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Overview of the QBF part

I. Basics of Quantified Boolean Formulas

II. Basic Deduction Concepts for Quantified Boolean Formulas
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Results of the SAT 2009 application benchmarks
for leading solvers from 2002 to 2010
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Results of the SAT competition/race winners on the SAT 2009 application benchmarks, 20mn timeout

Limmat 02
Zchaff 02
Berkmin 561 02
Forklift 03
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Zchaff 04
SatELite 05
Minisat 2.0 06
Picosat 07
Rsat 07
Minisat 2.1 08
Precosat 09
Glucose 09
Clasp 09
Cryptominisat 10
Lingeling 10
Minisat 2.2 10
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Success story of SAT: Why is it important?

Allows us to implement problem solving programs rapidly

problem

representation result

solution

modeling

computation

interpretation

We want to model a problem by compiling it into a suitable repre-
sentation s.t. the result of the compiled problem can be interpreted
as a solution to the original problem.
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What if my problem is more difficult than SAT?

We know how to implement solvers for NP-complete problems, e.g.,
planning, SAT for some equational logics, . . .

Prototypical implementation: reduce problem to a SAT problem and
solve it with a “good” SAT solver

Problem: What happens if the problem is to hard to be efficiently
(polynomially) reduced to SAT?

Solution: Use a more “expressive SAT problem” based on Quantified
Boolean Formulas (QBFs)

QBFs admit Boolean quantifiers in formulas and enable succinct
problem representations for problems “harder than NP”
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The lazy programmer’s approach again

Allows us to implement problem solving programs rapidly
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The plan

We discuss in the following

1 the representation language (“QBFs”) and some of its properties
(like syntax and semantics),

2 the concept of a witness and

3 the translation of representations to inputs of solvers.

Later in the course, we learn

1 how we can reason using QBFs,

2 how DepQBF works internally (using some of the reasoning
methods), and

3 how you can use it and even integrate it into your work-flow of
problem solving.
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Outline

1 Syntax and Semantics of QBFs

2 Complexity Classes and QBFs

3 Normal Form Translation for QBFs

4 Compact Representation with QBFs
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Syntax of Quantified Boolean Formulas (QBFs)
The language L

pre

P
of prenex QBFs

The simplest possibility to define QBFs (wrt Boolean variables P) is:

B1 Given a propositional formula ϕ over P. Then ϕ ∈ Lpre
P

.

S1 If Φ ∈ Lpre
P

, then Qp Φ ∈ Lpre
P

, where Q ∈ {∀,∃} and p ∈ P.

➥ If there are quantifiers in a formula, then they occur at the beginning.

Example

Let ϕ be the propositional formula (p → q) → r over propositional
variables p, q, r . E. g., ∀p ϕ ∈ Lpre

P
has free variables q and r . An example

for a closed formula (= without free variables) is ∀p∃q∀r ϕ ∈ Lpre
P

.
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Syntax of Quantified Boolean Formulas (QBFs)
The language LP of arbitrary QBFs

Let P be a set of propositional (Boolean) variables.

Inductive definition of the set LP of arbitrary QBFs (wrt P)

B1: For every propositional variable p ∈ P, p ∈ LP .

B2: For every truth constant t ∈ {⊥,⊤}, t ∈ LP .

S1: If Φ ∈ LP , then ¬Φ ∈ LP .

S2: If Φ1 ∈ LP and Φ2 ∈ LP , then Φ1 ◦ Φ2 ∈ LP (◦ ∈ {∧,∨,→}).

S3: If Φ ∈ LP , then Qp Φ ∈ LP (Q ∈ {∀,∃} and p ∈ P).

Further connectives like ↔ or ⊕ can be defined if necessary.
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Some observations and examples

Observation 1

QBFs are allowed to be in non-prenex form, i.e., quantifiers are not only
allowed in an initial prefix, but also deeply inside QBFs.

Example

∀p
(
(∃q (p ∧ q)) → ∃r (r ∨ p)

)

Observation 2

Free variables are allowed, i.e., there may be occurrences of propositional
variables which have no quantification.

Example

Φfree : (∃q (p ∧ q)) → ∃r∃p (r ∨ p)
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Normal forms
Prenex normal form (PNF), prefix, matrix, PCNF, closed

Let Qi ∈ {∀,∃} and pi ∈ P. A QBF

Φ = Q1p1 . . .Qnpn ψ

is in prenex (normal) form (PNF) if ψ is purely propositional.

Q1p1Q2p2 · · · Qnpn is the prefix of Φ; ψ is the matrix of Φ.

Φ is in PCNF if ψ is in CNF.

Φ is closed if the variables in ψ are in {p1, . . . , pn}.

