Reasoning Engines for Rigorous System Engineering

Block 3: Quantified Boolean Formulas and DepQBF
2. Basic Deduction Concepts for Quantified Boolean Formulas

Uwe Egly Florian Lonsing

Knowledge-Based Systems Group
Institute of Information Systems
Vienna University of Technology
$T \mathrm{~T}$
WIEN

Outline

(1) A resolution calculus for QBFs in PCNF
(2) Long distance resolution
(3) Gentzen/sequent systems for arbitrary QBFs

Why do we need a resolution calculus for QBFs?

- We need a QSAT solver in our rapid implementation approach. Why not Q-resolution (Q-res)?

■ Although you will usually not see it, but in nearly every QDPLL solver, there is Q-res inside.

- Some QDPLL solvers deliver Q-res clause proofs ("refutations") as certificates for unsatisfiability.

■ Some even deliver Q-res cube "proofs" as certificates for satisfiability.

- From such proofs, one can generate witness functions (as mentioned earlier).

A resolution calculus for QBFs: The definition of resolvents

Definition (propositional resolvent)

Given two clauses C_{1} and C_{2} and a pivot variable p with $p \in C_{1}$ and $\neg p \in C_{2}$, resolution produces the resolvent $C_{r}=\left(C_{1} \backslash\{p\}\right) \cup\left(C_{2} \backslash\{\neg p\}\right)$.

Definition (Q-resolution with existential pivot variable)

- Let C_{1}, C_{2} be non-tautological clauses where $v \in C_{1}, \neg v \in C_{2}$ for an \exists-variable v.
- Tentative Q-resolvent of C_{1} and C_{2} :

$$
C_{1} \otimes C_{2}:=\left(U R\left(C_{1}\right) \cup U R\left(C_{2}\right)\right) \backslash\{v, \neg v\} .
$$

■ If $\{x, \neg x\} \subseteq C_{1} \otimes C_{2}$ for some variable x, then no Q-resolvent exists.

- Otherwise, the non-tautological Q-resolvent is $C:=C_{1} \otimes C_{2}$.

A resolution calculus for QBFs: The quantification level

Definition (Quantification level)

Let Q be a sequence of quantifiers. Associate to each alternation its level as follows. The left-most quantifier block gets level 1, and each alternation increments the level.

Example (QBF with 4 quantification levels and 3 quantifier alternations)

$$
\underbrace{\forall x_{1} \forall x_{2}}_{\text {level } 1} \underbrace{\exists y_{1} \exists y_{2} \exists y_{3}}_{\text {level } 2} \underbrace{\forall x_{3}}_{\text {level } 3 \text { level } 4} \underbrace{\exists y_{4}} \varphi
$$

An ordering between variables is defined according to their occurrence in the quantifier prefix and extended to literals. For instance,

$$
x_{2}<y_{4} \quad \text { as well as } \quad x_{1}<\neg x_{3} .
$$

A resolution calculus for QBFs: Universal reduction

Definition (universal reduction (UR))

Given a clause C, UR on C produces the clause

$$
U R(C):=C \backslash\left\{\ell \in C \mid q(\ell)=\forall \text { and } \forall \ell^{\prime} \in C \text { with } q\left(\ell^{\prime}\right)=\exists: \ell^{\prime}<\ell\right\},
$$

where $<$ is the linear variable ordering given by the quantifier prefix.
■ Universal reduction deletes "trailing" universal literals from clauses.

- Clauses are shortened by UR.

Example

Given $\Phi:=\forall y \exists x_{1} \forall z \exists x_{2} .(\underbrace{x_{1} \vee z}_{C}) \wedge\left(\neg y \vee \neg x_{1}\right) \wedge\left(\neg y \vee x_{2}\right)$, we have $U R(C):=x_{1}$.

A resolution calculus for QBFs

Definition (Q-resolution calculus)

The Q-resolution (Q-res) calculus consists of the Q-resolution rule and the universal reduction rule.

Remark

(1) Resolution operations are only allowed over existential literals.
(2) Tautological resolvents are never generated.

We will relax these requirements later on.

