classical logics;
I Program synthesis;

I Writing papers and giving talks at various conferences and
schools . . .

Main applications

I Software and hardware verification;
I Static analysis of programs;
I Query answering in first-order knowledge bases (ontologies);
I Theorem proving in mathematics, especially in algebra;
I Verification of cryptographic protocols;
I Retrieval of software components;
I Reasoning in non-classical logics;
I Program synthesis;
I Writing papers and giving talks at various conferences and

schools . . .

What an Automatic Theorem Prover is Expected to Do

Input:

I a set of axioms (first order formulas) or clauses;
I a conjecture (first-order formula or set of clauses).

Output:

I proof (hopefully).

Proof by Refutation

Given a problem with axioms and assumptions F1, . . . ,Fn and
conjecture G,

1. negate the conjecture;
2. establish unsatisfiability of the set of formulas F1, . . . ,Fn,¬G.

Thus, we reduce the theorem proving problem to the problem of
checking unsatisfiability.

In this formulation the negation of the conjecture ¬G is treated like
any other formula. In fact, Vampire (and other provers) internally treat
conjectures differently, to make proof search more goal-oriented.

Proof by Refutation

Given a problem with axioms and assumptions F1, . . . ,Fn and
conjecture G,

1. negate the conjecture;
2. establish unsatisfiability of the set of formulas F1, . . . ,Fn,¬G.

Thus, we reduce the theorem proving problem to the problem of
checking unsatisfiability.

In this formulation the negation of the conjecture ¬G is treated like
any other formula. In fact, Vampire (and other provers) internally treat
conjectures differently, to make proof search more goal-oriented.

Proof by Refutation

Given a problem with axioms and assumptions F1, . . . ,Fn and
conjecture G,

1. negate the conjecture;
2. establish unsatisfiability of the set of formulas F1, . . . ,Fn,¬G.

Thus, we reduce the theorem proving problem to the problem of
checking unsatisfiability.

In this formulation the negation of the conjecture ¬G is treated like
any other formula. In fact, Vampire (and other provers) internally treat
conjectures differently, to make proof search more goal-oriented.

General Scheme (simplified)

I Read a problem;
I Determine proof-search options to be used for this problem;
I Preprocess the problem;
I Convert it into CNF;
I Run a saturation algorithm on it, try to derive ⊥.
I If ⊥ is derived, report the result, maybe including a refutation.

Trying to derive ⊥ using a saturation algorithm is the hardest part,
which in practice may not terminate or run out of memory.

General Scheme (simplified)

I Read a problem;
I Determine proof-search options to be used for this problem;
I Preprocess the problem;
I Convert it into CNF;
I Run a saturation algorithm on it, try to derive ⊥.
I If ⊥ is derived, report the result, maybe including a refutation.

Trying to derive ⊥ using a saturation algorithm is the hardest part,
which in practice may not terminate or run out of memory.

Outline

Introduction

First-Order Logic and TPTP

Inference Systems

Saturation Algorithms

Redundancy Elimination

Equality

Unification and Lifting

From Theory to Practice

Colored Proofs, Interpolation and Symbol Elimination

Sorts and Theories

Cookies

Inference System

I inference has the form

F1 . . . Fn

G
,

where n ≥ 0 and F1, . . . ,Fn,G are formulas.
I The formula G is called the conclusion of the inference;
I The formulas F1, . . . ,Fn are called its premises.
I An inference rule R is a set of inferences.
I Every inference I ∈ R is called an instance of R.
I An Inference system I is a set of inference rules.
I Axiom: inference rule with no premises.

Inference System: Example

Represent the natural number n by the string | . . . |︸︷︷︸
n times

ε.

The following inference system contains 6 inference rules for deriving
equalities between expressions containing natural numbers, addition
+ and multiplication ·.

ε = ε (ε)
x = y
|x = |y

(|)

ε+ x = x (+1)
x + y = z
|x + y = |z

(+2)

ε · x = ε (·1)
x · y = u y + u = z

|x · y = z
(·2)

Derivation, Proof

I Derivation in an inference system I: a tree built from inferences
in I.

I If the root of this derivation is E , then we say it is a derivation of
E .

I Proof of E : a finite derivation whose leaves are axioms.
I Derivation of E from E1, . . . ,Em: a finite derivation of E whose

every leaf is either an axiom or one of the expressions
E1, . . . ,Em.

Examples
For example,

||ε+ |ε = |||ε
|||ε+ |ε = ||||ε

(+2)

is an inference that is an instance (special case) of the inference rule

x + y = z
|x + y = |z

(+2)

It has one premise ||ε+ |ε = |||ε and the conclusion |||ε+ |ε = ||||ε.

The axiom

ε+ |||ε = |||ε
(+1)

is an instance of the rule

ε+ x = x (+1)

Examples
For example,

||ε+ |ε = |||ε
|||ε+ |ε = ||||ε

(+2)

is an inference that is an instance (special case) of the inference rule

x + y = z
|x + y = |z

(+2)

It has one premise ||ε+ |ε = |||ε and the conclusion |||ε+ |ε = ||||ε.

The axiom

ε+ |||ε = |||ε
(+1)

is an instance of the rule

ε+ x = x (+1)

Examples
For example,

||ε+ |ε = |||ε
|||ε+ |ε = ||||ε

(+2)

is an inference that is an instance (special case) of the inference rule

x + y = z
|x + y = |z

(+2)

It has one premise ||ε+ |ε = |||ε and the conclusion |||ε+ |ε = ||||ε.

The axiom

ε+ |||ε = |||ε
(+1)

is an instance of the rule

ε+ x = x (+1)

Proof in this Inference System

Proof of ||ε · ||ε = ||||ε (that is, 2 · 2 = 4).

ε · ||ε = ε
(·1)

ε+ ε = ε
(+1)

|ε+ ε = |ε
(+2)

||ε+ ε = ||ε
(+2)

|ε · ||ε = ||ε
(·2)

ε+ ||ε = ||ε
(+1)

|ε+ ||ε = |||ε
(+2)

||ε+ ||ε = ||||ε
(+2)

||ε · ||ε = ||||ε
(·2).

Derivation in this Inference System

Derivation of ||ε · ||ε = |||||ε from ε+ ||ε = |||ε (that is, 2 + 2 = 5 from
0 + 2 = 3).

ε · ||ε = ε
(·1)

ε+ ε = ε
(+1)

|ε+ ε = |ε
(+2)

||ε+ ε = ||ε
(+2)

|ε · ||ε = ||ε
(·2)

ε+ ||ε = |||ε
|ε+ ||ε = ||||ε

(+2)

||ε+ ||ε = |||||ε
(+2)

||ε · ||ε = ||||ε
(·2).

Arbitrary First-Order Formulas

I A first-order signature (vocabulary): function symbols (including
constants), predicate symbols. Equality is part of the language.

I A set of variables.
I Terms are built using variables and function symbols. For

example, f (x) + g(x).
I Atoms, or atomic formulas are obtained by applying a predicate

symbol to a sequence of terms. For example, p(a, x) or
f (x) + g(x) ≥ 2.

I Formulas: built from atoms using logical connectives ¬, ∧, ∨,→,
↔ and quantifiers ∀, ∃. For example, (∀x)x = 0 ∨ (∃y)y > x .

Clauses

I Literal: either an atom A or its negation ¬A.
I Clause: a disjunction L1 ∨ . . . ∨ Ln of literals, where n ≥ 0.

I Empty clause, denoted by �: clause with 0 literals, that is, when
n = 0.

I A formula in Clausal Normal Form (CNF): a conjunction of
clauses.

I A clause is ground if it contains no variables.
I If a clause contains variables, we assume that it implicitly

universally quantified. That is, we treat p(x) ∨ q(x) as
∀x(p(x) ∨ q(x)).

Clauses

I Literal: either an atom A or its negation ¬A.
I Clause: a disjunction L1 ∨ . . . ∨ Ln of literals, where n ≥ 0.
I Empty clause, denoted by �: clause with 0 literals, that is, when

n = 0.

I A formula in Clausal Normal Form (CNF): a conjunction of
clauses.

I A clause is ground if it contains no variables.
I If a clause contains variables, we assume that it implicitly

universally quantified. That is, we treat p(x) ∨ q(x) as
∀x(p(x) ∨ q(x)).

Clauses

I Literal: either an atom A or its negation ¬A.
I Clause: a disjunction L1 ∨ . . . ∨ Ln of literals, where n ≥ 0.
I Empty clause, denoted by �: clause with 0 literals, that is, when

n = 0.
I A formula in Clausal Normal Form (CNF): a conjunction of

clauses.

I A clause is ground if it contains no variables.
I If a clause contains variables, we assume that it implicitly

universally quantified. That is, we treat p(x) ∨ q(x) as
∀x(p(x) ∨ q(x)).

Clauses

I Literal: either an atom A or its negation ¬A.
I Clause: a disjunction L1 ∨ . . . ∨ Ln of literals, where n ≥ 0.
I Empty clause, denoted by �: clause with 0 literals, that is, when

n = 0.
I A formula in Clausal Normal Form (CNF): a conjunction of

clauses.
I A clause is ground if it contains no variables.
I If a clause contains variables, we assume that it implicitly

universally quantified. That is, we treat p(x) ∨ q(x) as
∀x(p(x) ∨ q(x)).

Binary Resolution Inference System

The binary resolution inference system, denoted by BR is an
inference system on propositional clauses (or ground clauses).
It consists of two inference rules:

I Binary resolution, denoted by BR:

p ∨ C1 ¬p ∨ C2

C1 ∨ C2
(BR).

I Factoring, denoted by Fact:

L ∨ L ∨ C
L ∨ C

(Fact).

Soundness

I An inference is sound if the conclusion of this inference is a
logical consequence of its premises.

I An inference system is sound if every inference rule in this
system is sound.

BR is sound.

Consequence of soundness: let S be a set of clauses. If � can be
derived from S in BR, then S is unsatisfiable.

Soundness

I An inference is sound if the conclusion of this inference is a
logical consequence of its premises.

I An inference system is sound if every inference rule in this
system is sound.

BR is sound.

Consequence of soundness: let S be a set of clauses. If � can be
derived from S in BR, then S is unsatisfiable.

Example

Consider the following set of clauses

{¬p ∨ ¬q, ¬p ∨ q, p ∨ ¬q, p ∨ q}.

The following derivation derives the empty clause from this set:

p ∨ q p ∨ ¬q
p ∨ p (BR)

p (Fact)

¬p ∨ q ¬p ∨ ¬q
¬p ∨ ¬p (BR)

¬p (Fact)

�
(BR)

Hence, this set of clauses is unsatisfiable.

Can this be used for checking (un)satisfiability

1. What happens when the empty clause cannot be derived from
S?

2. How can one search for possible derivations of the empty
clause?

Can this be used for checking (un)satisfiability

1. Completeness.
Let S be an unsatisfiable set of clauses. Then there
exists a derivation of � from S in BR.

2. We have to formalize search for derivations.

However, before doing this we will introduce a slightly more refined
inference system.

Can this be used for checking (un)satisfiability

1. Completeness.
Let S be an unsatisfiable set of clauses. Then there
exists a derivation of � from S in BR.

2. We have to formalize search for derivations.

However, before doing this we will introduce a slightly more refined
inference system.

Selection Function

A literal selection function selects literals in a clause.

I If C is non-empty, then at least one literal is selected in C.

We denote selected literals by underlining them, e.g.,

p ∨ ¬q

Note: selection function does not have to be a function. It can be any
oracle that selects literals.

Selection Function

A literal selection function selects literals in a clause.

I If C is non-empty, then at least one literal is selected in C.

We denote selected literals by underlining them, e.g.,

p ∨ ¬q

Note: selection function does not have to be a function. It can be any
oracle that selects literals.

Selection Function

A literal selection function selects literals in a clause.

I If C is non-empty, then at least one literal is selected in C.

We denote selected literals by underlining them, e.g.,

p ∨ ¬q

Note: selection function does not have to be a function. It can be any
oracle that selects literals.

Binary Resolution with Selection

We introduce a family of inference systems, parametrised by a literal
selection function σ.
The binary resolution inference system, denoted by BRσ, consists of
two inference rules:

I Binary resolution, denoted by BR

p ∨ C1 ¬p ∨ C2

C1 ∨ C2
(BR).

I Positive factoring, denoted by Fact:

p ∨ p ∨ C

p ∨ C
(Fact).

Binary Resolution with Selection

We introduce a family of inference systems, parametrised by a literal
selection function σ.
The binary resolution inference system, denoted by BRσ, consists of
two inference rules:

I Binary resolution, denoted by BR

p ∨ C1 ¬p ∨ C2

C1 ∨ C2
(BR).

I Positive factoring, denoted by Fact:

p ∨ p ∨ C

p ∨ C
(Fact).

Completeness?

Binary resolution with selection may be incomplete, even when
factoring is unrestricted (also applied to negative literals).

Consider this set of clauses:

(1) ¬q ∨ r
(2) ¬p ∨ q
(3) ¬r ∨ ¬q
(4) ¬q ∨ ¬p
(5) ¬p ∨ ¬r
(6) ¬r ∨ p
(7) r ∨ q ∨ p

It is unsatisfiable:

(8) q ∨ p (6,7)
(9) q (2,8)
(10) r (1,9)
(11) ¬q (3,10)
(12) � (9,11)

Note the linear representation of
derivations (used by Vampire and
many other provers).

However, any inference with selection applied to this set of clauses
give either a clause in this set, or a clause containing a clause in this
set.

Completeness?

Binary resolution with selection may be incomplete, even when
factoring is unrestricted (also applied to negative literals).