Convention: Each quantifier binds another variable and bound
variables do not occur free.
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Examples for normal forms

closed, non-prenex

open, non-prenex

closed, PCNF

alternative notation 1

alternative notation 2

(∀x∀y (x → y)) ∧ (∃u∃v (u ∧ v))

(∀x∀y (x → y)) ∧ (∃u (u ∧ v))

∀x∀y∃z ((z ∨ x ∨ y) ∧ (¬z ∨ x ∨ y))

∀x y ∃z ((z ∨ x ∨ y) ∧ (¬z ∨ x ∨ y))

∀P ∃Q ((z ∨ x ∨ y) ∧ (¬z ∨ x ∨ y))
if P = {x , y} and Q = {z}
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Generating a prenex form (cf predicate logic): LP 7→ Lpre
P

Apply the following rules until a PNF is obtained

R1 Qx Φ ◦ Qy Ψ ⇒ QxQy (Φ ◦ Ψ) x not free in Ψ, y not free in Φ

R2 (Qx Φ) → Ψ ⇒ Q−x (Φ → Ψ) x not free in Ψ

R3 Φ → (Qy Ψ) ⇒ Qy (Φ → Ψ) y not free in Φ

R4 ∀x Φ ∧ ∀ y Ψ ⇒ ∀x (Φ ∧ Ψ[y/x ])

R5 ∃x Φ ∨ ∃y Ψ ⇒ ∃x (Φ ∨ Ψ[y/x ])

Remarks

Q ∈ {∀,∃}, (Q,Q−) is (∀,∃) or (∃,∀) and ◦ ∈ {∧,∨}

In general, the PNF of Φ is not unique
(depends, e.g., on rule choice: R1 vs R4 if both are applicable)

Φ and all of its prenex forms are logically equivalent. (Why?)

U. Egly and F. Lonsing (TU Wien) QBFs and DepQBF : Basics of QBFs 14 / 36



The semantics of QBFs

Based on an interpretations I represented as a set of atoms.

An atom p is true under I iff p ∈ I.

Inductive definition of the truth value, νI(Φ), of a QBF Φ under I :

1 if Φ = ⊤, then νI(Φ) = 1;

2 if Φ = p ∈ P, then νI(Φ) = 1 if p ∈ I, and νI(Φ) = 0 otherwise;

3 if Φ = ¬Ψ, then νI(Φ) = 1 − νI(Ψ);

4 if Φ = (Φ1 ∧ Φ2), then νI(Φ) = min({νI(Φ1), νI(Φ2)});

5 if Φ = ∀p Ψ, then νI(Φ) = νI(Ψ[p/⊤] ∧ Ψ[p/⊥]);

6 if Φ = ∃p Ψ, then νI(Φ) = νI(Ψ[p/⊤] ∨ Ψ[p/⊥]).

Truth conditions for ⊥, ∨, →, ↔ follow from the above “as usual”.
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The semantics of QBFs (cont’d)

Notations

Φ is true under I iff νI(Φ) = 1; otherwise Φ is false under I.

If νI(Φ) = 1, then I is a model of Φ (and Φ is satisfiable).

If Φ is true under any interpretation, then Φ is valid.

Two sets of QBFs (or ordinary Boolean formulas) are logically
equivalent iff they possess the same models.

Observations

A closed QBF is either valid or unsatisfiable, because it is either true
under each interpretation I or false under each I.

Hence, for closed QBFs, there is no need to refer to particular
interpretations.
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Evaluation of a QBF with a free variable

Let Φ be ∃x ((¬x ∨ y) ∧ (x ∨ ¬y)) and I = {y}

νI(Φ) = νI(∃x ((¬x ∨ y) ∧ (x ∨ ¬y)))
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Evaluation of a QBF with a free variable
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I contains (some) free variables of Φ.

The evaluation result here is independent from I.

A similar evaluation of ∀x ((¬x ∨ y) ∧ (x ∨ ¬y)) results 0.

U. Egly and F. Lonsing (TU Wien) QBFs and DepQBF : Basics of QBFs 17 / 36



More examples of QBF evaluations

Let ϕ be (p → q) ∧ (q → p)

∃p ∃q ϕ is true (since ϕ is sat and all its variables are bound)

∀p ∀q ϕ is false (since ϕ is not valid and all its vars are bound)

∃q ∀p ϕ is false

∀p ∃q ϕ is true ➥ quantifier ordering matters!

Satisfiability and validity can be expressed in QBFs:

∃V ψ(V ) is true iff ψ is satisfiable.