Soundness and completeness or Q-resolution

Theorem (Kleine Büning, Karpinski, Flögel, Inf. Comput., 1995)
A QBF in PCNF without tautological clauses is false iff there is a derivation of the empty clause \square ($=$ a refutation) in the Q-resolution calculus.

Example

Let Φ be $\exists a \forall x \exists b \forall y \exists c . C_{1} \wedge \cdots \wedge C_{6}$ with

$$
\begin{array}{lll}
C_{1}: & a \vee b \vee y \vee c & C_{2}: \\
C_{3}: & x \vee \neg \vee b \vee b \vee y \vee \neg c \\
C_{5}: & \neg a \vee \neg x \vee b \vee \neg c & C_{4}: \\
C_{6}: & \neg x \vee c
\end{array}
$$

A Q-resolution refutation of Φ

$$
\begin{aligned}
& \begin{array}{c}
\frac{C_{1} \quad C_{2}}{a \vee x \vee b \vee y} R \quad\left(C_{3}\right) \\
\frac{a \vee x \vee b}{a \vee \vee} \quad x \vee \neg b \\
\frac{a \vee x}{a} U R
\end{array}
\end{aligned}
$$

Example (again)

Let Φ be $\exists a \forall x \exists b \forall y \exists c . C_{1} \wedge \cdots \wedge C_{6}$ with
$C_{1}: \quad a \vee b \vee y \vee c$
$C_{2}: \quad a \vee x \vee b \vee y \vee \neg c$
$C_{3}: x \vee \neg b$
$C_{4}: \neg y \vee c$
$C_{5}: ~ \neg a \vee \neg x \vee b \vee \neg c \quad C_{6}: \neg x \vee \neg b$

A resolution calculus for QBFs (cont'd)

Is the following rule allowed/sound?

Definition (QU-resolution with universal pivot variable)
■ Let C_{1}, C_{2} be non-tautological clauses where $v \in C_{1}, \neg v \in C_{2}$ for an \forall-variable v.

- Tentative QU-resolvent of C_{1} and C_{2} :

$$
C_{1} \otimes C_{2}:=\left(U R\left(C_{1}\right) \cup U R\left(C_{2}\right)\right) \backslash\{v, \neg v\} .
$$

■ If $\{x, \neg x\} \subseteq C_{1} \otimes C_{2}$ for some variable x, then no QU-resolvent exists.

- Otherwise, the non-tautological QU-resolvent is $C:=C_{1} \otimes C_{2}$.

A resolution calculus for QBFs (cont'd)

Is the following rule allowed/sound?

Definition (QU-resolution with universal pivot variable)
■ Let C_{1}, C_{2} be non-tautological clauses where $v \in C_{1}, \neg v \in C_{2}$ for an \forall-variable v.

- Tentative QU-resolvent of C_{1} and C_{2} :

$$
C_{1} \otimes C_{2}:=\left(U R\left(C_{1}\right) \cup U R\left(C_{2}\right)\right) \backslash\{v, \neg v\} .
$$

■ If $\{x, \neg x\} \subseteq C_{1} \otimes C_{2}$ for some variable x, then no $Q U$-resolvent exists.

- Otherwise, the non-tautological QU-resolvent is $C:=C_{1} \otimes C_{2}$.

YES. Q-resolution can be extended by this rule yielding QU-resolution!

A stronger resolution calculus for QBFs

Definition (QU-resolution calculus)

The Q-resolution (Q-res) calculus consists of the Q-resolution rule, the QU-resolution rule and the universal reduction rule.

- The QU-resolution calculus is a slight extension of the Q-resolution calculus, but ...
- it has the potential to enable shorter proofs.
\Rightarrow We will demonstrate this in the following.