Consider this set of clauses:

(1) ¬q ∨ r
(2) ¬p ∨ q
(3) ¬r ∨ ¬q
(4) ¬q ∨ ¬p
(5) ¬p ∨ ¬r
(6) ¬r ∨ p
(7) r ∨ q ∨ p

It is unsatisfiable:

(8) q ∨ p (6,7)
(9) q (2,8)
(10) r (1,9)
(11) ¬q (3,10)
(12) � (9,11)

Note the linear representation of
derivations (used by Vampire and
many other provers).

However, any inference with selection applied to this set of clauses
give either a clause in this set, or a clause containing a clause in this
set.

Completeness?

Binary resolution with selection may be incomplete, even when
factoring is unrestricted (also applied to negative literals).

Consider this set of clauses:

(1) ¬q ∨ r
(2) ¬p ∨ q
(3) ¬r ∨ ¬q
(4) ¬q ∨ ¬p
(5) ¬p ∨ ¬r
(6) ¬r ∨ p
(7) r ∨ q ∨ p

It is unsatisfiable:

(8) q ∨ p (6,7)
(9) q (2,8)
(10) r (1,9)
(11) ¬q (3,10)
(12) � (9,11)

Note the linear representation of
derivations (used by Vampire and
many other provers).

However, any inference with selection applied to this set of clauses
give either a clause in this set, or a clause containing a clause in this
set.

Literal Orderings

Take any well-founded ordering � on atoms, that is, an ordering such
that there is no infinite decreasing chain of atoms:

A0 � A1 � A2 � · · ·

In the sequel � will always denote a well-founded ordering.

Extend it to an ordering on literals by:

I If p � q, then p � ¬q and ¬p � q;
I ¬p � p.

Exercise: prove that the induced ordering on literals is well-founded
too.

Literal Orderings

Take any well-founded ordering � on atoms, that is, an ordering such
that there is no infinite decreasing chain of atoms:

A0 � A1 � A2 � · · ·

In the sequel � will always denote a well-founded ordering.

Extend it to an ordering on literals by:

I If p � q, then p � ¬q and ¬p � q;
I ¬p � p.

Exercise: prove that the induced ordering on literals is well-founded
too.

Literal Orderings

Take any well-founded ordering � on atoms, that is, an ordering such
that there is no infinite decreasing chain of atoms:

A0 � A1 � A2 � · · ·

In the sequel � will always denote a well-founded ordering.

Extend it to an ordering on literals by:

I If p � q, then p � ¬q and ¬p � q;
I ¬p � p.

Exercise: prove that the induced ordering on literals is well-founded
too.

Orderings and Well-Behaved Selections

Fix an ordering �. A literal selection function is well-behaved if

I If all selected literals are positive, then all maximal (w.r.t. �)
literals in C are selected.

In other words, either a negative literal is selected, or all maximal
literals must be selected.

To be well-behaved, we sometimes must select more than one
different literal in a clause. Example: p ∨ p or p(x) ∨ p(y).

Orderings and Well-Behaved Selections

Fix an ordering �. A literal selection function is well-behaved if

I If all selected literals are positive, then all maximal (w.r.t. �)
literals in C are selected.

In other words, either a negative literal is selected, or all maximal
literals must be selected.

To be well-behaved, we sometimes must select more than one
different literal in a clause. Example: p ∨ p or p(x) ∨ p(y).

Completeness of Binary Resolution with Selection

Binary resolution with selection is complete for every well-behaved
selection function.

Consider our previous example:

(1) ¬q ∨ r
(2) ¬p ∨ q
(3) ¬r ∨ ¬q
(4) ¬q ∨ ¬p
(5) ¬p ∨ ¬r
(6) ¬r ∨ p
(7) r ∨ q ∨ p

A well-behave selection function
must satisfy:

1. r � q, because of (1)

2. q � p, because of (2)

3. p � r , because of (6)

There is no ordering that satisfies
these conditions.

Completeness of Binary Resolution with Selection

Binary resolution with selection is complete for every well-behaved
selection function.

Consider our previous example:

(1) ¬q ∨ r
(2) ¬p ∨ q
(3) ¬r ∨ ¬q
(4) ¬q ∨ ¬p
(5) ¬p ∨ ¬r
(6) ¬r ∨ p
(7) r ∨ q ∨ p

A well-behave selection function
must satisfy:

1. r � q, because of (1)

2. q � p, because of (2)

3. p � r , because of (6)

There is no ordering that satisfies
these conditions.

End of Lecture 1

Slides for lecture 1 ended here . . .

Outline

Introduction

First-Order Logic and TPTP

Inference Systems

Saturation Algorithms

Redundancy Elimination

Equality

Unification and Lifting

From Theory to Practice

Colored Proofs, Interpolation and Symbol Elimination

Sorts and Theories

Cookies

How to Establish Unsatisfiability?

Completess is formulated in terms of derivability of the empty clause
� from a set S0 of clauses in an inference system I. However, this
formulations gives no hint on how to search for such a derivation.

Idea:

I Take a set of clauses S (the search space), initially S = S0.
Repeatedly apply inferences in I to clauses in S and add their
conclusions to S, unless these conclusions are already in S.

I If, at any stage, we obtain �, we terminate and report
unsatisfiability of S0.

How to Establish Unsatisfiability?

Completess is formulated in terms of derivability of the empty clause
� from a set S0 of clauses in an inference system I. However, this
formulations gives no hint on how to search for such a derivation.

Idea:

I Take a set of clauses S (the search space), initially S = S0.
Repeatedly apply inferences in I to clauses in S and add their
conclusions to S, unless these conclusions are already in S.

I If, at any stage, we obtain �, we terminate and report
unsatisfiability of S0.

How to Establish Satisfiability?

When can we report satisfiability?

When we build a set S such that any inference applied to clauses in S
is already a member of S. Any such set of clauses is called saturated
(with respect to I).

In first-order logic it is often the case that all saturated sets are infinite
(due to undecidability), so in practice we can never build a saturated
set.

The process of trying to build one is referred to as saturation.

How to Establish Satisfiability?

When can we report satisfiability?

When we build a set S such that any inference applied to clauses in S
is already a member of S. Any such set of clauses is called saturated
(with respect to I).

In first-order logic it is often the case that all saturated sets are infinite
(due to undecidability), so in practice we can never build a saturated
set.

The process of trying to build one is referred to as saturation.

How to Establish Satisfiability?

When can we report satisfiability?

When we build a set S such that any inference applied to clauses in S
is already a member of S. Any such set of clauses is called saturated
(with respect to I).

In first-order logic it is often the case that all saturated sets are infinite
(due to undecidability), so in practice we can never build a saturated
set.

The process of trying to build one is referred to as saturation.

Saturated Set of Clauses

Let I be an inference system on formulas and S be a set of formulas.

I S is called saturated with respect to I, or simply I-saturated, if for
every inference of I with premises in S, the conclusion of this
inference also belongs to S.

I The closure of S with respect to I, or simply I-closure, is the
smallest set S′ containing S and saturated with respect to I.

Inference Process

Inference process: sequence of sets of formulas S0,S1, . . ., denoted
by

S0 ⇒ S1 ⇒ S2 ⇒ . . .

(Si ⇒ Si+1) is a step of this process.

We say that this step is an I-step if

1. there exists an inference

F1 . . . Fn

F

in I such that {F1, . . . ,Fn} ⊆ Si ;
2. Si+1 = Si ∪ {F}.

An I-inference process is an inference process whose every step is
an I-step.

Inference Process

Inference process: sequence of sets of formulas S0,S1, . . ., denoted
by

S0 ⇒ S1 ⇒ S2 ⇒ . . .

(Si ⇒ Si+1) is a step of this process.

We say that this step is an I-step if

1. there exists an inference

F1 . . . Fn

F

in I such that {F1, . . . ,Fn} ⊆ Si ;
2. Si+1 = Si ∪ {F}.

An I-inference process is an inference process whose every step is
an I-step.

Inference Process

Inference process: sequence of sets of formulas S0,S1, . . ., denoted
by

S0 ⇒ S1 ⇒ S2 ⇒ . . .

(Si ⇒ Si+1) is a step of this process.

We say that this step is an I-step if

1. there exists an inference

F1 . . . Fn

F

in I such that {F1, . . . ,Fn} ⊆ Si ;
2. Si+1 = Si ∪ {F}.

An I-inference process is an inference process whose every step is
an I-step.

Property

Let S0 ⇒ S1 ⇒ S2 ⇒ . . . be an I-inference process and a formula F
belongs to some Si . Then Si is derivable in I from S0. In particular,
every Si is a subset of the I-closure of S0.

Limit of a Process

The limit of an inference process S0 ⇒ S1 ⇒ S2 ⇒ . . . is the set of
formulas

⋃
i Si .

In other words, the limit is the set of all derived formulas.

Suppose that we have an infinite inference process such that S0 is
unsatisfiable and we use a sound and complete inference system.

Question: does completeness imply that the limit of the process
contains the empty clause?

Limit of a Process

The limit of an inference process S0 ⇒ S1 ⇒ S2 ⇒ . . . is the set of
formulas

⋃
i Si .

In other words, the limit is the set of all derived formulas.

Suppose that we have an infinite inference process such that S0 is
unsatisfiable and we use a sound and complete inference system.

Question: does completeness imply that the limit of the process
contains the empty clause?

Limit of a Process

The limit of an inference process S0 ⇒ S1 ⇒ S2 ⇒ . . . is the set of
formulas

⋃
i Si .

In other words, the limit is the set of all derived formulas.

Suppose that we have an infinite inference process such that S0 is
unsatisfiable and we use a sound and complete inference system.

Question: does completeness imply that the limit of the process
contains the empty clause?

Limit of a Process

The limit of an inference process S0 ⇒ S1 ⇒ S2 ⇒ . . . is the set of
formulas

⋃
i Si .

In other words, the limit is the set of all derived formulas.

Suppose that we have an infinite inference process such that S0 is
unsatisfiable and we use a sound and complete inference system.

Question: does completeness imply that the limit of the process
contains the empty clause?

Fairness

Let S0 ⇒ S1 ⇒ S2 ⇒ . . . be an inference process with the limit S∞.
The process is called fair if for every I-inference

F1 . . . Fn

F
,

if {F1, . . . ,Fn} ⊆ S∞, then there exists i such that F ∈ Si .

Completeness, reformulated

Theorem Let I be an inference system. The following conditions are
equivalent.

1. I is complete.
2. For every unsatisfiable set of formulas S0 and any fair I-inference

process with the initial set S0, the limit of this inference process
contains �.

Fair Saturation Algorithms: Inference Selection by
Clause Selection

search space

given clause

candidate clauses

children
MEMORY

Fair Saturation Algorithms: Inference Selection by
Clause Selection

search space

given clause

candidate clauses

children
MEMORY

Fair Saturation Algorithms: Inference Selection by
Clause Selection

search space

given clause

candidate clauses

children
MEMORY

Fair Saturation Algorithms: Inference Selection by
Clause Selection

search space

given clause

candidate clauses

children

MEMORY

Fair Saturation Algorithms: Inference Selection by
Clause Selection

search space

given clause

candidate clauses

children

MEMORY

Fair Saturation Algorithms: Inference Selection by
Clause Selection

search space

given clause

candidate clauses

children

MEMORY

Fair Saturation Algorithms: Inference Selection by
Clause Selection

search space

given clause

candidate clauses

children
MEMORY

Fair Saturation Algorithms: Inference Selection by
Clause Selection

search space

given clause

candidate clauses

children
MEMORY

Fair Saturation Algorithms: Inference Selection by
Clause Selection

search space

given clause

candidate clauses

children
MEMORY

Fair Saturation Algorithms: Inference Selection by
Clause Selection

search space

given clause

candidate clauses

children

MEMORY

Fair Saturation Algorithms: Inference Selection by
Clause Selection

search space

given clause

candidate clauses

children

MEMORY

Fair Saturation Algorithms: Inference Selection by
Clause Selection

search space

given clause

candidate clauses

children

MEMORY

Fair Saturation Algorithms: Inference Selection by
Clause Selection

search space

given clause

candidate clauses

children
MEMORY

Fair Saturation Algorithms: Inference Selection by
Clause Selection

search space

given clause

candidate clauses

children
MEMORY

Fair Saturation Algorithms: Inference Selection by
Clause Selection

search space

given clause

candidate clauses

children

MEMORY

Saturation Algorithm

A saturation algorithm tries to saturate a set of clauses with respect to
a given inference system.
In theory there are three possible scenarios:

1. At some moment the empty clause � is generated, in this case
the input set of clauses is unsatisfiable.

2. Saturation will terminate without ever generating �, in this case
the input set of clauses in satisfiable.

3. Saturation will run forever, but without generating �. In this case
the input set of clauses is satisfiable.

Saturation Algorithm in Practice

In practice there are three possible scenarios:

1. At some moment the empty clause � is generated, in this case
the input set of clauses is unsatisfiable.

2. Saturation will terminate without ever generating �, in this case
the input set of clauses in satisfiable.

3. Saturation will run until we run out of resources, but without
generating �. In this case it is unknown whether the input set is
unsatisfiable.

Saturation Algorithm

Even when we implement inference selection by clause selection,
there are too many inferences, especially when the search space
grows.

Solution: only apply inferences to the selected clause and the
previously selected clauses.
Thus, the search space is divided in two parts:

I active clauses, that participate in inferences;
I passive clauses, that do not participate in inferences.

Observation: the set of passive clauses is usually considerably larger
than the set of active clauses, often by 2-4 orders of magnitude
(depending on the saturation algorithm and the problem).

