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Overview of the QBF part

|. Basics of Quantified Boolean Formulas

[1. Basic Deduction Concepts for Quantified Boolean Formulas
[1l. Inside Search-Based QBF Solvers
IV. DepQBF in Practice
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Results of the SAT 2009 application benchmarks

for leading solvers from 2002 to 2010
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Success story of SAT: Why is it important?

Allows us to implement problem solving programs rapidly

problem e e e SO|Uti0n

modeling interpretation

representation result

computation

We want to model a problem by compiling it into a suitable repre-
sentation s.t. the result of the compiled problem can be interpreted
as a solution to the original problem.
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What if my problem is more difficult than SAT?

m We know how to implement solvers for NP-complete problems, e.g.,
planning, SAT for some equational logics, ...

m Prototypical implementation: reduce problem to a SAT problem and
solve it with a “good” SAT solver

m Problem: What happens if the problem is to hard to be efficiently
(polynomially) reduced to SAT?

m Solution: Use a more “expressive SAT problem” based on Quantified
Boolean Formulas (QBFs)

m QBFs admit Boolean quantifiers in formulas and enable succinct
problem representations for problems “harder than NP”
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The lazy programmer’s approach again

Allows us to implement problem solving programs rapidly
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The plan

We discuss in the following

© the representation language (“QBFs") and some of its properties
(like syntax and semantics),

@ the concept of a witness and

© the translation of representations to inputs of solvers.

Later in the course, we learn
© how we can reason using QBFs,

@ how DepQBF works internally (using some of the reasoning
methods), and

© how you can use it and even integrate it into your work-flow of
problem solving.
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Outline

@ Syntax and Semantics of QBFs
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Syntax of Quantified Boolean Formulas (QBFs)

The language £ of prenex QBFs

The simplest possibility to define QBFs (wrt Boolean variables P) is:

B1 Given a propositional formula ¢ over P. Then ¢ € L.
S1 If & € £BF, then Qp® € LEF, where Q € {V,3} and p € P.

w |f there are quantifiers in a formula, then they occur at the beginning.

Example

Let ¢ be the propositional formula (p — g) — r over propositional
variables p, q,r. E. g., Vpy € LI has free variables g and r. An example
for a closed formula (= without free variables) is VpIqVr ¢ € L.
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Syntax of Quantified Boolean Formulas (QBFs)

The language Lp of arbitrary QBFs

Let P be a set of propositional (Boolean) variables.

Inductive definition of the set Lp of arbitrary QBFs (wrt P)

B1:
B2:
S1:
S2:
S3:

For every propositional variable p € P, p € Lp.

For every truth constant t € {1, T}, t € Lp.

If & € Lp, then =® € Lp.

If &1 € Lp and &, € Lp, then P 0Dy € Lp (0 € {A,V,—}).
If ® € Lp, then Qp® € Lp (Q € {V,3} and p € P).

Further connectives like <+ or @ can be defined if necessary.
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Some observations and examples

Observation 1

QBFs are allowed to be in non-prenex form, i.e., quantifiers are not only
allowed in an initial prefix, but also deeply inside QBFs.

Example
Vp ((3q(pAq)) = 3r(rV p))

Observation 2

Free variables are allowed, i.e., there may be occurrences of propositional
variables which have no quantification.

Example
Phee: (Fg(pAgq))— Ir3p(rvVvp)
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Normal forms

Prenex normal form (PNF), prefix, matrix, PCNF, closed

Let Q; € {V,3} and p; € P. A QBF
¢ =Qp1-..Qnpn ¥

is in prenex (normal) form (PNF) if ¢ is purely propositional.

Q1p1Q2p2 - - - Qnpn is the prefix of ®; 1 is the matrix of ®.

® is in PCNF if ¢ is in CNF.

® is closed if the variables in ¢ are in {p1,...,pn}.