A hard class of formulas for Q-resolution

Definition (Class $\left(\Psi_{k}\right)_{k \geq 1}$ of unsatisfiable QBFs)

$$
\Psi_{(k \geq 1)}:=\exists d_{1} \exists e_{1} \forall x_{1} \exists d_{2} \exists e_{2} \forall x_{2} \cdots \exists d_{k} \exists e_{k} \forall x_{k} \exists f_{1} \cdots \exists f_{k}
$$

$$
\begin{array}{rr}
\left(\overline{d_{1}} \vee \overline{e_{1}}\right) & \wedge \\
\left(d_{k} \vee \overline{x_{k}} \vee \overline{f_{1}} \vee \cdots \vee \overline{f_{k}}\right) & \wedge \\
\left(e_{k} \vee x_{k} \vee \overline{f_{1}} \vee \cdots \vee \overline{f_{k}}\right) & \wedge \\
\bigwedge_{j=1}^{k-1}\left(d_{j} \vee \overline{x_{j}} \vee \overline{d_{j+1}} \vee \overline{e_{j+1}}\right) & \wedge \\
\bigwedge_{j=1}^{k-1}\left(e_{j} \vee x_{j} \vee \overline{d_{j+1}} \vee \overline{e_{j+1}}\right) & \wedge \\
\bigwedge_{j=1}^{k}\left(\overline{x_{j}} \vee f_{j}\right) & \wedge \\
\bigwedge_{j=1}^{k}\left(x_{j} \vee f_{j}\right) & \tag{7}
\end{array}
$$

A hard class of formulas for Q-resolution

Theorem (Kleine Büning, Karpinski, Flögel, Inf. Comput., 1995)
Any Q-resolution proof of Ψ_{k} has at least 2^{k} resolution steps.

Result is a bit surprising, because

- the existential part (in black) is Horn and
- propositional Horn clause sets have short (unit) resolution proofs.

■ Short proofs are possible for Horn clause sets containing \forall variables.
\Leftrightarrow Universal non-Horn part forces exponential proof length!

QU-resolution and the class $\left(\Psi_{k}\right)_{k \geq 1}$

■ In general: QU-res allows to derive clauses which Q-res cannot derive.
■ In particular for formula Ψ_{k} : QU-res allows to derive unit clauses.
■ Key observation: unit clauses $f_{i}(1 \leq i \leq k)$ obtained by QU-resolution allow for short proofs of Ψ_{k}.

Proposition (Van Gelder 2012)

Every formula Ψ_{k} has a $Q U$-resolution proof with $\mathcal{O}(k)$ resolution steps.

Short QU-res proofs for $\Psi_{k}(k \geq 1)$

Example (Ψ_{2} in QDIMACS format)

| c | $k=2$ | | | | |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- |
| p | cnf | 8 | 9 | | |
| e | 1 | 2 | 0 | | |
| a | 3 | 0 | | | |
| e | 4 | 5 | 0 | | |
| a | 6 | 0 | | | |
| e | 7 | 8 | 0 | | |
| -1 | -2 | 0 | | | |
| 1 | -3 | -4 | -5 | 0 | |
| 2 | 3 | -4 | -5 | 0 | |
| 4 | -6 | -7 | -8 | 0 | |
| 5 | 6 | -7 | -8 | 0 | |
| 3 | 7 | 0 | | | |
| -3 | 7 | 0 | | | |
| 6 | 8 | 0 | | | |
| -6 | 8 | 0 | | | |

- Derive new unit clauses from all the binary clauses by QU-resolution over universal variables. The result are two clauses f_{1} and $f_{2}\left(\begin{array}{ll}7 & 0\end{array}\right)$ and (8 0).
- Observe: the unit clauses resulting from the previous step cannot be derived by Q-res.
- We derive (4) and (50) by Q-resolutions and UR.
- Use the new unit clauses to successively shorten all the clauses of size four by unit resolution and universal reduction. Further unit clauses can be obtained this way.
- Finally the empty clause is derived using ($\left.\begin{array}{lll}-1 & -2 & 0\end{array}\right)$.
- This resolution strategy can be applied to Ψ_{k} for all k.

Outline

(1) A resolution calculus for QBFs in PCNF

(2) Long distance resolution

(3) Gentzen/sequent systems for arbitrary QBFs

Motivation

Resolution so far:

■ Resolvents with existential or universal pivot variables

- $\mathrm{Q}(\mathrm{U})$-resolvents are non-tautological
(i.e., clause which does not contain v and $\neg v$ for some variable v).