Saturation Algorithm

Even when we implement inference selection by clause selection,
there are too many inferences, especially when the search space
grows.
Solution: only apply inferences to the selected clause and the
previously selected clauses.

Thus, the search space is divided in two parts:
I active clauses, that participate in inferences;
I passive clauses, that do not participate in inferences.

Observation: the set of passive clauses is usually considerably larger
than the set of active clauses, often by 2-4 orders of magnitude
(depending on the saturation algorithm and the problem).

Saturation Algorithm

Even when we implement inference selection by clause selection,
there are too many inferences, especially when the search space
grows.
Solution: only apply inferences to the selected clause and the
previously selected clauses.
Thus, the search space is divided in two parts:

I active clauses, that participate in inferences;
I passive clauses, that do not participate in inferences.

Observation: the set of passive clauses is usually considerably larger
than the set of active clauses, often by 2-4 orders of magnitude
(depending on the saturation algorithm and the problem).

Saturation Algorithm

Even when we implement inference selection by clause selection,
there are too many inferences, especially when the search space
grows.
Solution: only apply inferences to the selected clause and the
previously selected clauses.
Thus, the search space is divided in two parts:

I active clauses, that participate in inferences;
I passive clauses, that do not participate in inferences.

Observation: the set of passive clauses is usually considerably larger
than the set of active clauses, often by 2-4 orders of magnitude
(depending on the saturation algorithm and the problem).

Outline

Introduction

First-Order Logic and TPTP

Inference Systems

Saturation Algorithms

Redundancy Elimination

Equality

Unification and Lifting

From Theory to Practice

Colored Proofs, Interpolation and Symbol Elimination

Sorts and Theories

Cookies

Subsumption and Tautology Deletion

A clause is a propositional tautology if it is of the form A ∨ ¬A ∨ C,
that is, it contains a pair of complementary literals.
There are also equational tautologies, for example
a 6' b ∨ b 6' c ∨ f (c, c) ' f (a,a).

A clause C subsumes any clause C ∨ D, where D is non-empty.

It was known since 1965 that subsumed clauses and propositional
tautologies can be removed from the search space.

Subsumption and Tautology Deletion

A clause is a propositional tautology if it is of the form A ∨ ¬A ∨ C,
that is, it contains a pair of complementary literals.
There are also equational tautologies, for example
a 6' b ∨ b 6' c ∨ f (c, c) ' f (a,a).

A clause C subsumes any clause C ∨ D, where D is non-empty.

It was known since 1965 that subsumed clauses and propositional
tautologies can be removed from the search space.

Subsumption and Tautology Deletion

A clause is a propositional tautology if it is of the form A ∨ ¬A ∨ C,
that is, it contains a pair of complementary literals.
There are also equational tautologies, for example
a 6' b ∨ b 6' c ∨ f (c, c) ' f (a,a).

A clause C subsumes any clause C ∨ D, where D is non-empty.

It was known since 1965 that subsumed clauses and propositional
tautologies can be removed from the search space.

Problem

How can we prove that completeness is preserved if we remove
subsumed clauses and tautologies from the search space?

Solution: general theory of redundancy.

Problem

How can we prove that completeness is preserved if we remove
subsumed clauses and tautologies from the search space?

Solution: general theory of redundancy.

Bag Extension of an Ordering

Bag = finite multiset.
Let > be any ordering on a set X . The bag extension of > is a binary
relation >bag , on bags over X , defined as the smallest transitive
relation on bags such that

{x , y1, . . . , yn} >bag {x1, . . . , xm, y1, . . . , yn}
if x > xi for all i ∈ {1 . . .m},

where m ≥ 0.

Idea: a bag becomes smaller if we replace an element by any finite
number of smaller elements.
The following results are known about the bag extensions of
orderings:

1. >bag is an ordering;
2. If > is total, then so is >bag ;
3. If > is well-founded, then so is >bag .

Bag Extension of an Ordering

Bag = finite multiset.
Let > be any ordering on a set X . The bag extension of > is a binary
relation >bag , on bags over X , defined as the smallest transitive
relation on bags such that

{x , y1, . . . , yn} >bag {x1, . . . , xm, y1, . . . , yn}
if x > xi for all i ∈ {1 . . .m},

where m ≥ 0.
Idea: a bag becomes smaller if we replace an element by any finite
number of smaller elements.

The following results are known about the bag extensions of
orderings:

1. >bag is an ordering;
2. If > is total, then so is >bag ;
3. If > is well-founded, then so is >bag .

Bag Extension of an Ordering

Bag = finite multiset.
Let > be any ordering on a set X . The bag extension of > is a binary
relation >bag , on bags over X , defined as the smallest transitive
relation on bags such that

{x , y1, . . . , yn} >bag {x1, . . . , xm, y1, . . . , yn}
if x > xi for all i ∈ {1 . . .m},

where m ≥ 0.
Idea: a bag becomes smaller if we replace an element by any finite
number of smaller elements.
The following results are known about the bag extensions of
orderings:

1. >bag is an ordering;
2. If > is total, then so is >bag ;
3. If > is well-founded, then so is >bag .

Clause Orderings

From now on consider clauses also as bags of literals. Note:

I we have an ordering � for comparing literals;
I a clause is a bag of literals.

Hence

I we can compare clauses using the bag extension �bag of �.

For simpicity we denote the multiset ordering also by �.

Clause Orderings

From now on consider clauses also as bags of literals. Note:

I we have an ordering � for comparing literals;
I a clause is a bag of literals.

Hence

I we can compare clauses using the bag extension �bag of �.

For simpicity we denote the multiset ordering also by �.

Clause Orderings

From now on consider clauses also as bags of literals. Note:

I we have an ordering � for comparing literals;
I a clause is a bag of literals.

Hence

I we can compare clauses using the bag extension �bag of �.

For simpicity we denote the multiset ordering also by �.

Redundancy

A clause C ∈ S is called redundant in S if it is a logical consequence
of clauses in S strictly smaller than C.

Examples

A tautology A ∨ ¬A ∨ C is a logical consequence of the empty set of
formulas:

|= A ∨ ¬A ∨ C,

therefore it is redundant.

We know that C subsumes C ∨ D. Note

C ∨ D � C
C |= C ∨ D

therefore subsumed clauses are redundant.

If � ∈ S, then all non-empty other clauses in S are redundant.

Examples

A tautology A ∨ ¬A ∨ C is a logical consequence of the empty set of
formulas:

|= A ∨ ¬A ∨ C,

therefore it is redundant.
We know that C subsumes C ∨ D. Note

C ∨ D � C
C |= C ∨ D

therefore subsumed clauses are redundant.

If � ∈ S, then all non-empty other clauses in S are redundant.

Examples

A tautology A ∨ ¬A ∨ C is a logical consequence of the empty set of
formulas:

|= A ∨ ¬A ∨ C,

therefore it is redundant.
We know that C subsumes C ∨ D. Note

C ∨ D � C
C |= C ∨ D

therefore subsumed clauses are redundant.

If � ∈ S, then all non-empty other clauses in S are redundant.

Redundant Clauses Can be Removed

In BRσ (and in all calculi we will consider later) redundant clauses
can be removed from the search space.

Redundant Clauses Can be Removed

In BRσ (and in all calculi we will consider later) redundant clauses
can be removed from the search space.

Inference Process with Redundancy

Let I be an inference system. Consider an inference process with two
kinds of step Si ⇒ Si+1:

1. Adding the conclusion of an I-inference with premises in Si .
2. Deletion of a clause redundant in Si , that is

Si+1 = Si − {C},

where C is redundant in Si .

Fairness: Persistent Clauses and Limit

Consider an inference process

S0 ⇒ S1 ⇒ S2 ⇒ . . .

A clause C is called persistent if

∃i∀j ≥ i(C ∈ Sj).

The limit Sω of the inference process is the set of all persistent
clauses:

Sω =
⋃

i=0,1,...

⋂
j≥i

Sj .

Fairness

The process is called I-fair if every inference with persistent premises
in Sω has been applied, that is, if

C1 . . . Cn

C

is an inference in I and {C1, . . . ,Cn} ⊆ Sω, then C ∈ Si for some i .

Completeness of BR�,σ

Completeness Theorem. Let � be a simplification ordering and σ a
well-behaved selection function. Let also

1. S0 be a set of clauses;
2. S0 ⇒ S1 ⇒ S2 ⇒ . . . be a fair BR�,σ-inference process.

Then S0 is unsatisfiable if and only if � ∈ Si for some i .

Saturation up to Redundancy

A set S of clauses is called saturated up to redundancy if for every
I-inference

C1 . . . Cn

C

with premises in S, either

1. C ∈ S; or
2. C is redundant w.r.t. S, that is, S≺C |= C.

End of Lecture 2

Slides for lecture 2 ended here . . .

Proof of Completeness

A trace of a clause C: a set of clauses {C1, . . . ,Cn} ⊆ Sω such that

1. C � Ci for all i = 1, . . . ,n;
2. C1, . . . ,Cn |= C.

Lemma 1. Every removed clause has a trace.
Lemma 2. The limit Sω is saturated up to redundancy.
Lemma 3. The limit Sω is logically equivalent to the initial set S0.
Lemma 4. A set S of clauses saturated up to redundancy in BR�,σ is
unsatisfiable if and only if � ∈ S.

Interestingly, only the last lemma uses rules of BR�,σ.

Proof of Completeness

A trace of a clause C: a set of clauses {C1, . . . ,Cn} ⊆ Sω such that

1. C � Ci for all i = 1, . . . ,n;
2. C1, . . . ,Cn |= C.

Lemma 1. Every removed clause has a trace.
Lemma 2. The limit Sω is saturated up to redundancy.
Lemma 3. The limit Sω is logically equivalent to the initial set S0.
Lemma 4. A set S of clauses saturated up to redundancy in BR�,σ is
unsatisfiable if and only if � ∈ S.

Interestingly, only the last lemma uses rules of BR�,σ.

Binary Resolution with Selection

One of the key properties to satisfy this lemma is the following: the
conclusion of every rule is strictly smaller that the rightmost premise
of this rule.

I Binary resolution,

p ∨ C1 ¬p ∨ C2

C1 ∨ C2
(BR).

I Positive factoring,

p ∨ p ∨ C

p ∨ C
(Fact).

Saturation up to Redundancy and Satisfiability
Checking

Lemma 4. A set S of clauses saturated up to redundancy in BR�,σ is
unsatisfiable if and only if � ∈ S.

Therefore, if we built a set saturated up to redundancy, then the initial
set S0 is satisfiable. This is a powerful way of checking redundancy:
one can even check satisfiability of formulas having only infinite
models.

The only problem with this characterisation is that there is no obvious
way to build a model of S0 out of a saturated set.

Saturation up to Redundancy and Satisfiability
Checking

Lemma 4. A set S of clauses saturated up to redundancy in BR�,σ is
unsatisfiable if and only if � ∈ S.

Therefore, if we built a set saturated up to redundancy, then the initial
set S0 is satisfiable. This is a powerful way of checking redundancy:
one can even check satisfiability of formulas having only infinite
models.

The only problem with this characterisation is that there is no obvious
way to build a model of S0 out of a saturated set.

Saturation up to Redundancy and Satisfiability
Checking

Lemma 4. A set S of clauses saturated up to redundancy in BR�,σ is
unsatisfiable if and only if � ∈ S.

Therefore, if we built a set saturated up to redundancy, then the initial
set S0 is satisfiable. This is a powerful way of checking redundancy:
one can even check satisfiability of formulas having only infinite
models.

The only problem with this characterisation is that there is no obvious
way to build a model of S0 out of a saturated set.

Outline

Introduction

First-Order Logic and TPTP

Inference Systems

Saturation Algorithms

Redundancy Elimination

Equality

Unification and Lifting

From Theory to Practice

Colored Proofs, Interpolation and Symbol Elimination

Sorts and Theories

Cookies

First-order logic with equality

I Equality predicate: =.
I Equality: l = r .

The order of literals in equalities does not matter, that is, we consider
an equality l = r as a multiset consisting of two terms l , r , and so
consider l = r and r = l equal.

Equality. An Axiomatisation

I reflexivity axiom: x = x ;
I symmetry axiom: x = y → y = x ;
I transitivity axiom: x = y ∧ y = z → x = z;
I function substitution axioms:

x1 = y1 ∧ . . . ∧ xn = yn → f (x1, . . . , xn) = f (y1, . . . , yn), for every
function symbol f ;

I predicate substitution axioms:
x1 = y1 ∧ . . . ∧ xn = yn ∧ P(x1, . . . , xn)→ P(y1, . . . , yn) for every
predicate symbol P.

Inference systems for logic with equality

We will define a resolution and superposition inference system. This
system is complete. One can eliminate redundancy (but the literal
ordering needs to satisfy additional properties).

Moreover, we will first define it only for ground clauses. On the
theoretical side,

I Completeness is first proved for ground clauses only.
I It is then “lifted” to arbitrary clauses using a technique called

lifting.
I Moreover, this way some notions (ordering, selection function)

can first be defined for ground clauses only and then it is
relatively easy to see how to generalise them for non-ground
clauses.

Inference systems for logic with equality

We will define a resolution and superposition inference system. This
system is complete. One can eliminate redundancy (but the literal
ordering needs to satisfy additional properties).
Moreover, we will first define it only for ground clauses. On the
theoretical side,

I Completeness is first proved for ground clauses only.
I It is then “lifted” to arbitrary clauses using a technique called

lifting.
I Moreover, this way some notions (ordering, selection function)

can first be defined for ground clauses only and then it is
relatively easy to see how to generalise them for non-ground
clauses.