∀V ψ(V ) is true iff ψ is valid.
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Certificates for QBFs: an appetizer

A certificate provides evidence of satisfiability of a QBF

One possibility to certify the truth of a closed QBF:
Witness functions/formulas (WFs) for existential quantifiers which
depend on (some) dominating universal quantifiers.

Example: ∀x1 ∀x2 ∃y (x1 ∨ x2 ∨ ¬y) ∧ (¬x1 ∨ y)

☞ Take y = x1: ∀x1 ∀x2 (x1 ∨ x2 ∨ ¬x1) ∧ (¬x1 ∨ x1) becomes true.

☞ This can be checked with a validity checker for propositional logic.

WFs are sometimes the constructed solution to a problem.

For a broader discussion, see V. Balabanov, J.-H. R. Jiang: Resolution proofs and

Skolem functions in QBF evaluation and applications CAV 2011. [link]
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Certificates for QBFs: an appetizer (cont’d)

A certificate provides evidence of satisfiability of a QBF

Others are e.g. tree-like strategies for the choice of truth values of ∃
quantifiers depending on dominating ∀ ones.

Example: ∀x1 ∀x2 ∃y (x1 ∨ x2 ∨ ¬y) ∧ (¬x1 ∨ y)

∀x1

∀x2

⊤

∃y

⊤

⊤

∃y

⊥

⊤

∀x2

⊥

∃y

⊤

⊤/⊥

∃y

⊥

⊥
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Outline

1 Syntax and Semantics of QBFs

2 Complexity Classes and QBFs

3 Normal Form Translation for QBFs

4 Compact Representation with QBFs
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For which classes of problems do we need QBFs?

NP-complete problems can be efficiently reduced to SAT.

Q: Why is another SAT formalism based on QBFs needed?

A: There are even “harder” problems than SAT.
A Garey-Johnson like compendium of such problem can be found here [link]

The SAT problem for QBFs provides a target formalism to which such
computationally hard problems can be reduced.

U. Egly and F. Lonsing (TU Wien) QBFs and DepQBF : Basics of QBFs 22 / 36

http://ovid.cs.depaul.edu/documents/phcom.ps


Informal definition of important complexity classes

class model of computation expense wrt resource

P deterministic polynomial time
NP non-deterministic polynomial time
PSPACE deterministic polynomial space
NPSPACE non-deterministic polynomial space
EXPTIME deterministic exponential time
NEXPTIME non-deterministic exponential time

Relations between some complexity classes

P ⊆=? NP ⊆=? PSPACE

PSPACE = NPSPACE

PSPACE ⊆=? EXPTIME

P ⊂ EXPTIME

NP ⊂ NEXPTIME
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The polynomial hierarchy (PH)

The PH consists of classes ΣP
k , ΠP

k , and ∆P
k , where

ΣP
0 = ΠP

0 = ∆P
0 = P;

and for k ≥ 1:

∆P
k+1 = P

ΣP
k ;

ΣP
k+1 = NP

ΣP
k ;

ΠP
k+1 = co−ΣP

k+1.

AB : The set of decision problems solvable by a Turing machine in class A

augmented by an oracle for some complete problem in class B.
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The polynomial hierarchy (PH) (cont’d)
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The polynomial hierarchy (PH) (cont’d)
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Prenex QBFs and complexity classes (Wrathall 1976)

Eval. problems for prenex QBFs and their complexities

Given a propositional formula ϕ with its atoms partitioned into i ≥ 1 pairwise

distinct sets V1, . . . ,Vi , deciding whether ∃V1∀V2 . . .QiVi ϕ is true is

ΣP
i -complete, where Qi = ∃ if i is odd and Qi = ∀ if i is even, Dually, deciding

whether ∀V1∃V2 . . .Q
′

iVi ϕ is true is ΠP
i -complete, where Q′

i = ∀ if i is odd and

Qi = ∃ if i is even.

Examples of evaluation problems (EPs)

The EP of ∃V1 ϕ(V1) is ΣP
1 -complete (= NPC)

The EP of ∀V1 ϕ(V1) is ΠP
1 -complete (= co-NPC)

The EP of ∀V1∃V2∀V3 ϕ(V1,V2,V3) is ΠP
3 -complete

➥ Important for reductions: If we know the complexity of our problem,
we can choose the appropriate quantifier prefix for the target QBF.
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How to handle non-prenex QBFs?
Extend the complexity landscape to arbitrary closed QBFs

Take the maximal number of quantifier alternations along a path in
the syntax tree of a QBF into account.

Almost all QBFs can be translated into equivalent QBFs in PNF
without increasing the number of quantifier alternations.

(Which are the problematic QBFs?)

The translation procedure is fast but non-deterministic, but . . .