How do we continue?

■ We extend the concept by allowing (certain) tautological resolvents

- It was first used in the clause learning procedure of yquaffle (Zhang and Malik, 2002)
- Recently it was formalized as a calculus (Balabanov and Jiang, 2012)
- Implemented in the solver DepQBF (E., Lonsing, Widl 2013)

■ We show that an exponential speed-up in proof length is possible.

Long distance Q-resolution: The basic idea

Definition

Two clauses C and D have distance $k \geq 1$ if there are literals $\ell_{1}, \ldots, \ell_{k}$ such that, for all $1 \leq i \leq k$, literal ℓ_{i} occurs in C and the dual of ℓ_{i} occurs in D. If there is no such literal then the clauses have distance 0 .

- The usual resolution rules require two parent clauses of distance 1.
- Tentatively, we allow two parent clauses of distance ≥ 1, provided
(1) the pivot (say ℓ_{1}) is existential,
(2) all other literals $\ell_{2}, \ldots, \ell_{k}$ are universal, and
(3) $\ell_{1}<\ell_{i}$ for all $i=2, \ldots, k$ ("the pivot is minimal in $\ell_{1}, \ell_{2}, \ldots, \ell_{k}$ ").
- A more precise description follows later.

Long distance Q-resolution: Some examples

Ф: $\quad \exists a \forall x \exists b \forall y \exists c . C_{1} \wedge C_{2} \wedge C_{3} \wedge C_{4}$

$$
\frac{a \vee x \vee \neg b \vee y \vee \neg c \quad \neg a \vee \neg x \vee \neg b \vee \neg c}{x^{*} \vee \neg b \vee y \vee \neg c} R
$$

- The two parent clauses have distance 2 (based on a and x).
- The pivot variable is $a, a<x$ and x^{*} is a shorthand for $x \vee \neg x$.

$$
\frac{x^{*} \vee \neg b \vee \neg c \quad b \vee \neg c}{x^{*} \vee \neg c} R
$$

- The two parent clauses have distance 1 (based on b).
- The pivot variable is b and no level restriction is required here.

Long distance Q-resolution: Some examples (cont'd)

$$
\Phi: \quad \exists a \forall x \exists b \forall y \exists c . C_{1} \wedge C_{2} \wedge C_{3} \wedge C_{4}
$$

$$
\frac{a \vee x \vee \neg b \vee y \vee \neg c \quad \neg a \vee \neg x \vee \neg b \vee \neg y \vee \neg c}{x^{*} \vee \neg b \vee y^{*} \vee \neg c} R
$$

■ The two parent clauses have distance 3 (based on a, x and y).

- The pivot variable is a and $a<x$ as well as $a<y$ holds.

$$
\frac{a \vee x \vee \neg b \vee y \vee \neg c \quad a \vee \neg x \vee b \vee \neg y \vee \neg c}{a \vee x^{*} \vee y^{*} \vee \neg c} R
$$

■ The two parent clauses have distance 3 (based on b, x and y).

- The pivot variable is $b, b<y$, but $b \nless x$ hold.
- This is a faulty application of long distance resolution!

Long distance Q-resolution: The restriction on the pivot

Ф: $\quad \forall x \exists a .(\neg x \vee a) \wedge(x \vee \neg a)$

■ Φ is true! Simply set a to the same value as x.
■ Without the restriction on the pivot, we can derive the empty clause!

$$
\frac{\neg x \vee a \quad x \vee \neg a}{\frac{x^{*}}{\square} U R} R ?
$$

- The two parent clauses of R ? have distance 2 (based on a and x).
- The pivot variable is a and $a \nless x$ holds.
\Leftrightarrow Ordering restrictions are important for correctness!