Simple Ground Superposition Inference System

Superposition: (right and left)

l = r ∨ C s[l] = t ∨ D
s[r] = t ∨ C ∨ D

(Sup),
l = r ∨ C s[l] 6' t ∨ D

s[r] 6' t ∨ C ∨ D
(Sup),

Equality Resolution:

s 6' s ∨ C
C

(ER),

Equality Factoring:

s = t ∨ s = t ′ ∨ C
s = t ∨ t 6' t ′ ∨ C

(EF),

Simple Ground Superposition Inference System

Superposition: (right and left)

l = r ∨ C s[l] = t ∨ D
s[r] = t ∨ C ∨ D

(Sup),
l = r ∨ C s[l] 6' t ∨ D

s[r] 6' t ∨ C ∨ D
(Sup),

Equality Resolution:

s 6' s ∨ C
C

(ER),

Equality Factoring:

s = t ∨ s = t ′ ∨ C
s = t ∨ t 6' t ′ ∨ C

(EF),

Simple Ground Superposition Inference System

Superposition: (right and left)

l = r ∨ C s[l] = t ∨ D
s[r] = t ∨ C ∨ D

(Sup),
l = r ∨ C s[l] 6' t ∨ D

s[r] 6' t ∨ C ∨ D
(Sup),

Equality Resolution:

s 6' s ∨ C
C

(ER),

Equality Factoring:

s = t ∨ s = t ′ ∨ C
s = t ∨ t 6' t ′ ∨ C

(EF),

Example

f (a) = a ∨ g(a) = a
f (f (a)) = a ∨ g(g(a)) 6' a
f (f (a)) 6' a

Can this system be used for efficient theorem proving?

Not really. It has too many inferences. For example, from the clause
f (a) = a we can derive any clause of the form

f m(a) = f n(a)

where m,n ≥ 0.

Worst of all, the derived clauses can be much larger than the original
clause f (a) = a.
The recipe is to use the previously introduced ingredients:

1. Ordering;
2. Literal selection;
3. Redundancy elimination.

Can this system be used for efficient theorem proving?

Not really. It has too many inferences. For example, from the clause
f (a) = a we can derive any clause of the form

f m(a) = f n(a)

where m,n ≥ 0.
Worst of all, the derived clauses can be much larger than the original
clause f (a) = a.

The recipe is to use the previously introduced ingredients:

1. Ordering;
2. Literal selection;
3. Redundancy elimination.

Can this system be used for efficient theorem proving?

Not really. It has too many inferences. For example, from the clause
f (a) = a we can derive any clause of the form

f m(a) = f n(a)

where m,n ≥ 0.
Worst of all, the derived clauses can be much larger than the original
clause f (a) = a.
The recipe is to use the previously introduced ingredients:

1. Ordering;
2. Literal selection;
3. Redundancy elimination.

Atom and literal orderings on equalities

Equality atom comparison treats an equality s = t as the multiset
{̇s, t }̇.

I (s′ = t ′) �lit (s = t) if {̇s′, t ′}̇ � {̇s, t }̇.
I (s′ 6' t ′) �lit (s 6' t) if {̇s′, t ′}̇ � {̇s, t }̇.

Finally, we assert that all non-equality literals be greater than all
equality literals.

Ground Superposition Inference System Sup�,σ

Let σ be a literal selection function.
Superposition: (right and left)

l = r ∨ C s[l] = t ∨ D

s[r] = t ∨ C ∨ D
(Sup),

l = r ∨ C s[l] 6' t ∨ D

s[r] 6' t ∨ C ∨ D
(Sup),

where (i) l � r , (ii) s[l] � t , (iii) l = r is strictly greater than any literal in C, (iv)
s[l] = t is greater than or equal to any literal in D.

Equality Resolution:

s 6' s ∨ C

C
(ER),

Equality Factoring:

s = t ∨ s = t ′ ∨ C
s = t ∨ t 6' t ′ ∨ C

(EF),

where (i) s � t � t ′; (ii) s = t is greater than or equal to any literal in C.

Ground Superposition Inference System Sup�,σ

Let σ be a literal selection function.
Superposition: (right and left)

l = r ∨ C s[l] = t ∨ D

s[r] = t ∨ C ∨ D
(Sup),

l = r ∨ C s[l] 6' t ∨ D

s[r] 6' t ∨ C ∨ D
(Sup),

where (i) l � r , (ii) s[l] � t , (iii) l = r is strictly greater than any literal in C, (iv)
s[l] = t is greater than or equal to any literal in D.
Equality Resolution:

s 6' s ∨ C

C
(ER),

Equality Factoring:

s = t ∨ s = t ′ ∨ C
s = t ∨ t 6' t ′ ∨ C

(EF),

where (i) s � t � t ′; (ii) s = t is greater than or equal to any literal in C.

Ground Superposition Inference System Sup�,σ

Let σ be a literal selection function.
Superposition: (right and left)

l = r ∨ C s[l] = t ∨ D

s[r] = t ∨ C ∨ D
(Sup),

l = r ∨ C s[l] 6' t ∨ D

s[r] 6' t ∨ C ∨ D
(Sup),

where (i) l � r , (ii) s[l] � t , (iii) l = r is strictly greater than any literal in C, (iv)
s[l] = t is greater than or equal to any literal in D.
Equality Resolution:

s 6' s ∨ C

C
(ER),

Equality Factoring:

s = t ∨ s = t ′ ∨ C
s = t ∨ t 6' t ′ ∨ C

(EF),

where (i) s � t � t ′; (ii) s = t is greater than or equal to any literal in C.

Extension to arbitrary (non-equality) literals

I Consider a two-sorted logic in which equality is the only
predicate symbol.

I Interpret terms as terms of the first sort and non-equality atoms
as terms of the second sort.

I Add a constant > of the second sort.
I Replace non-equality atoms p(t1, . . . , tn) by equalities of the

second sort p(t1, . . . , tn) = >.

For example, the clause

p(a,b) ∨ ¬q(a) ∨ a 6= b

becomes

p(a,b) = > ∨ q(a) 6' > ∨ a 6= b.

Extension to arbitrary (non-equality) literals

I Consider a two-sorted logic in which equality is the only
predicate symbol.

I Interpret terms as terms of the first sort and non-equality atoms
as terms of the second sort.

I Add a constant > of the second sort.
I Replace non-equality atoms p(t1, . . . , tn) by equalities of the

second sort p(t1, . . . , tn) = >.

For example, the clause

p(a,b) ∨ ¬q(a) ∨ a 6= b

becomes

p(a,b) = > ∨ q(a) 6' > ∨ a 6= b.

Binary resolution inferences can be represented by
inferences in the superposition system

We ignore selection functions.

A ∨ C1 ¬A ∨ C2

C1 ∨ C2
(BR)

A = > ∨ C1 A 6' > ∨ C2

> 6' > ∨ C1 ∨ C2
(Sup)

C1 ∨ C2
(ER)

Exercise

Positive factoring can also be represented by inferences in the
superposition system.

Simplification Ordering

The only restriction we imposed on term orderings was
well-foundedness and stability under substitutions. When we deal
with equality, these two properties are insufficient. We need a third
property, called monotonicity.
An ordering � on terms is called a simplification ordering if

1. � is well-founded;
2. � is monotonic: if l � r , then s[l] � s[r];
3. � is stable under substitutions: if l � r , then lθ � rθ.

One can combine the last two properties into one:

2a. If l � r , then s[lθ] � s[rθ].

Simplification Ordering

The only restriction we imposed on term orderings was
well-foundedness and stability under substitutions. When we deal
with equality, these two properties are insufficient. We need a third
property, called monotonicity.
An ordering � on terms is called a simplification ordering if

1. � is well-founded;
2. � is monotonic: if l � r , then s[l] � s[r];
3. � is stable under substitutions: if l � r , then lθ � rθ.

One can combine the last two properties into one:

2a. If l � r , then s[lθ] � s[rθ].

End of Lecture 3

Slides for lecture 3 ended here . . .

A General Property of Term Orderings

If � is a simplification ordering, then for every term t [s] and its proper
subterm s we have s 6� t [s].

Consider an example.

f (a) = a
f (f (a)) = a
f (f (f (a))) = a

Then both f (f (a)) = a and f (f (f (a))) = a are redundant. The clause
f (a) = a is a logical consequence of {f (f (a)) = a, f (f (f (a))) = a} but
is not redundant.

A General Property of Term Orderings

If � is a simplification ordering, then for every term t [s] and its proper
subterm s we have s 6� t [s].

Consider an example.

f (a) = a
f (f (a)) = a
f (f (f (a))) = a

Then both f (f (a)) = a and f (f (f (a))) = a are redundant. The clause
f (a) = a is a logical consequence of {f (f (a)) = a, f (f (f (a))) = a} but
is not redundant.

Term Algebra

Term algebra TA(Σ) of signature Σ:

I Domain: the set of all ground terms of Σ.
I Interpretation of any function symbol f or constant c is defined as

follows::

fTA(Σ)(t1, . . . , tn)
def⇔ f (t1, . . . , tn);

cTA(Σ)
def⇔ c.

Knuth-Bendix Ordering, Ground Case

Let us fix

I Signature Σ, it induces the
term algebra TA(Σ).

I Total ordering� on Σ, called
precedence relation;

I Weight function w : Σ→ N.

Weight of a ground term t is

|g(t1, . . . , tn)| = w(g) +
n∑

i=1

|ti |.

g(t1, . . . , tm) �KB h(s1, . . . , sn) if

1. |g(t1, . . . , tm)| > |h(s1, . . . , sn)|
(by weight) or

2. |g(t1, . . . , tm)| = |h(s1, . . . , sn)|
and one of the following holds:
2.1 g � h (by precedence) or

2.2 g = h and for some
1 ≤ i ≤ n we have
t1 = s1, . . . , ti−1 = si−1 and
ti �KB si (lexicographically).

Knuth-Bendix Ordering, Ground Case

Let us fix

I Signature Σ, it induces the
term algebra TA(Σ).

I Total ordering� on Σ, called
precedence relation;

I Weight function w : Σ→ N.

Weight of a ground term t is

|g(t1, . . . , tn)| = w(g) +
n∑

i=1

|ti |.

g(t1, . . . , tm) �KB h(s1, . . . , sn) if

1. |g(t1, . . . , tm)| > |h(s1, . . . , sn)|
(by weight) or

2. |g(t1, . . . , tm)| = |h(s1, . . . , sn)|
and one of the following holds:
2.1 g � h (by precedence) or

2.2 g = h and for some
1 ≤ i ≤ n we have
t1 = s1, . . . , ti−1 = si−1 and
ti �KB si (lexicographically).

Knuth-Bendix Ordering, Ground Case

Let us fix

I Signature Σ, it induces the
term algebra TA(Σ).

I Total ordering� on Σ, called
precedence relation;

I Weight function w : Σ→ N.

Weight of a ground term t is

|g(t1, . . . , tn)| = w(g) +
n∑

i=1

|ti |.

g(t1, . . . , tm) �KB h(s1, . . . , sn) if

1. |g(t1, . . . , tm)| > |h(s1, . . . , sn)|
(by weight) or

2. |g(t1, . . . , tm)| = |h(s1, . . . , sn)|
and one of the following holds:
2.1 g � h (by precedence) or

2.2 g = h and for some
1 ≤ i ≤ n we have
t1 = s1, . . . , ti−1 = si−1 and
ti �KB si (lexicographically).

Knuth-Bendix Ordering, Ground Case

Let us fix

I Signature Σ, it induces the
term algebra TA(Σ).

I Total ordering� on Σ, called
precedence relation;

I Weight function w : Σ→ N.

Weight of a ground term t is

|g(t1, . . . , tn)| = w(g) +
n∑

i=1

|ti |.

g(t1, . . . , tm) �KB h(s1, . . . , sn) if
1. |g(t1, . . . , tm)| > |h(s1, . . . , sn)|

(by weight) or

2. |g(t1, . . . , tm)| = |h(s1, . . . , sn)|
and one of the following holds:
2.1 g � h (by precedence) or

2.2 g = h and for some
1 ≤ i ≤ n we have
t1 = s1, . . . , ti−1 = si−1 and
ti �KB si (lexicographically).

Knuth-Bendix Ordering, Ground Case

Let us fix

I Signature Σ, it induces the
term algebra TA(Σ).

I Total ordering� on Σ, called
precedence relation;

I Weight function w : Σ→ N.

Weight of a ground term t is

|g(t1, . . . , tn)| = w(g) +
n∑

i=1

|ti |.

g(t1, . . . , tm) �KB h(s1, . . . , sn) if
1. |g(t1, . . . , tm)| > |h(s1, . . . , sn)|

(by weight) or
2. |g(t1, . . . , tm)| = |h(s1, . . . , sn)|

and one of the following holds:
2.1 g � h (by precedence) or

2.2 g = h and for some
1 ≤ i ≤ n we have
t1 = s1, . . . , ti−1 = si−1 and
ti �KB si (lexicographically).

Knuth-Bendix Ordering, Ground Case

Let us fix

I Signature Σ, it induces the
term algebra TA(Σ).

I Total ordering� on Σ, called
precedence relation;

I Weight function w : Σ→ N.

Weight of a ground term t is

|g(t1, . . . , tn)| = w(g) +
n∑

i=1

|ti |.

g(t1, . . . , tm) �KB h(s1, . . . , sn) if
1. |g(t1, . . . , tm)| > |h(s1, . . . , sn)|

(by weight) or
2. |g(t1, . . . , tm)| = |h(s1, . . . , sn)|

and one of the following holds:
2.1 g � h (by precedence) or
2.2 g = h and for some

1 ≤ i ≤ n we have
t1 = s1, . . . , ti−1 = si−1 and
ti �KB si (lexicographically).