Convention: Each quantifier binds another variable and bound
variables do not occur free.
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Examples for normal forms

closed, non-prenex (VxVy (x = y)) A (Bu3v (u A v))
open, non-prenex (VxVy (x = y)) A (Ju (uAv))
closed, PCNF VxVy3dz ((zVxVy)A(-zVxVy))

alternative notation 1 Vxy3dz((zVxVy)A(-zVxVy))

alternative notation 2~ VP3IQ ((zVxVy)A(-zVxVy))
if P={x,y} and Q = {z}
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Generating a prenex form (cf predicate logic): Lp — L3¢

Apply the following rules until a PNF is obtained

Ri Qx®oQyV¥ = QxQy(doV) x not free in W, y not free in ¢
R (Qx®)—=V¥ = Q x(d—V) x not free in W
Rz &®—(QyV) = Qy(®—W) y not free in ¢
Ry Vx®AVyV = Vx(dAV[y/x])
Rs IxdVvIyVv = 3Ix(dVV[y/x])
Remarks

m Qe {V,3},(Q,Q7)is(V,3) or (3,V) and o € {A,V}

m In general, the PNF of ® is not unique
(depends, e.g., on rule choice: Ry vs Ry if both are applicable)

m ® and all of its prenex forms are logically equivalent. (Why?)

U. Egly and F. Lonsing (TU Wien)
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The semantics of QBFs

m Based on an interpretations / represented as a set of atoms.

m An atom p is true under [ iff p € I.

Inductive definition of the truth value, v/(®), of a QBF & under [
Q@ if ®=T, then 1)() = 1;
Q if d=pe P, then () =1if p €/, and v;(P) = 0 otherwise;
Q if =V, then v() =1 — v (V);
Q if &= (P ADy), then v(P) = min({vi(P1), vi(P2)});
@ if =VpV, then () = v, (V[p/T] A V[p/L]);
Q if ®=3pV, then v(®) =, (V[p/T] vV V[p/L]).

Truth conditions for L, V, —, < follow from the above "“as usual”.
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The semantics of QBFs (cont'd)

Notations
m & is true under [ iff () = 1; otherwise ® is false under /.

m If v)(P) =1, then | is a model of ® (and & is satisfiable).
m If ® is true under any interpretation, then @ is valid.

m Two sets of QBFs (or ordinary Boolean formulas) are logically
equivalent iff they possess the same models.

Observations
m A closed QBF is either valid or unsatisfiable, because it is either true
under each interpretation / or false under each /.

m Hence, for closed QBFs, there is no need to refer to particular
interpretations.
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Evaluation of a QBF with a free variable

Let ® be Ix ((-x Vy) A(xV y)) and | = {y}

v(®) = vBEx((=xVy)A(xV-y))
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Evaluation of a QBF with a free variable

Let ® be Ix ((-x V y) A (x V =y)) and | = {y}

v(®) = w(Ex((=xVy)A(xVy))
= v((=TVYIA(TVay)V(=LVy)A(LV-y))
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Evaluation of a QBF with a free variable

Let ® be Ix ((-x V y) A (xV —y)) and I = {y}

vi(®) = vi(3x ((-xVy)A(xV-y))
= y((~TVY)A(TVay)V(=LVy)A(LV-y))
= max{min{y;(=T Vy), (T V=y)} min{v,(=L Vy),v(LV-y)}}
= max{y (=T Vy),u(LV _‘y:)} :

U. Egly and F. Lonsing (TU Wien) QBFs and DepQBF : Basics of QBFs 17 / 36



Evaluation of a QBF with a free variable

Let ® be Ix ((—x Vy)A(xV -y))and [ = {y}

v(®) = w(3x ((=xVy)A(xV-y)))
= v((=TVYIA(TVay)V(=LVy)A(LV-y))
= max{min{y, (=T Vy), (T V =y)} min{y, (=L Vy),v(LV-y)}}
-1 =1
max{v;(=T V y),v(LV -y)}
= max{u(y),v(-y)} = 1

m / contains (some) free variables of ®.
m The evaluation result here is independent from /.

m A similar evaluation of Vx ((—x V y) A (x V —y)) results 0.
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More examples of QBF evaluations

Let ¢ be (p — q) A (g — p)
®m Jpdq ¢ is true (since ¢ is sat and all its variables are bound)
m VpVq ¢ is false (since ¢ is not valid and all its vars are bound)

m dgVp ¢ is false

m Vpdq @ is true = quantifier ordering matters!