The long distance Q-resolution (LDQ) calculus for QBFs

 Notations- The \exists variable p is the pivot element of the resolutions.
- The variable x is universal.
$\square x^{*}$ is a shorthand for $x \vee \neg x . x^{*}$ is called the merged literal.
- X^{l}, X^{r} are sets of universal literals (merged or unmerged), such that
- for each literal $m \in X^{\prime}$ (with variable x), it holds that if m is not a merged literal, then the dual of m is in X^{r}, and otherwise
- either of $x \in X^{r}, \neg x \in X^{r}, x^{*} \in X^{r}$, and
- X^{r} does not contain any additional literal.
- X^{*} contains the merged literals of each literal in X^{\prime}.

The long distance Q-resolution (LDQ) calculus for QBFs

Resolution rule R_{1}

$$
\frac{C^{\prime} \vee p \quad C^{r} \vee \neg p}{C^{\prime} \vee C^{r}} R_{1}
$$

For all literals $m \in C^{\prime}$ it holds that the dual of m is not in C^{r}.

Resolution rule R_{2}

$$
\frac{C^{\prime} \vee p \vee X^{\prime} \quad C^{r} \vee \neg p \vee X^{r}}{C^{\prime} \vee C^{r} \vee X^{*}}\left[R_{2}\right]
$$

For all literals $m \in X^{r}$ it holds that $p<m$, for all literals $m \in C^{\prime}$ it holds that the dual of m is not in C^{r}.

Universal reduction rule UR

$$
\frac{C \vee x^{\prime}}{C}[U R]
$$

For $x^{\prime} \in\left\{x, \neg x, x^{*}\right\}$ and for any \exists variable $e \in C$ it holds that $e<x^{\prime}$.

Symmetric rules are omitted!

Examples for R_{2} with $\Phi: \exists a \forall x \exists b \forall y \exists c . C_{1} \wedge C_{2} \wedge C_{3} \wedge C_{4}$

$$
\frac{a \vee x \vee \neg b \vee y \vee \neg c \neg a \vee \neg x \vee \neg b \vee \neg c}{x^{*} \vee \neg b \vee y \vee \neg c} R_{2}
$$

- The two parent clauses have distance 2 (based on a and x).
- The pivot variable is a and $C^{\prime}=\{\neg b, y, \neg c\}$ and $C^{r}=\{\neg b, \neg c\}$.

■ $a<x, X^{\prime}=\{x\}, X^{r}=\{\neg x\}$ and $X^{*}=\left\{x^{*}\right\}$.

$$
\frac{x^{*} \vee \neg b \vee y \vee \neg c \quad b \vee \neg y \vee \neg c}{x^{*} \vee y^{*} \vee \neg c} R_{2}
$$

- The two parent clauses have distance 2 (based on b and y).
- The pivot variable is b and $C^{\prime}=\left\{x^{*}, \neg c\right\}$ and $C^{r}=\{\neg c\}$.

■ $b<y, X^{\prime}=\{y\}, X^{r}=\{\neg y\}$ and $X^{*}=\left\{y^{*}\right\}$.
\square Since x^{*} is not in X^{l} or $X^{r}, b<y$ is sufficient for correctness.

An LDQ-resolution proof of Φ

$$
\Phi: \quad \exists a \forall x \exists b \forall y \exists c . C_{1} \wedge C_{2} \wedge C_{3} \wedge C_{4}
$$

$$
\begin{aligned}
& \left(C_{1}\right) \quad\left(C_{2}\right)
\end{aligned}
$$

Short LDQ-resolution proofs of Ψ_{k}

Definition (Class $\left(\Psi_{k}\right)_{k \geq 1}$ of unsatisfiable QBFs from Kleine Büning op. cit.)

$$
\Psi_{(k \geq 1)}:=\exists d_{1} \exists e_{1} \forall x_{1} \exists d_{2} \exists e_{2} \forall x_{2} \cdots \exists d_{k} \exists e_{k} \forall x_{k} \exists f_{1} \cdots \exists f_{k} .
$$