Example

w(a) = 1
w(b) = 2
w(f) = 3
w(g) = 0

|f (g(a), f (a,b))|

= |3(0(1),3(1,2))| = 3 + 0 + 1 + 3 + 1 + 2 = 10.

There exists also a non-ground version of the Knuth-Bendix ordering
and a (nearly) linear time algorithm for term comparison using this
ordering.
The Knuth-Bendix ordering is the main ordering used on Vampire and
all other resolution and superposition theorem provers.

Example

w(a) = 1
w(b) = 2
w(f) = 3
w(g) = 0

|f (g(a), f (a,b))| = |3(0(1),3(1,2))|

= 3 + 0 + 1 + 3 + 1 + 2 = 10.

There exists also a non-ground version of the Knuth-Bendix ordering
and a (nearly) linear time algorithm for term comparison using this
ordering.
The Knuth-Bendix ordering is the main ordering used on Vampire and
all other resolution and superposition theorem provers.

Example

w(a) = 1
w(b) = 2
w(f) = 3
w(g) = 0

|f (g(a), f (a,b))| = |3(0(1),3(1,2))| = 3 + 0 + 1 + 3 + 1 + 2

= 10.

There exists also a non-ground version of the Knuth-Bendix ordering
and a (nearly) linear time algorithm for term comparison using this
ordering.
The Knuth-Bendix ordering is the main ordering used on Vampire and
all other resolution and superposition theorem provers.

Example

w(a) = 1
w(b) = 2
w(f) = 3
w(g) = 0

|f (g(a), f (a,b))| = |3(0(1),3(1,2))| = 3 + 0 + 1 + 3 + 1 + 2 = 10.

There exists also a non-ground version of the Knuth-Bendix ordering
and a (nearly) linear time algorithm for term comparison using this
ordering.
The Knuth-Bendix ordering is the main ordering used on Vampire and
all other resolution and superposition theorem provers.

Example

w(a) = 1
w(b) = 2
w(f) = 3
w(g) = 0

|f (g(a), f (a,b))| = |3(0(1),3(1,2))| = 3 + 0 + 1 + 3 + 1 + 2

= 10.

There exists also a non-ground version of the Knuth-Bendix ordering
and a (nearly) linear time algorithm for term comparison using this
ordering.

The Knuth-Bendix ordering is the main ordering used on Vampire and
all other resolution and superposition theorem provers.

Example

w(a) = 1
w(b) = 2
w(f) = 3
w(g) = 0

|f (g(a), f (a,b))| = |3(0(1),3(1,2))| = 3 + 0 + 1 + 3 + 1 + 2

= 10.

There exists also a non-ground version of the Knuth-Bendix ordering
and a (nearly) linear time algorithm for term comparison using this
ordering.
The Knuth-Bendix ordering is the main ordering used on Vampire and
all other resolution and superposition theorem provers.

Knuth-Bendix Ordering

Let us fix

I Signature Σ, it induces the
term algebra TA(Σ).

I Total ordering� on Σ, called
precedence relation;

I Weight function w : Σ→ N.
I w0 ∈ N: variable weight.
I tx : number of occurrences of

x in t .

Weight of a term t is

|x | = w0

|g(t1, . . . , tn)| = w(g) +
∑n

i=1 |ti |.

g(t1, . . . , tm) �KB h(s1, . . . , sn) if
for every variable x we have
g(t1, . . . , tm)x ≥ h(s1, . . . , sn)x and

1. |g(t1, . . . , tm)| > |h(s1, . . . , sn)|
(by weight) or

2. |g(t1, . . . , tm)| = |h(s1, . . . , sn)|
and one of the following holds:
2.1 g � h (by precedence) or

2.2 g = h and for some
1 ≤ i ≤ n we have
t1 = s1, . . . , ti−1 = si−1 and
ti �KB si (lexicographically).

Knuth-Bendix Ordering

Let us fix

I Signature Σ, it induces the
term algebra TA(Σ).

I Total ordering� on Σ, called
precedence relation;

I Weight function w : Σ→ N.
I w0 ∈ N: variable weight.
I tx : number of occurrences of

x in t .

Weight of a term t is

|x | = w0

|g(t1, . . . , tn)| = w(g) +
∑n

i=1 |ti |.

g(t1, . . . , tm) �KB h(s1, . . . , sn) if
for every variable x we have
g(t1, . . . , tm)x ≥ h(s1, . . . , sn)x and

1. |g(t1, . . . , tm)| > |h(s1, . . . , sn)|
(by weight) or

2. |g(t1, . . . , tm)| = |h(s1, . . . , sn)|
and one of the following holds:
2.1 g � h (by precedence) or

2.2 g = h and for some
1 ≤ i ≤ n we have
t1 = s1, . . . , ti−1 = si−1 and
ti �KB si (lexicographically).

Knuth-Bendix Ordering

Let us fix

I Signature Σ, it induces the
term algebra TA(Σ).

I Total ordering� on Σ, called
precedence relation;

I Weight function w : Σ→ N.
I w0 ∈ N: variable weight.
I tx : number of occurrences of

x in t .

Weight of a term t is

|x | = w0

|g(t1, . . . , tn)| = w(g) +
∑n

i=1 |ti |.

g(t1, . . . , tm) �KB h(s1, . . . , sn) if
for every variable x we have
g(t1, . . . , tm)x ≥ h(s1, . . . , sn)x and

1. |g(t1, . . . , tm)| > |h(s1, . . . , sn)|
(by weight) or

2. |g(t1, . . . , tm)| = |h(s1, . . . , sn)|
and one of the following holds:
2.1 g � h (by precedence) or

2.2 g = h and for some
1 ≤ i ≤ n we have
t1 = s1, . . . , ti−1 = si−1 and
ti �KB si (lexicographically).

Knuth-Bendix Ordering

Let us fix

I Signature Σ, it induces the
term algebra TA(Σ).

I Total ordering� on Σ, called
precedence relation;

I Weight function w : Σ→ N.
I w0 ∈ N: variable weight.
I tx : number of occurrences of

x in t .

Weight of a term t is

|x | = w0

|g(t1, . . . , tn)| = w(g) +
∑n

i=1 |ti |.

g(t1, . . . , tm) �KB h(s1, . . . , sn) if
for every variable x we have
g(t1, . . . , tm)x ≥ h(s1, . . . , sn)x and

1. |g(t1, . . . , tm)| > |h(s1, . . . , sn)|
(by weight) or

2. |g(t1, . . . , tm)| = |h(s1, . . . , sn)|
and one of the following holds:
2.1 g � h (by precedence) or

2.2 g = h and for some
1 ≤ i ≤ n we have
t1 = s1, . . . , ti−1 = si−1 and
ti �KB si (lexicographically).

Knuth-Bendix Ordering

Let us fix

I Signature Σ, it induces the
term algebra TA(Σ).

I Total ordering� on Σ, called
precedence relation;

I Weight function w : Σ→ N.
I w0 ∈ N: variable weight.
I tx : number of occurrences of

x in t .

Weight of a term t is

|x | = w0

|g(t1, . . . , tn)| = w(g) +
∑n

i=1 |ti |.

g(t1, . . . , tm) �KB h(s1, . . . , sn) if
for every variable x we have
g(t1, . . . , tm)x ≥ h(s1, . . . , sn)x and

1. |g(t1, . . . , tm)| > |h(s1, . . . , sn)|
(by weight) or

2. |g(t1, . . . , tm)| = |h(s1, . . . , sn)|
and one of the following holds:
2.1 g � h (by precedence) or

2.2 g = h and for some
1 ≤ i ≤ n we have
t1 = s1, . . . , ti−1 = si−1 and
ti �KB si (lexicographically).

Knuth-Bendix Ordering

Let us fix

I Signature Σ, it induces the
term algebra TA(Σ).

I Total ordering� on Σ, called
precedence relation;

I Weight function w : Σ→ N.
I w0 ∈ N: variable weight.
I tx : number of occurrences of

x in t .

Weight of a term t is

|x | = w0

|g(t1, . . . , tn)| = w(g) +
∑n

i=1 |ti |.

g(t1, . . . , tm) �KB h(s1, . . . , sn) if
for every variable x we have
g(t1, . . . , tm)x ≥ h(s1, . . . , sn)x and

1. |g(t1, . . . , tm)| > |h(s1, . . . , sn)|
(by weight) or

2. |g(t1, . . . , tm)| = |h(s1, . . . , sn)|
and one of the following holds:
2.1 g � h (by precedence) or
2.2 g = h and for some

1 ≤ i ≤ n we have
t1 = s1, . . . , ti−1 = si−1 and
ti �KB si (lexicographically).

Same Property

The conclusion is strictly smaller than the rightmost premise:

l = r ∨ C s[l] = t ∨ D

s[r] = t ∨ C ∨ D
(Sup),

l = r ∨ C s[l] 6' t ∨ D

s[r] 6' t ∨ C ∨ D
(Sup),

where (i) l � r , (ii) s[l] � t , (iii) l = r is strictly greater than any literal
in C, (iv) s[l] = t is greater than or equal to any literal in D.

New redundancy
Consider a superposition with a unit left premise:

l = r s[l] = t ∨ D

s[r] = t ∨ D
(Sup),

Note that we have

l = r , s[r] = t ∨ D |= s[l] = t ∨ D

and we have

s[l] = t ∨ D � s[r] = t ∨ D.

If we also have l = r � s[r] = t ∨ D, then the second premise is
redundant and can be removed.

This rule (superposition plus deletion) is sometimes called
demodulation (also rewriting by unit equalities).

New redundancy
Consider a superposition with a unit left premise:

l = r s[l] = t ∨ D

s[r] = t ∨ D
(Sup),

Note that we have

l = r , s[r] = t ∨ D |= s[l] = t ∨ D

and we have

s[l] = t ∨ D � s[r] = t ∨ D.

If we also have l = r � s[r] = t ∨ D, then the second premise is
redundant and can be removed.

This rule (superposition plus deletion) is sometimes called
demodulation (also rewriting by unit equalities).

New redundancy
Consider a superposition with a unit left premise:

l = r s[l] = t ∨ D

s[r] = t ∨ D
(Sup),

Note that we have

l = r , s[r] = t ∨ D |= s[l] = t ∨ D

and we have

s[l] = t ∨ D � s[r] = t ∨ D.

If we also have l = r � s[r] = t ∨ D, then the second premise is
redundant and can be removed.

This rule (superposition plus deletion) is sometimes called
demodulation (also rewriting by unit equalities).

New redundancy
Consider a superposition with a unit left premise:

l = r s[l] = t ∨ D

s[r] = t ∨ D
(Sup),

Note that we have

l = r , s[r] = t ∨ D |= s[l] = t ∨ D

and we have

s[l] = t ∨ D � s[r] = t ∨ D.

If we also have l = r � s[r] = t ∨ D, then the second premise is
redundant and can be removed.

This rule (superposition plus deletion) is sometimes called
demodulation (also rewriting by unit equalities).

Outline

Introduction

First-Order Logic and TPTP

Inference Systems

Saturation Algorithms

Redundancy Elimination

Equality

Unification and Lifting

From Theory to Practice

Colored Proofs, Interpolation and Symbol Elimination

Sorts and Theories

Cookies

Substitution

I A substitution θ is a mapping from variables to terms such that
the set {x | θ(x) 6= x} is finite.

I This set is called the domain of θ.
I Notation: {x1 7→ t1, . . . , xn 7→ tn}, where x1, . . . , xn are pairwise

different variables, denotes the substitution θ such that

θ(x) =

{
ti if x = xi ;
x if x 6∈ {x1, . . . , xn}.

I Application of this substitution to an expression E : simultaneous
replacement
of xi by ti .

I Application of a substitution θ to E is denoted by Eθ.
I Since substitutions are functions, we can define their composition

(written στ instead of τ ◦ σ). Note that we have E(στ) = (Eσ)τ .

Exercise

Exercise: Suppose we have two substitutions

{x1 7→ s1, . . . , xm 7→ sm} and
{y1 7→ t1, . . . , yn 7→ tn}.

How can we write their composition using the same notation?

Instances, Ground

An instance of an expression (that is term, atom, literal, or clause) E
is obtained by applying a substitution to E . Examples:

I some instances of the term f (x ,a,g(x)) are:
f (x ,a,g(x)),
f (y ,a,g(y)),
f (a,a,g(a)),
f (g(b),a,g(g(b)));

I but the term f (b,a,g(c)) is not an instance of this term.

Ground instance: instance with no variables.

Herbrand’s Theorem

For a set of clauses S denote by S∗ the set of ground instances of
clauses in S.

Theorem Let S be a set of clauses. The following conditions are
equivalent.

1. S is unsatisfiable;
2. S∗ is unsatisfiable;

By compactness the last condition is equivalent to

3. there exists a finite unsatisfiable set of ground instances of
clauses in S.

The theorem reduces the problem of checking unsatisfiability of sets
of arbitrary clauses to checking unsatisfiability of sets of ground
clauses . . .
The only problem is that S∗ can be infinite even if S is finite.

Herbrand’s Theorem

For a set of clauses S denote by S∗ the set of ground instances of
clauses in S.

Theorem Let S be a set of clauses. The following conditions are
equivalent.

1. S is unsatisfiable;
2. S∗ is unsatisfiable;

By compactness the last condition is equivalent to

3. there exists a finite unsatisfiable set of ground instances of
clauses in S.