Satisfiability and validity can be expressed in QBFs:
m 3V (V) is true iff ¢ is satisfiable.

m YV (V) is true iff ¢ is valid.
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Certificates for QBFs: an appetizer

A certificate provides evidence of satisfiability of a QBF

m One possibility to certify the truth of a closed QBF:
Witness functions/formulas (WFs) for existential quantifiers which
depend on (some) dominating universal quantifiers.

Example: Vx3 Vxo dy (xa Vxo V =y) A (—xq V y)
= Take y = x1: Vx1 Vxe (x1 V x2 V =x1) A (=x1 V x1) becomes true.
1= This can be checked with a validity checker for propositional logic.

m WFs are sometimes the constructed solution to a problem.

For a broader discussion, see V. Balabanov, J.-H. R. Jiang: Resolution proofs and

Skolem functions in QBF evaluation and applications CAV 2011. [link]
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http://alcom.ee.ntu.edu.tw/publications/cav11.pdf

Certificates for QBFs: an appetizer (cont'd)

A certificate provides evidence of satisfiability of a QBF

m Others are e.g. tree-like strategies for the choice of truth values of 3
quantifiers depending on dominating V ones.

Example: Vx1 Vo Jy (1 V xa V =y) A (—x1 Vy)

T | | T T/L | | 1
dy dy dy dy
™ N /L
Vx5 Vxo
T Vg 1
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Outline

© Complexity Classes and QBFs
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For which classes of problems do we need QBFs?

NP-complete problems can be efficiently reduced to SAT.

Q: Why is another SAT formalism based on QBFs needed?

m A: There are even “harder” problems than SAT.
A Garey-Johnson like compendium of such problem can be found here [link]

The SAT problem for QBFs provides a target formalism to which such
computationally hard problems can be reduced.
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http://ovid.cs.depaul.edu/documents/phcom.ps

Informal definition of important complexity classes

class model of computation | expense wrt resource
P deterministic polynomial time

NP non-deterministic polynomial time
PSPACE deterministic polynomial space
NPSPACE non-deterministic polynomial space
EXPTIME deterministic exponential time
NEXPTIME | non-deterministic exponential time

Relations between some complexity classes
m P C_; NP C_; PSPACE
s PSPACE = NPSPACE

m PSPACE C_; EXPTIME

s P C EXPTIME
s NP € NEXPTIME

U. Egly and F. Lonsing (TU Wien)
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The polynomial hierarchy (PH)

The PH consists of classes Y7, MNP and AP, where

yo=nf=na="p;

and for k > 1:
sf. = NP,
I_If+1 == CO_ZII(D+1.

AB: The set of decision problems solvable by a Turing machine in class A
augmented by an oracle for some complete problem in class B.
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The polynomial hierarchy (PH) (cont'd)

PSPACE

PH

YP=NP nN{=coNP

AP =P

QBFs and DepQBF : Basics of QBFs 25 / 36

U. Egly and F. Lonsing (TU Wien)



The polynomial hierarchy (PH) (cont'd)

PSPACE

PH

Iv3 5 re V3V

N -

v iy ry
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A
\
3 P =NP N =coNP i
AP =P
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Prenex QBFs and complexity classes (Wrathall 1976)

Eval. problems for prenex QBFs and their complexities

Given a propositional formula ¢ with its atoms partitioned into i > 1 pairwise
distinct sets Vi,..., V;, deciding whether A3V4VV, ... Q;V; ¢ is true is
Zf—complete, where Q; = 3 if i is odd and Q; = V if i is even, Dually, deciding
whether YV13V5 ... Q}V; ¢ is true is N7 -complete, where Q) =V if i is odd and
Q; =3 if i is even.

Examples of evaluation problems (EPs)
m The EP of 3V; p(V4) is £F-complete (= NPC)
m The EP of VYV; p(V4) is MF-complete (= co-NPC)
m The EP of YV13VoV V5 (W4, Vo, V3) is M -complete

= |mportant for reductions: If we know the complexity of our problem,
we can choose the appropriate quantifier prefix for the target QBF.
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How to handle non-prenex QBFs?
Extend the complexity landscape to arbitrary closed QBFs

m Take the maximal number of quantifier alternations along a path in
the syntax tree of a QBF into account.