$$
\begin{aligned}
\left(\overline{d_{1}} \vee \overline{e_{1}}\right) & \wedge \\
\left(d_{k} \vee \overline{x_{k}} \vee \overline{f_{1}} \vee \cdots \vee \overline{f_{k}}\right) & \wedge\left(e_{k} \vee x_{k} \vee \overline{f_{1}} \vee \cdots \vee \overline{f_{k}}\right) \wedge \\
\bigwedge_{j=1}^{k-1}\left(d_{j} \vee \overline{x_{j}} \vee \overline{d_{j+1}} \vee \overline{e_{j+1}}\right) & \wedge \bigwedge_{j=1}^{k-1}\left(e_{j} \vee x_{j} \vee \overline{d_{j+1}} \vee \overline{e_{j+1}}\right) \wedge \\
\bigwedge_{j=1}^{k}\left(\overline{x_{j}} \vee f_{j}\right) & \wedge \bigwedge_{j=1}^{k}\left(x_{j} \vee f_{j}\right)
\end{aligned}
$$

Theorem (E., Lonsing, Widl 2013)
There are $L D Q$ - resolution proofs for Ψ_{k} with $O(k)$ clauses.

Short LDQ-resolution proofs for $\Psi_{k}(k \geq 1)$

Example (Ψ_{2} in QDIMACS format)

| c | $k=2$ | | | | |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- |
| p | $c n f$ | 8 | 9 | | |
| e | 1 | 2 | 0 | | |
| a | 3 | 0 | | | |
| e | 4 | 5 | 0 | | |
| a | 6 | 0 | | | |
| e | 7 | 8 | 0 | | |
| -1 | -2 | 0 | | | |
| 1 | -3 | -4 | -5 | 0 | |
| 2 | 3 | -4 | -5 | 0 | |
| 4 | -6 | -7 | -8 | 0 | |
| 5 | 6 | -7 | -8 | 0 | |
| 3 | 7 | 0 | | | |
| -3 | 7 | 0 | | | |
| 6 | 8 | 0 | | | |
| -6 | 8 | 0 | | | |

- Derive ($4-6-70$) from ($4-6-7-80)$ and ($\left.\begin{array}{lllll}-6 & 8 & 0\end{array}\right)$.
- Use both to derive (2 $36^{*}-7$ 0) from (2 $\left.3-4-50\right)$. Observe that $4<6$ and $5<6$.

■ Similarly, derive (1 $-36^{*}-70$).

- Derive (2 $36^{*} 0$) from (2 $36^{*}-70$) and (3 70).
- Derive (1-3 6* 0) from ($1-36^{*}-70$) and ($\left.\begin{array}{llll}-3 & 7 & 0\end{array}\right)$.
- Use ($-1-20$) to derive ($3^{*} 6^{*} 0$). Observe that $1<3$, $1<6,2<3$ and $2<6$.

■ Universal reduction applied to ($3^{*} 6^{*} 0$) results \square.

- This resolution strategy can be applied to Ψ_{k} for all k.

LDQ-resolution in DepQBF: Some experimental results

- Preprocessed benchmarks from QBF Evaluation 2012.

■ DepQBF with traditional Q-resolution solves more benchmarks:

QBFEVAL'12-pre (276 formulas)	
DepQBF	120 (62 sat, 58 unsat)
DepQBF-LDQ	117 (62 sat, 55 unsat)

- LDQ-resolution (DepQBF-LDQ) results in shorter proofs:

115 solved by both:	DepQBF-LDQ	DepQBF
Avg. assignments	13.7×10^{6}	14.4×10^{6}
Avg. backtracks	43,676	50,116
Avg. resolutions	573,245	899,931
Avg. learn.clauses	31,939 (taut: 5,571)	36,854
Avg. run time	51.77	57.78

■ Still missing: much more detailed experimental analysis.

Outline

(1) A resolution calculus for QBFs in PCNF

(2) Long distance resolution
(3) Gentzen/sequent systems for arbitrary QBFs

Why yet another inference system?

■ Sequent systems have been introduced by G. Gentzen in 1934/35.
■ Theorem proving for "non-normal forms" are easily possible (not only for QBFs; also for propositional/FO/non-classical logic).

■ Vast amount of proof-theoretical knowledge about them (like, e.g., cut elimination).

- Tableau systems (a variant of Gentzen systems) are often used in implementations.

Sequents

Sequent systems do not work on formulas, but on sequents.