The theorem reduces the problem of checking unsatisfiability of sets
of arbitrary clauses to checking unsatisfiability of sets of ground
clauses . . .
The only problem is that S∗ can be infinite even if S is finite.

Herbrand’s Theorem

For a set of clauses S denote by S∗ the set of ground instances of
clauses in S.

Theorem Let S be a set of clauses. The following conditions are
equivalent.

1. S is unsatisfiable;
2. S∗ is unsatisfiable;

By compactness the last condition is equivalent to

3. there exists a finite unsatisfiable set of ground instances of
clauses in S.

The theorem reduces the problem of checking unsatisfiability of sets
of arbitrary clauses to checking unsatisfiability of sets of ground
clauses . . .
The only problem is that S∗ can be infinite even if S is finite.

Note on Herbrand’s Theorem, Compactness and
Completeness

The proofs of completeness of resolution and superposition with
redundancy elimination does not use any of these theorems.

Interestingly, they all can be derived as simple corollaries of this proof
of completeness!

Note on Herbrand’s Theorem, Compactness and
Completeness

The proofs of completeness of resolution and superposition with
redundancy elimination does not use any of these theorems.

Interestingly, they all can be derived as simple corollaries of this proof
of completeness!

Lifting

Lifting is a technique for proving completeness theorems in the
following way:

1. Prove completeness of the system for a set of ground clauses;
2. Lift the proof to the non-ground case.

Lifting, Example

Consider two (non-ground) clauses p(x ,a) ∨ q1(x) and
¬p(y , z) ∨ q2(y , z). If the signature contains function symbols, then
both clauses have infinite sets of instances:

{p(r ,a) ∨ q1(r) | r is ground}
{¬p(s, t) ∨ q2(s, t) | s, t are ground}

We can resolve such instances if and only if r = s and t = a. Then we
can apply the following inference

p(s,a) ∨ q1(s) ¬p(s,a) ∨ q2(s,a)

q1(s) ∨ q2(s,a)
(BR)

But there is an infinite number of such inferences.

Lifting, Idea

The idea is to represent an infinite number of ground inferences of the
form

p(s,a) ∨ q1(s) ¬p(s,a) ∨ q2(s,a)

q1(s) ∨ q2(s,a)
(BR)

by a single non-ground inference

p(x ,a) ∨ q1(x) ¬p(y , z) ∨ q2(y , z)

q1(y) ∨ q2(y ,a)
(BR)

Is this always possible?

Yes!

p(x ,a) ∨ q1(x) ¬p(y , z) ∨ q2(y , z)

q1(y) ∨ q2(y ,a)
(BR)

Note that the substitution {x 7→ y , z 7→ a} is a solution of the
“equation” p(x ,a) = p(y , z).

What should we lift?

I Ordering �;
I Selection function σ;
I Calculus Sup�,σ.

Most importantly, for the lifting to work we should be able to solve
equations s = t between terms and between atoms. This can be
done using most general unifiers.

Unifier

Unifier of expressions s1 and s2: a substitution θ such that s1θ = s2θ.
In other words, a unifier is a solution to an “equation” s1 = s2. In a
similar way we can define solutions to systems of equations
s1 = s′1, . . . , sn = s′n. We call such solutions simultaneous unifiers of
s1, . . . , sn and s′1, . . . , s

′
n.

(Most General) Unifiers

A solution θ to a set of equations E is said to be a most general
solution if for every other solution σ there exists a substitution τ such
that θτ = σ. In a similar way can define a most general unifier.

Consider terms f (x1,g(x1), x2) and f (y1, y2, y2).
(Some of) their unifiers are
θ1 = {y1 7→ x1, y2 7→ g(x1), x2 7→ g(x1)} and
θ2 = {y1 7→ a, y2 7→ g(a), x2 7→ g(a), x1 7→ a}:

f (x1,g(x1), x2)θ1 = f (x1,g(x1),g(x1));
f (y1, y2, y2)θ1 = f (x1,g(x1),g(x1));
f (x1,g(x1), x2)θ2 = f (a,g(a),g(a));
f (y1, y2, y2)θ2 = f (a,g(a),g(a)).
But only θ1 is most general.

(Most General) Unifiers

A solution θ to a set of equations E is said to be a most general
solution if for every other solution σ there exists a substitution τ such
that θτ = σ. In a similar way can define a most general unifier.

Consider terms f (x1,g(x1), x2) and f (y1, y2, y2).
(Some of) their unifiers are
θ1 = {y1 7→ x1, y2 7→ g(x1), x2 7→ g(x1)} and
θ2 = {y1 7→ a, y2 7→ g(a), x2 7→ g(a), x1 7→ a}:

f (x1,g(x1), x2)θ1 = f (x1,g(x1),g(x1));
f (y1, y2, y2)θ1 = f (x1,g(x1),g(x1));
f (x1,g(x1), x2)θ2 = f (a,g(a),g(a));
f (y1, y2, y2)θ2 = f (a,g(a),g(a)).
But only θ1 is most general.

Unification
Let E be a set of equations. An isolated equation in E is any equation x = t in it such
that x has exactly one occurrence in E .

input:
A finite set of equations E

output:
A solution to E or failure.

begin
while there exists a non-isolated equation (s = t) ∈ E
do

case (s, t) of
(t , t) ⇒ Remove this equation from E
(x , t) ⇒

if x occurs in t
then halt with failure
else replace x by t in all other equations of E

(t , x) ⇒ replace this equation by x = t
and do the same as in the case (x , t)

(c, d) ⇒ halt with failure
(c, f (t1, . . . , tn)) ⇒ halt with failure
(f (t1, . . . , tn), c) ⇒ halt with failure
(f (s1, . . . , sm), g(t1, . . . , tn)) ⇒ halt with failure
(f (s1, . . . , sn), f (t1, . . . , tn)) ⇒ replace this equation by the set

s1 = t1, . . . , sn = tn
end

od
Now E has the form {x1 = r1, . . . , xl = rl} and every equation in it
is isolated
return the substitution {x1 7→ r1, . . . , xl 7→ rl}

end

Examples

{h(g(f (x),a)) = h(g(y , y))}
{h(f (y), y , f (z)) = h(z, f (x), x)}
{h(g(f (x), z)) = h(g(y , y))}

Properties

Theorem Suppose we run the unification algorithm on s = t . Then

I If s and t are unifiable, then the algorithms terminates and
outputs a most general unifier of s and t .

I If s and t are not unifiable, then the algorithms terminates with
failure.

Notation (slightly ambiguous):

I mgu(s, t) for a most general unifier;
I mgs(E) for a most general solution.

Exercise

Consider a trivial system of equations {} or {a = a}.
What is the set of solutions to it?
What is the set of most general solutions to it?

Properties

Theorem Let C be a clause and E a set of equations. Then

{D ∈ C∗ | ∃θ(Cθ = D and θ is a solution to E)} = (Cmgs(E))∗.

In other words, to find a set of ground instances of a clause C that
also satisfy an equation E , take the most general solution σ of E and
use ground instances of Cσ.

Non-Ground Superposition Rule
Superposition:

l = r ∨ C s[l ′] = t ∨ D

(s[r] = t ∨ C ∨ D)θ
(Sup),

l = r ∨ C s[l ′] 6= t ∨ D

(s[r] 6= t ∨ C ∨ D)θ
(Sup),

where

1. θ is an mgu of l and l ′;
2. l ′ is not a variable;
3. rθ 6� lθ;
4. tθ 6� s[l ′]θ.
5. . . .

Observations:
I ordering is partial, hence conditions like rθ 6� lθ;
I these conditions must be checked a posteriori, that is, after the

rule has been applied.
Note, however, that l � r implies lθ � rθ, so checking orderings a
priory helps.

Non-Ground Superposition Rule
Superposition:

l = r ∨ C s[l ′] = t ∨ D

(s[r] = t ∨ C ∨ D)θ
(Sup),

l = r ∨ C s[l ′] 6= t ∨ D

(s[r] 6= t ∨ C ∨ D)θ
(Sup),

where

1. θ is an mgu of l and l ′;
2. l ′ is not a variable;
3. rθ 6� lθ;
4. tθ 6� s[l ′]θ.
5. . . .

Observations:
I ordering is partial, hence conditions like rθ 6� lθ;
I these conditions must be checked a posteriori, that is, after the

rule has been applied.
Note, however, that l � r implies lθ � rθ, so checking orderings a
priory helps.

More rules

Equality Resolution:

s 6= s′ ∨ C

Cθ
(ER),

where θ is an mgu of s and s′.
Equality Factoring:

l = r ∨ l ′ = r ′ ∨ C
(l = r ∨ r 6= r ′ ∨ C)θ

(EF),

where θ is an mgu of l and l ′, rθ 6� lθ, r ′θ 6� lθ, and r ′θ 6� rθ.

Outline

Introduction

First-Order Logic and TPTP

Inference Systems

Saturation Algorithms

Redundancy Elimination

Equality

Unification and Lifting

From Theory to Practice

Colored Proofs, Interpolation and Symbol Elimination

Sorts and Theories

Cookies

From theory to practice

I Preprocessing and CNF transformation;
I Superposition system;
I Orderings;
I Selection functions;
I Fairness (saturation algorithms);
I Redundancy.

Vampire’s preprocessing (incomplete list)
1. (Optional) Select a relevant subset of formulas.
2. (Optional) Add theory axioms;
3. Rectify the formula.
4. If the formula contains any occurrence of > or ⊥, simplify the formula.
5. Remove if-then-else and let-in connectives.
6. Flatten the formula.
7. Apply pure predicate elimination.
8. (Optional) Remove unused predicate definitions.
9. Convert the formula into equivalence negation normal form.

10. Use a naming technique to replace some subformulas by their names.
11. Convert the formula into negation normal form.
12. Skolemize the formula.
13. (Optional) Replace equality axioms.
14. Determine a literal ordering to be used.
15. Transform the formula into its conjunctive normal form.
16. (Optional) Function definition elimination.
17. (Optional) Inequality splitting.
18. Remove tautologies.
19. Pure literal elimination.
20. Remove clausal definitions.

Checking Redundancy

Suppose that the current search space S contains no redundant
clauses. How can a redundant clause appear in the inference
process?

Only when a new clause (a child of the selected clause and possibly
other clauses) is added.
Classification of redundancy checks:

I The child is redundant;
I The child makes one of the clauses in the search space

redundant.

We use some fair strategy and perform these checks after every
inference that generates a new clause.
In fact, one can do better.

Checking Redundancy

Suppose that the current search space S contains no redundant
clauses. How can a redundant clause appear in the inference
process?
Only when a new clause (a child of the selected clause and possibly
other clauses) is added.
Classification of redundancy checks:

I The child is redundant;
I The child makes one of the clauses in the search space

redundant.

We use some fair strategy and perform these checks after every
inference that generates a new clause.
In fact, one can do better.

Checking Redundancy

Suppose that the current search space S contains no redundant
clauses. How can a redundant clause appear in the inference
process?
Only when a new clause (a child of the selected clause and possibly
other clauses) is added.
Classification of redundancy checks:

I The child is redundant;
I The child makes one of the clauses in the search space

redundant.

We use some fair strategy and perform these checks after every
inference that generates a new clause.
In fact, one can do better.

Demodulation, Non-Ground Case

l = r L[l ′] ∨ D
L[rθ] ∨ D

(Dem),

where lθ = l ′, lθ � rθ, and (L[l ′] ∨ D)θ � (lθ � rθ).

Easier to understand:

l = r L[lθ] ∨ D
L[rθ] ∨ D

(Dem),

where lθ � rθ, and (L[l ′] ∨ D)θ � (lθ � rθ).

Demodulation, Non-Ground Case

l = r L[l ′] ∨ D
L[rθ] ∨ D

(Dem),

where lθ = l ′, lθ � rθ, and (L[l ′] ∨ D)θ � (lθ � rθ).

Easier to understand:

l = r L[lθ] ∨ D
L[rθ] ∨ D

(Dem),

where lθ � rθ, and (L[l ′] ∨ D)θ � (lθ � rθ).

Generating and Simplifying Inferences

An inference

C1 . . . Cn

C
.

is called simplifying if at least one premise Ci becomes redundant
after the addition of the conclusion C to the search space. We then
say that Ci is simplified into C.
A non-simplifying inference is called generating.

Note. The property of being simplifying is undecidable. So is the
property of being redundant. So in practice we employ sufficient
conditions for simplifying inferences and for redundancy.

Idea: try to search eagerly for simplifying inferences bypassing the
strategy for inference selection.

Generating and Simplifying Inferences

An inference

C1 . . . Cn

C
.

is called simplifying if at least one premise Ci becomes redundant
after the addition of the conclusion C to the search space. We then
say that Ci is simplified into C.
A non-simplifying inference is called generating.

Note. The property of being simplifying is undecidable. So is the
property of being redundant. So in practice we employ sufficient
conditions for simplifying inferences and for redundancy.

Idea: try to search eagerly for simplifying inferences bypassing the
strategy for inference selection.

Generating and Simplifying Inferences

An inference

C1 . . . Cn

C
.

is called simplifying if at least one premise Ci becomes redundant
after the addition of the conclusion C to the search space. We then
say that Ci is simplified into C.
A non-simplifying inference is called generating.

Note. The property of being simplifying is undecidable. So is the
property of being redundant. So in practice we employ sufficient
conditions for simplifying inferences and for redundancy.

Idea: try to search eagerly for simplifying inferences bypassing the
strategy for inference selection.

Generating and Simplifying Inferences

Two main implementation principles:

apply simplifying inferences
eagerly;

apply generating inferences
lazily.

checking for simplifying
inferences should pay off;

so it must be cheap.