. . . can heavily influence the performance of QBF solvers.

Details in E. et al. Comparing Different Prenexing Strategies for
Quantified Boolean Formulas. Proc. SAT 2003, pp. 214-228.
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Outline

1 Syntax and Semantics of QBFs

2 Complexity Classes and QBFs

3 Normal Form Translation for QBFs

4 Compact Representation with QBFs
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Generating prenex conjunctive normal forms (PCNFs)

A QBF in prenex conjunctive normal form (PCNF)

starts with a quantifier prefix and

consists of a conjunction of clauses (=disjunction of literals)
(often represented as a set of clauses).

Clauses are often represented as sets of literals.

Why are formulas in PCNF necessary?

Most QBF solvers require the input being in PCNF!

☞ Translation procedure is required.

This procedure can be based on distributivity or Tseitin.
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Languages for QBFs and their conversion

LP : arbitrary QBFs

Lnnf
P

: QBFs in negation normal form

Lpre
P

: QBFs in prenex form with an unrestricted matrix

Lpnnf
P

: QBFs in prenex form with a matrix in negation normal form

Lpcnf
P

: QBFs in prenex form with a matrix in conjunctive normal form

Lpdnf
P

: QBFs in prenex form with a matrix in disjunctive normal form

LP Lpre
P

Lpnnf
P

Lpcnf
P

Traditional translation

Lpcnf
P

Tseitin translation
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Generating PCNFs (cont’d)

The Tseitin-based algorithm works in three steps:

1 Generate a prenex form Ψp : QiXi · · · QkXk ψ of the input QBF Ψ.
Then the matrix ψ is purely propositional.

2 Use Tseitin’s translation to transform ψ into CNF.

3 Place the ∃ quantifiers for the newly introduced variables ℓ1, . . . , ℓm
abbreviating ϕ1, . . . , ϕm “correctly”, e.g.,

place all the new ∃ at the end of the quantifier prefix, or

place ∃ℓi (1 ≤ i ≤ m) after all quantifiers of those variables which
occur in ϕi .

Contrary to propositional logic, Ψ is logically equivalent to its PCNFs!
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Tricky use of Boolean quantification

Trick 1: Introduce abbreviations for sub-formulas

Given propositional formula ϕ :

(a ∨ ¬b ∨ c ∨ d) ∧ (a ∨ ¬b ∨ c ∨ ¬e) ∧ (a ∨ ¬b ∨ c ∨ f )

Idea: Introduce a “definition” to abbreviate a ∨ ¬b ∨ c .

Obtain a QBF Φ:

∃y (y ↔ a ∨ ¬b ∨ c) ∧ (y ∨ d) ∧ (y ∨ ¬e) ∧ (y ∨ f )

a ∨ ¬b ∨ c occurs only once!

Φ is logically equivalent to ϕ (mainly because of ∃y).

Most examples from U. Bubeck, H. Kleine Büning: Encoding Nested Boolean Functions

as Quantified Boolean Formulas. JSAT 8:101-116 (2012). [link]
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Tricky use of Boolean quantification (cont’d)

Trick 2: “Unify” conjunctively connected instances

Given propositional formula ϕ :

ϕ1(ψ1, π1) ∧ ϕ1(ψ2, π2) ∧ ϕ1(ψ3, π3)

We have three different instances of ϕ1(ψ, π).

Obtain a QBF Φ:

∀u∀v
(

3∨

i=1

((u ↔ ψi) ∧ (v ↔ πi))
)

→ ϕ1(u, v)

ϕ1 occurs only once!

Φ is logically equivalent to ϕ.
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Tricky use of Boolean quantification (cont’d)

Trick 3: Non-copying iterative squaring

Given formula Ψ(x0, xn) with n = 2i :

∃x1 · · · ∃xn−1
(
ϕ(x0, x2) ∧ ϕ(x2, x3) ∧ · · · ∧ ϕ(xn−1, xn)

)

Idea: Take y in the middle and split the formula:

Ψ2i (x0, xn) : ∃y (Ψ2i−1(x0, y) ∧ Ψ2i−1(y , xn))

Use Trick 2 and get Ψ2i (x0, xn) :

∃y∀u∀v
[(
((u, v) ↔ (x0, y)) ∨ ((u, v) ↔ (y , xn))

)
→ Ψ2i−1(u, v)

]

This can be used to model bounded model checking.
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Conclusion (for the first part)

All problems from the polynomial hierarchy can be handled by the
“lazy programmer approach”.

Complexity results for the original problem provide appropriate
quantifier alternations for the target QBF.

QBFs have to be translated into the input format of QBF solvers.

➥ Now we can start to reason with QBFs.
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