Definition (Sequent)

A sequent S is an ordered pair of the form $\Gamma \vdash \Delta$, where Γ (antecedent) and Δ (succedent) are finite multisets of formulas. We write " $\vdash \Delta$ " or " $\ulcorner\vdash$ " whenever Γ or Δ is the empty sequence, respectively.

Intuitively, a sequent states that
"if all formulas in Γ are true, then at least one formula in Δ is true."

An example for a (true) sequent is:

$$
\Phi, \Psi_{1} \vdash \Psi_{2}, \Phi
$$

The propositional rules of a sequent calculus for QBFs

$$
\left.\begin{array}{l}
\frac{\Gamma \vdash \Delta}{\Phi, \Gamma \vdash \Delta} w l \\
\frac{\Gamma_{1}, \Phi, \Phi, \Gamma_{2} \vdash \Delta}{\Gamma_{1}, \Phi, \Gamma_{2} \vdash \Delta} c l \\
\frac{\Gamma \vdash \Delta, \Phi}{\neg \Phi, \Gamma \vdash \Delta} \neg / \\
\frac{\Phi, \Psi, \Gamma \vdash \Delta}{\Phi \wedge \Psi, \Gamma \vdash \Delta} \wedge \\
\frac{\Phi, \Gamma \vdash \Delta}{\Phi \vee \Psi, \Gamma \vdash \Delta} \quad \Psi \vdash \Delta \\
\hline
\end{array}\right]
$$

Example: A sequent proof for $\vdash(\neg(a \vee b)) \rightarrow(\neg a \wedge \neg b)$

$$
\digamma(\neg(a \vee b)) \rightarrow(\neg a \wedge \neg b)
$$

Example: A sequent proof for $\vdash(\neg(a \vee b)) \rightarrow(\neg a \wedge \neg b)$

$$
\frac{\neg(a \vee b) \vdash \neg a \wedge \neg b}{\vdash(\neg(a \vee b)) \rightarrow(\neg a \wedge \neg b)} \rightarrow r
$$

Example: A sequent proof for $\vdash(\neg(a \vee b)) \rightarrow(\neg a \wedge \neg b)$

$$
\frac{\frac{\overline{\vdash a \vee b, \neg a \wedge \neg b}}{\neg(a \vee b) \vdash \neg a \wedge \neg b} \neg I}{\vdash(\neg(a \vee b)) \rightarrow(\neg a \wedge \neg b)} \rightarrow r
$$

Example: A sequent proof for $\vdash(\neg(a \vee b)) \rightarrow(\neg a \wedge \neg b)$

$$
\begin{gathered}
\frac{\vdash a, b, \neg a \wedge \neg b}{\vdash a \vee b, \neg a \wedge \neg b} \vee r \\
\frac{\neg(a \vee b) \vdash \neg a \wedge \neg b}{\vdash /} \\
\vdash(\neg(a \vee b)) \rightarrow(\neg a \wedge \neg b)
\end{gathered} r
$$

Example: A sequent proof for $\vdash(\neg(a \vee b)) \rightarrow(\neg a \wedge \neg b)$

Example: A sequent proof for $\vdash(\neg(a \vee b)) \rightarrow(\neg a \wedge \neg b)$

$$
\begin{gathered}
\frac{\frac{\bar{\vdash} \vdash a, b}{\vdash a, b, \neg a} \neg r \quad \overline{\vdash a, b, \neg b}}{\frac{\vdash a, b, \neg a \wedge \neg b}{\vdash a \vee b, \neg a \wedge \neg b} \vee r} \wedge r \\
\frac{\neg(a \vee b) \vdash \neg a \wedge \neg b}{\neg /} \\
\stackrel{\vdash(\neg(a \vee b)) \rightarrow(\neg a \wedge \neg b)}{\vdash(\neg)}
\end{gathered}
$$

Example: A sequent proof for $\vdash(\neg(a \vee b)) \rightarrow(\neg a \wedge \neg b)$

Example: A sequent proof for $\vdash(\neg(a \vee b)) \rightarrow(\neg a \wedge \neg b)$

Example: A sequent proof for $\vdash(\neg(a \vee b)) \rightarrow(\neg a \wedge \neg b)$

The backward proof development stops at axioms $a \vdash a$ and $b \vdash b$.