End of Lecture 4

Slides for lecture 4 ended here . . .

Redundancy Checking

Redundancy-checking occurs upon addition of a new child C. It
works as follows

I Retention test: check if C is redundant.
I Forward simplification: check if C can be simplified using a

simplifying inference.
I Backward simplification: check if C simplifies or makes

redundant an old clause.

Examples

Retention test:

I tautology-check;
I subsumption.

(A clause C subsumes a clause D if there exists a substitution θ such
that Cθ is a submultiset of D.)

Simplification:

I demodulation (forward and backward);
I subsumption resolution (forward and backward).

Some redundancy criteria are expensive

I Tautology-checking is based on congruence closure.
I Subsumption and subsumption resolution are NP-complete.

Term Indexing

How can one efficiently apply complex operations to hundreds of
thousands of terms and clauses?

Given a set L (the set of indexed terms), a binary relation R over
terms (the retrieval condition) and a term t (called the query term),
identify the subsetM of L consisting of all of the terms l such that
R(l , t) holds.
The problem (and solution) is similar to database query answering,
but data are much more complex than relational data (a clause is a
finite set of trees, so the search space is a (large) set of finite sets of
trees).
One puts the clauses in L in a data structure, called the index. The
data structure is designed with the only purpose to make the retrieval
fast.

Term Indexing

How can one efficiently apply complex operations to hundreds of
thousands of terms and clauses?
Given a set L (the set of indexed terms), a binary relation R over
terms (the retrieval condition) and a term t (called the query term),
identify the subsetM of L consisting of all of the terms l such that
R(l , t) holds.

The problem (and solution) is similar to database query answering,
but data are much more complex than relational data (a clause is a
finite set of trees, so the search space is a (large) set of finite sets of
trees).
One puts the clauses in L in a data structure, called the index. The
data structure is designed with the only purpose to make the retrieval
fast.

Term Indexing

How can one efficiently apply complex operations to hundreds of
thousands of terms and clauses?
Given a set L (the set of indexed terms), a binary relation R over
terms (the retrieval condition) and a term t (called the query term),
identify the subsetM of L consisting of all of the terms l such that
R(l , t) holds.
The problem (and solution) is similar to database query answering,
but data are much more complex than relational data (a clause is a
finite set of trees, so the search space is a (large) set of finite sets of
trees).

One puts the clauses in L in a data structure, called the index. The
data structure is designed with the only purpose to make the retrieval
fast.

Term Indexing

How can one efficiently apply complex operations to hundreds of
thousands of terms and clauses?
Given a set L (the set of indexed terms), a binary relation R over
terms (the retrieval condition) and a term t (called the query term),
identify the subsetM of L consisting of all of the terms l such that
R(l , t) holds.
The problem (and solution) is similar to database query answering,
but data are much more complex than relational data (a clause is a
finite set of trees, so the search space is a (large) set of finite sets of
trees).
One puts the clauses in L in a data structure, called the index. The
data structure is designed with the only purpose to make the retrieval
fast.

Term Indexing

I Different indexes are needed to support different operations;
I The set of clauses is dynamically (and often) changes, so that

index maintenance must be efficient.
I Memory is an issue (badly designed indexes may take much

more space than clauses).
I The inverse retrieval conditions (the same algorithm on clauses)

may require very different indexing techniques (e.g., forward and
backward subsumption).

I Sensitive to the signature of the problem: techniques good for
small signatures are too slow and too memory consuming for
large signatures.

Term Indexing in Vampire

I Various hash tables.
I Flatterms in constant memory for storing temporary clauses.
I Code trees for forward subsumption;
I Code trees with precompiled ordering constraints;
I Discrimination trees;
I Substitution trees;
I Variables banks;
I Shared terms with renaming lists;
I Path index with compiled database joins;
I . . .

Observations

I There may be chains (repeated applications) of forward
simplifications.

I After a chain of forward simplifications another retention test can
(should) be done.

I Backward simplification is often expensive.
I In practice, the retention test may include other checks, resulting

in the loss of completeness, for example, we may decide to
discard too heavy clauses.

Observations

I There may be chains (repeated applications) of forward
simplifications.

I After a chain of forward simplifications another retention test can
(should) be done.

I Backward simplification is often expensive.

I In practice, the retention test may include other checks, resulting
in the loss of completeness, for example, we may decide to
discard too heavy clauses.

Observations

I There may be chains (repeated applications) of forward
simplifications.

I After a chain of forward simplifications another retention test can
(should) be done.

I Backward simplification is often expensive.
I In practice, the retention test may include other checks, resulting

in the loss of completeness, for example, we may decide to
discard too heavy clauses.

How to Design a Good Saturation Algorithm?

A saturation algorithm must be fair: every possible generating
inference must eventually be selected.

Two main implementation principles:

apply simplifying inferences
eagerly;

apply generating inferences
lazily.

checking for simplifying
inferences should pay off;

so it must be cheap.

Given Clause Algorithm (no Simplification)

input: init : set of clauses;
var active, passive, queue: sets of clauses;
var current : clauses ;
active := ∅;
passive := init;
while passive 6= ∅ do

* current := select(passive); (* clause selection *)
move current from passive to active;

* queue:=infer(current , active); (* generating inferences *)
if � ∈ queue then return unsatisfiable;
passive := passive ∪ queue

od;
return satisfiable

Given Clause Algorithm (with Simplification)

In fact, there is more than one . . .

Otter vs. Discount Saturation

Otter saturation algorithm:

I active clauses participate in generating and simplifying
inferences;

I passive clauses participate in simplifying inferences.

Discount saturation algorithm:

I active clauses participate in generating and simplifying
inferences;

I passive clauses do not participate in inferences.

Otter vs. Discount Saturation, Newly Generated
Clauses

Otter saturation algorithm:

I active clauses participate in generating and simplifying
inferences;

I new clauses participate in simplifying inferences;
I passive clauses participate in simplifying inferences.

Discount saturation algorithm:

I active clauses participate in generating and simplifying
inferences;

I new clauses participate in simplifying inferences;
I passive clauses do not participate in inferences.

Otter vs. Discount Saturation, Newly Generated
Clauses

Otter saturation algorithm:

I active clauses participate in generating inferences with the
selected clause and simplifying inferences with new clauses;

I new clauses participate in simplifying inferences with all clauses;
I passive clauses participate in simplifying inferences with new

clauses.

Discount saturation algorithm:

I active clauses participate in generating inferences and
simplifying inferences with the selected clause and simplifying
inferences with the new clauses;

I new clauses participate in simplifying inferences with the
selected and active clauses;

I passive clauses do not participate in inferences.

Otter Saturation Algorithm
input: init : set of clauses;
var active, passive, unprocessed : set of clauses;
var given, new : clause;
active := ∅;
unprocessed := init;
loop

while unprocessed 6= ∅
new:=pop(unprocessed);
if new = � then return unsatisfiable;

* if retained(new) then (* retention test *)
* simplify new by clauses in active ∪ passive ;(* forward simplification *)

if new = � then return unsatisfiable;
* if retained(new) then (* another retention test *)
* delete and simplify clauses in active and (* backward simplification *)

passive using new;
move the simplified clauses to unprocessed;
add new to passive

if passive = ∅ then return satisfiable or unknown
* given := select(passive); (* clause selection *)

move given from passive to active;
* unprocessed:=infer(given, active); (* generating inferences *)

Discount Saturation Algorithm

input: init : set of clauses;
var active, passive, unprocessed : set of clauses;
var given, new : clause;
active := ∅;
unprocessed := init;
loop

while unprocessed 6= ∅
new:=pop(unprocessed);
if new = � then return unsatisfiable;

* if retained(new) then (* retention test *)
* simplify new by clauses in active ; (* forward simplification *)

if new = � then return unsatisfiable;
* if retained(new) then (* retention test *)
* delete and simplify clauses in active using new;(* backward simplification *)

move the simplified clauses to unprocessed;
add new to passive

if passive = ∅ then return satisfiable or unknown
* given := select(passive); (* clause selection *)
* simplify given by clauses in active; (* forward simplification *)
* if given = � then return unsatisfiable;

if retained(given) then (* retention test *)
* delete and simplify clauses in active using given; (* backward simplification *)

move the simplified clauses to unprocessed;
add given to active;
unprocessed:=infer(given, active); (* generating inferences *)

Age-Weight Ratio

How to select nice clauses?

I Small clauses are nice.
I Selecting only small clauses can postpone the selection of an old

clause (e.g., input clause) for too long, in practice resulting in
incompleteness.

Solution:

I A fixed percentage of clauses is selected by weight, the rest are
selected by age.

I So we use an age-weight ratio a : w : of each a + w clauses
select a oldest and w smallest clauses.

Age-Weight Ratio

How to select nice clauses?

I Small clauses are nice.
I Selecting only small clauses can postpone the selection of an old

clause (e.g., input clause) for too long, in practice resulting in
incompleteness.

Solution:

I A fixed percentage of clauses is selected by weight, the rest are
selected by age.

I So we use an age-weight ratio a : w : of each a + w clauses
select a oldest and w smallest clauses.

Limited Resource Strategy

Limited Resource Strategy: try to approximate which clauses are
unreachable by the end of the time limit and remove them from the
search space.

Try:

vampire --age weight ratio 10:1
--backward subsumption off
--time limit 86400

GRP140-1.p

Limited Resource Strategy

Limited Resource Strategy: try to approximate which clauses are
unreachable by the end of the time limit and remove them from the
search space.

Try:

vampire --age weight ratio 10:1
--backward subsumption off
--time limit 86400

GRP140-1.p

Outline

Introduction

First-Order Logic and TPTP

Inference Systems

Saturation Algorithms

Redundancy Elimination

Equality

Unification and Lifting

From Theory to Practice

Colored Proofs, Interpolation and Symbol Elimination

Sorts and Theories

Cookies

Interpolation
Theorem
Let A,B be closed formulas and let A ` B.

Then there exists a formula I such that
1. A ` I and I ` B;
2. every symbol of I occurs both in A and B;

Any formula I with this property is called an interpolant of A and B.
Essentially, an interpolant is a formula that is

1. intermediate in power between A and B;
2. Uses only common symbols of A and B.

Interpolation has many uses in verification.

When we deal with refutations rather than proofs and have an
unsatisfiable set {A,B}, it is convenient to use reverse interpolants of
A and B, that is, a formula I such that

1. A ` I and {I,B} is unsatisfiable;
2. every symbol of I occurs both in A and B;

Interpolation
Theorem
Let A,B be closed formulas and let A ` B.

Then there exists a formula I such that
1. A ` I and I ` B;
2. every symbol of I occurs both in A and B;

Any formula I with this property is called an interpolant of A and B.
Essentially, an interpolant is a formula that is

1. intermediate in power between A and B;
2. Uses only common symbols of A and B.

Interpolation has many uses in verification.

When we deal with refutations rather than proofs and have an
unsatisfiable set {A,B}, it is convenient to use reverse interpolants of
A and B, that is, a formula I such that

1. A ` I and {I,B} is unsatisfiable;
2. every symbol of I occurs both in A and B;

Interpolation
Theorem
Let A,B be closed formulas and let A ` B.

Then there exists a formula I such that
1. A ` I and I ` B;
2. every symbol of I occurs both in A and B;

Any formula I with this property is called an interpolant of A and B.
Essentially, an interpolant is a formula that is

1. intermediate in power between A and B;
2. Uses only common symbols of A and B.

Interpolation has many uses in verification.

When we deal with refutations rather than proofs and have an
unsatisfiable set {A,B}, it is convenient to use reverse interpolants of
A and B, that is, a formula I such that

1. A ` I and {I,B} is unsatisfiable;
2. every symbol of I occurs both in A and B;

Interpolation Through Colors

I There are three colors: blue, red and green.

I Each symbol (function or predicate) is colored in exactly one of
these colors.

I We have two formulas: A and B.
I Each symbol in A is either blue or green.
I Each symbol in B is either red or green.
I We know that ` A→ B.
I Our goal is to find a green formula I such that

1. ` A→ I;
2. ` I → B.

Interpolation Through Colors

I There are three colors: blue, red and green.
I Each symbol (function or predicate) is colored in exactly one of

these colors.

I We have two formulas: A and B.
I Each symbol in A is either blue or green.
I Each symbol in B is either red or green.
I We know that ` A→ B.
I Our goal is to find a green formula I such that

1. ` A→ I;
2. ` I → B.

Interpolation Through Colors

I There are three colors: blue, red and green.
I Each symbol (function or predicate) is colored in exactly one of

these colors.
I We have two formulas: A and B.
I Each symbol in A is either blue or green.
I Each symbol in B is either red or green.

I We know that ` A→ B.
I Our goal is to find a green formula I such that

1. ` A→ I;
2. ` I → B.

Interpolation Through Colors

I There are three colors: blue, red and green.
I Each symbol (function or predicate) is colored in exactly one of

these colors.
I We have two formulas: A and B.
I Each symbol in A is either blue or green.
I Each symbol in B is either red or green.
I We know that ` A→ B.
I Our goal is to find a green formula I such that

1. ` A→ I;
2. ` I → B.

Interpolation with Theories
I Theory T : any set of closed green formulas.
I C1, . . . ,Cn `T C denotes that the formula C1 ∧ . . . ∧ C1 → C

holds in all models of T .
I Interpreted symbols: symbols occurring in T .
I Uninterpreted symbols: all other symbols.

Theorem
Let A,B be formulas and let A `T B.

Then there exists a formula I such that
1. A `T I and I ` B;
2. every uninterpreted symbol of I occurs both in A and B;
3. every interpreted symbol of I occurs in B.