Almost all QBFs can be translated into equivalent QBFs in PNF

without increasing the number of quantifier alternations.
(Which are the problematic QBFs?)

m The translation procedure is fast but non-deterministic, but ...
m ... can heavily influence the performance of QBF solvers.

Details in E. et al. Comparing Different Prenexing Strategies for
Quantified Boolean Formulas. Proc. SAT 2003, pp. 214-228.
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Outline

9 Normal Form Translation for QBFs
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Generating prenex conjunctive normal forms (PCNFs)

A QBF in prenex conjunctive normal form (PCNF)

m starts with a quantifier prefix and

m consists of a conjunction of clauses (=disjunction of literals)
(often represented as a set of clauses).

m Clauses are often represented as sets of literals.

Why are formulas in PCNF necessary?
m Most QBF solvers require the input being in PCNF!

= Translation procedure is required.

m This procedure can be based on distributivity or Tseitin.
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Languages for QBFs and their conversion

Lp: arbitrary QBFs

E%”f: QBFs in negation normal form

Ege: QBFs in prenex form with an unrestricted matrix
L‘%””f: QBFs in prenex form with a matrix in negation normal form
rpenf

7 QBFs in prenex form with a matrix in conjunctive normal form

C%d"f: QBFs in prenex form with a matrix in disjunctive normal form

Lp E%re E%"”f E%C”f Traditional translation

\L%Cnf

Tseitin translation
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Generating PCNFs (cont'd)

The Tseitin-based algorithm works in three steps:

©Q Generate a prenex form W,: Qi X - - - QxXk ¢ of the input QBF W.
Then the matrix v is purely propositional.

@ Use Tseitin’s translation to transform ) into CNF.
© Place the 3 quantifiers for the newly introduced variables /1, ..., ¢,
abbreviating 1, ..., pn “correctly”, e.g.,

m place all the new 3 at the end of the quantifier prefix, or

m place 3¢; (1 < i < m) after all quantifiers of those variables which
occur in ;.

Contrary to propositional logic, VW is logically equivalent to its PCNFs!
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Outline

@ Compact Representation with QBFs
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Tricky use of Boolean quantification

Trick 1: Introduce abbreviations for sub-formulas
m Given propositional formula ¢:

(av-bVvecvd)A(aV-abVecV-e)A(aV—-bVcVf)

m ldea: Introduce a “definition” to abbreviate a Vv —b V c.

Obtain a QBF &

Jy(y<aV-bVe)A(yVd)A(yV-e)A(y V)

m a\V —bV c occurs only once!

® is logically equivalent to ¢ (mainly because of Jy).

Most examples from U. Bubeck, H. Kleine Biining: Encoding Nested Boolean Functions
as Quantified Boolean Formulas. JSAT 8:101-116 (2012). [link]
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http://jsat.ewi.tudelft.nl/content/volume8/JSAT8_7_Bubeck.pdf

Tricky use of Boolean quantification (cont'd)

Trick 2: “Unify" conjunctively connected instances
m Given propositional formula ¢:

01(¥1,m1) A @1(1h2, m2) A p1(2)3, T3)

m We have three different instances of 1 (), 7).
m Obtain a QBF ¢:

Vuvv (\/ ((u <> ¥i) A (v < 7)) — p1(u, v)

o

i=1

m 1 occurs only once!

m & is logically equivalent to ¢.
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Tricky use of Boolean quantification (cont'd)

Trick 3: Non-copying iterative squaring

m Given formula W(xg, x,) with n = 2':
Ixq -+ Ixno1 (e(x0, %2) A (X2, X3) A+ A (Xn—1, Xn))
m ldea: Take y in the middle and split the formula:
Wai(x0, Xn) = y (Wai-1(x0, y) A Wai-1(y, xn))
m Use Trick 2 and get W,i(xp, Xxp):

IyVuvv [(((u, v) <> (x0,¥)) V ((u, v) <> (Vs Xn))) = Voimi(u, v)]

m This can be used to model bounded model checking.
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Conclusion (for the first part)

m All problems from the polynomial hierarchy can be handled by the
“lazy programmer approach”.

m Complexity results for the original problem provide appropriate
quantifier alternations for the target QBF.

m QBFs have to be translated into the input format of QBF solvers.

w Now we can start to reason with QBFs.
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