Likewise, there exists a formula I such that
1. A ` I and I `T B;
2. every uninterpreted symbol of I occurs both in A and B;
3. every interpreted symbol of I occurs in A.

Interpolation with Theories
I Theory T : any set of closed green formulas.
I C1, . . . ,Cn `T C denotes that the formula C1 ∧ . . . ∧ C1 → C

holds in all models of T .
I Interpreted symbols: symbols occurring in T .
I Uninterpreted symbols: all other symbols.

Theorem
Let A,B be formulas and let A `T B.

Then there exists a formula I such that
1. A `T I and I ` B;
2. every uninterpreted symbol of I occurs both in A and B;
3. every interpreted symbol of I occurs in B.

Likewise, there exists a formula I such that
1. A ` I and I `T B;
2. every uninterpreted symbol of I occurs both in A and B;
3. every interpreted symbol of I occurs in A.

Local Derivations

A derivation is called local (well-colored) if each inference in it

C! · · · Cn

C

either has no blue symbols or has no red symbols.
That is, one cannot mix blue and red in the same inference.

Local Derivations: Example

I A := ∀x(x = a)

I B := c = b
I Interpolant: ∀x∀y(x = y) (note: universally quantified!)

A local refutation in the superposition calculus:

x = a y = a
x = y c 6= b

y 6= b
⊥

Local Derivations: Example

I A := ∀x(x = a)

I B := c = b
I Interpolant: ∀x∀y(x = y) (note: universally quantified!)

A local refutation in the superposition calculus:

x = a y = a
x = y c 6= b

y 6= b
⊥

Shape of a local derivation

Symbol Eliminating Inference

I At least one of the premises is not green.
I The conclusion is green.

x = a y = a
x = y c 6= b

y 6= b
⊥

Extracting Interpolants from Local Proofs

Theorem
Let Π be a local refutation. Then one can extract from Π in linear time
a reverse interpolant I of A and B. This interpolant is ground if all
formulas in Π are ground.

This reverse interpolant is a boolean
combination of conclusions of symbol-eliminating inferences of Π.
What is remarkable in this theorem:

I No restriction on the calculus (only soundness required) – can be
used with theories.

I Can generate interpolants in theories where no good
interpolation algorithms exist.

Extracting Interpolants from Local Proofs

Theorem
Let Π be a local refutation. Then one can extract from Π in linear time
a reverse interpolant I of A and B. This interpolant is ground if all
formulas in Π are ground. This reverse interpolant is a boolean
combination of conclusions of symbol-eliminating inferences of Π.

What is remarkable in this theorem:

I No restriction on the calculus (only soundness required) – can be
used with theories.

I Can generate interpolants in theories where no good
interpolation algorithms exist.

Extracting Interpolants from Local Proofs

Theorem
Let Π be a local refutation. Then one can extract from Π in linear time
a reverse interpolant I of A and B. This interpolant is ground if all
formulas in Π are ground. This reverse interpolant is a boolean
combination of conclusions of symbol-eliminating inferences of Π.
What is remarkable in this theorem:

I No restriction on the calculus (only soundness required) – can be
used with theories.

I Can generate interpolants in theories where no good
interpolation algorithms exist.

Interpolation: Examples in Vampire

fof(fA,axiom, q(f(a)) & ˜q(f(b))).
fof(fB,conjecture, ?[V]: V != c).

Interpolation: Examples in Vampire

% request to generate an interpolant
vampire(option,show_interpolant,on).
% symbol coloring
vampire(symbol,predicate,q,1,left).
vampire(symbol,function,f,1,left).
vampire(symbol,function,a,0,left).
vampire(symbol,function,b,0,left).
vampire(symbol,function,c,0,right).
% formula L
vampire(left_formula).

fof(fA,axiom, q(f(a)) & ˜q(f(b))).
vampire(end_formula).
% formula R
vampire(right_formula).

fof(fB,conjecture, ?[V]: V != c).
vampire(end_formula).

Symbol Elimination

Colored proofs can also be used for an interesting application.
Suppose that we have a set of formulas in some language and want
to derive consequences of these formulas in a subset of this
language.

Then we declare the symbols to be eliminated colored and ask
Vampire to output symbol-eliminating inferences.

This technique was used in our experiments on automatic loop
invariant generation.

Symbol Elimination

Colored proofs can also be used for an interesting application.
Suppose that we have a set of formulas in some language and want
to derive consequences of these formulas in a subset of this
language.

Then we declare the symbols to be eliminated colored and ask
Vampire to output symbol-eliminating inferences.

This technique was used in our experiments on automatic loop
invariant generation.

Symbol Elimination

Colored proofs can also be used for an interesting application.
Suppose that we have a set of formulas in some language and want
to derive consequences of these formulas in a subset of this
language.

Then we declare the symbols to be eliminated colored and ask
Vampire to output symbol-eliminating inferences.

This technique was used in our experiments on automatic loop
invariant generation.

Outline

Introduction

First-Order Logic and TPTP

Inference Systems

Saturation Algorithms

Redundancy Elimination

Equality

Unification and Lifting

From Theory to Practice

Colored Proofs, Interpolation and Symbol Elimination

Sorts and Theories

Cookies

Sorts
Consider these statements:

1. Sort b consists of two elements: t and f ;
2. Sort s has three different elements.

t! = f ∧ (∀x : b)(x = t ∨ x = f)
(∃x : s)(∃y : s)(∃z : s)(x 6' y ∧ x 6' z ∧ y 6' z)

The unsorted version of it:

(∀x)(x = t ∨ x = f)
(∃x)(∃y)(∃z)(x 6' y ∧ x 6' z ∧ y 6' z)

is unsatisfiable:

fof(1,axiom,t != f & ! [X] : X = t | X = f).
fof(1,axiom,? [X,Y,Z] : (X != Y & X != Z & Y != Z)).

vampire sort1.tptp

Sorts
Consider these statements:

1. Sort b consists of two elements: t and f ;
2. Sort s has three different elements.

t! = f ∧ (∀x : b)(x = t ∨ x = f)
(∃x : s)(∃y : s)(∃z : s)(x 6' y ∧ x 6' z ∧ y 6' z)

The unsorted version of it:

(∀x)(x = t ∨ x = f)
(∃x)(∃y)(∃z)(x 6' y ∧ x 6' z ∧ y 6' z)

is unsatisfiable:

fof(1,axiom,t != f & ! [X] : X = t | X = f).
fof(1,axiom,? [X,Y,Z] : (X != Y & X != Z & Y != Z)).

vampire sort1.tptp

Sorts in TPTP

tff(boolean type,type,b: $tType). % b is a sort
tff(s is a type,type,s: $tType). % s is a sort

tff(t has type b,type,t : b). % t has sort b
tff(f has type b,type,f : b). % f has sort b

tff(1,axiom,t != f & ! [X:b] : X = t | X = f).
tff(1,axiom,? [X:s,Y:s,Z:s] : (X != Y & X != Z & Y != Z)).

vampire --splitting off
--saturation algorithm inst gen sort2.tptp

Pre-existing sorts

I $i: sort of individuals. If is the default sort: if a symbol is not
declared, it has this sort.

I $int: sort of integers.
I $rat: sort of rationals.
I $real: sort of reals.

Integers

One can use concrete integers and some interpreted functions on
them.

tff(1,conjecture,$sum(2,2)=4).

vampire --inequality splitting 0 int1.tptp

Interpreted Functions and Predicates on Integers

Functions:

I $sum: addition (x + y)

I $product: multiplication (x · y)

I $difference: difference (x − y)

I $uminus: unary minus (−x)

I $to rat: conversion to rationals.
I $to real: conversion to reals.

Predicates:

I $less: less than (x < y)

I $lesseq: less than or equal to (x ≤ y)

I $greater: greater than (x > y)

I $greatereq: greater than or equal to (x ≥ y)

How Vampire Proves Problems in Arithmetic
I adding theory axioms;
I evaluating expressions, when possible;
I (future) SMT solving.

Example:

(x + y) + z = x + (z + y).

tff(1,conjecture,
! [X:$int,Y:$int,Z:$int] :
$sum($sum(X,Y),Z)=$sum(X,$sum(Z,Y))).

vampire --inequality splitting 0 int2.tptp

I You can add your own axioms;
I you can replace Vampire axioms by your own: use

--theory axioms off

How Vampire Proves Problems in Arithmetic
I adding theory axioms;
I evaluating expressions, when possible;
I (future) SMT solving.

Example:

(x + y) + z = x + (z + y).

tff(1,conjecture,
! [X:$int,Y:$int,Z:$int] :

$sum($sum(X,Y),Z)=$sum(X,$sum(Z,Y))).

vampire --inequality splitting 0 int2.tptp

I You can add your own axioms;
I you can replace Vampire axioms by your own: use

--theory axioms off

How Vampire Proves Problems in Arithmetic
I adding theory axioms;
I evaluating expressions, when possible;
I (future) SMT solving.

Example:

(x + y) + z = x + (z + y).

tff(1,conjecture,
! [X:$int,Y:$int,Z:$int] :

$sum($sum(X,Y),Z)=$sum(X,$sum(Z,Y))).

vampire --inequality splitting 0 int2.tptp

I You can add your own axioms;
I you can replace Vampire axioms by your own: use

--theory axioms off

Outline

Introduction

First-Order Logic and TPTP

Inference Systems

Saturation Algorithms

Redundancy Elimination

Equality

Unification and Lifting

From Theory to Practice

Colored Proofs, Interpolation and Symbol Elimination

Sorts and Theories

Cookies

CASC Mode

vampire --mode casc SET014-3.p

If-then-else and Let-in

A partial correctness statement:

{∀X(p(X) => X ≥ 0)}
{∀X(q(X) > 0)}
{p(a)}
if (r(a)) {
a := a+1

}
else {
a := a + q(a).

}
{a > 0}

The next state function for a:

a’ =
if r(a)
then let a=a+1 in a
else let a=a+q(a) in a

In Vampire:

tff(1,type,p : $int > $o).
tff(2,type,q : $int > $int).
tff(3,type,r : $int > $o).
tff(4,type,a : $int).

tff(5,hypothesis,! [X:$int] :
(p(X) => $greatereq(X,0))).

tff(6,hypothesis,! [X:$int] :
($greatereq(q(X),0))).

tff(7,hypothesis,p(a)).

tff(8,hypothesis,
a0 = $ite t(r(a),
$let tt(a,$sum(a,1),a),
$let tt(a,$sum(a,q(a)),a)

)).

tff(9,conjecture,$greater(a0,0)).

If-then-else and Let-in

A partial correctness statement:

{∀X(p(X) => X ≥ 0)}
{∀X(q(X) > 0)}
{p(a)}
if (r(a)) {
a := a+1

}
else {
a := a + q(a).

}
{a > 0}

The next state function for a:

a’ =
if r(a)
then let a=a+1 in a
else let a=a+q(a) in a

In Vampire:

tff(1,type,p : $int > $o).
tff(2,type,q : $int > $int).
tff(3,type,r : $int > $o).
tff(4,type,a : $int).

tff(5,hypothesis,! [X:$int] :
(p(X) => $greatereq(X,0))).

tff(6,hypothesis,! [X:$int] :
($greatereq(q(X),0))).

tff(7,hypothesis,p(a)).

tff(8,hypothesis,
a0 = $ite t(r(a),
$let tt(a,$sum(a,1),a),
$let tt(a,$sum(a,q(a)),a)

)).

tff(9,conjecture,$greater(a0,0)).

If-then-else and Let-in

A partial correctness statement:

{∀X(p(X) => X ≥ 0)}
{∀X(q(X) > 0)}
{p(a)}
if (r(a)) {
a := a+1

}
else {
a := a + q(a).

}
{a > 0}

The next state function for a:

a’ =
if r(a)
then let a=a+1 in a
else let a=a+q(a) in a

In Vampire:

tff(1,type,p : $int > $o).
tff(2,type,q : $int > $int).
tff(3,type,r : $int > $o).
tff(4,type,a : $int).

tff(5,hypothesis,! [X:$int] :
(p(X) => $greatereq(X,0))).

tff(6,hypothesis,! [X:$int] :
($greatereq(q(X),0))).

tff(7,hypothesis,p(a)).

tff(8,hypothesis,
a0 = $ite t(r(a),
$let tt(a,$sum(a,1),a),
$let tt(a,$sum(a,q(a)),a)

)).

tff(9,conjecture,$greater(a0,0)).

Consequence Elimination

Given a large set of formulas, find out which formulas are
consequences of other formulas in the set.
For example, used for pruning a set of automatically found loop
invariants.

fof(ax1, axiom,a => b).
fof(ax2, axiom,b => c).
fof(ax3, axiom,c => a).

fof(c1, claim, a | d).
fof(c2, claim, b | d).
fof(c3, claim, c | d).

vampire --mode consequence elimination consequence.tptp

Consequence Elimination

Given a large set of formulas, find out which formulas are
consequences of other formulas in the set.
For example, used for pruning a set of automatically found loop
invariants.

fof(ax1, axiom,a => b).
fof(ax2, axiom,b => c).
fof(ax3, axiom,c => a).

fof(c1, claim, a | d).
fof(c2, claim, b | d).
fof(c3, claim, c | d).

vampire --mode consequence elimination consequence.tptp

End of Lecture 5

Slides for lecture 5 ended here . . .

	Introduction
	First-Order Logic and TPTP
	Inference Systems
	Saturation Algorithms
	Redundancy Elimination
	Equality
	Unification and Lifting
	From Theory to Practice
	Colored Proofs, Interpolation and Symbol Elimination
	Sorts and Theories
	Cookies