The axioms and possible quantifier rules

The axioms: $\Phi \vdash \Phi \mathrm{Ax} \quad \perp \vdash \perp l \quad \vdash \mathrm{~T}$ Tr
Some possible quantifier rules:

$$
\begin{array}{ll}
\frac{\Gamma \vdash \Delta, \Psi\{p / q\}}{\Gamma \vdash \Delta, \forall p \Psi} \forall r_{e} & \frac{\Psi\{p / q\}, \Gamma \vdash \Delta}{\exists p \Psi, \Gamma \vdash \Delta} \exists l_{e} \\
\frac{\Psi\{p / \varphi\}, \Gamma \vdash \Delta}{\forall p \Psi, \Gamma \vdash \Delta} \forall I_{f} & \frac{\Gamma \vdash \Delta, \Psi\{p / \varphi\}}{\Gamma \vdash \Delta, \exists p \Psi} \exists r_{f} \\
\frac{\Psi\{p / \top\}, \Psi\{p / \perp\}, \Gamma \vdash \Delta}{\forall p \Psi, \Gamma \vdash \Delta} \forall I_{s} & \frac{\Gamma \vdash \Delta, \Psi\{p / \top\}, \Psi\{p / \perp\}}{\Gamma \vdash \Delta, \exists p \Psi} \exists r_{s} \\
\frac{\Gamma \vdash \Delta, \Psi\{p / \top\} \wedge \Psi\{p / \perp\}}{\Gamma \vdash \Delta, \forall p \psi} \forall r_{s} & \frac{\Psi\{p / T\} \vee \Psi\{p / \perp\}, \Gamma \vdash \Delta}{\exists p \Psi, \Gamma \vdash \Delta} \exists I_{s}
\end{array}
$$

q does not occur as a free variable in the conclusion of $\forall r_{e} / \exists l_{e}$. φ is a propositional formula.

Sequent calculi for QBFs

Take the rules for propositional logic and add quantifier rules.

- $\forall r_{e}, \exists l_{e}, \forall I_{f}$ and $\exists r_{f}$: Gqfe (Gqfe*) is the (tree) calculus

■ $\forall r_{e}, \exists I_{e}, \forall I_{v}$ and $\exists r_{v}$: Restrict φ in $\forall I_{f}, \exists r_{f}$ to a variable and \perp, \top Gqve (Gqve*) is the (tree) calculus
■ $\forall r_{e}, \exists I_{e}, \forall I_{s}$ and $\exists r_{s}$: Gqse (Gqse*) is the (tree) calculus

All these calculi are cut-free, i.e., they do not have the following rule:

$$
\frac{\Gamma_{1} \vdash \Delta_{1}, \psi \quad \psi, \Gamma_{2} \vdash \Delta_{2}}{\Gamma_{1}, \Gamma_{2} \vdash \Delta_{1}, \Delta_{2}} \text { cut }
$$

Ψ is the cut formula. The cut is propositional if the cut formula is.

Sequent calculi for QBFs: Some simulation result

Proposition (E. 2012)

(1) Gqse with propositional cut cannot p-simulate Gqve*.
(2) Gque with propositional cut cannot p-simulate Gqfe*.
(3) Q-resolution (with proofs in dag form) cannot p-simulate Gqve*.

The basic proof search algorithm for QBFs in NNF

- Based on DPLL (successful in SAT-/QBF-solving in (P)CNF)

■ Relatively simple extension for nonprenex QBFs in NNF (implementation follows the semantics using s quantifier rules)

```
BOOLEAN split(QBF \Phi in NNF) {
switch (simplify (\Phi)): /* simplify works inside \phi */
    case T: return True;
    case }\perp\mathrm{ : return False;
    case ( }\mp@subsup{\Phi}{1}{}\vee\mp@subsup{\Phi}{2}{}): return (split( ( Ф | ) | split ( ( Ф < ));
    case ( }\mp@subsup{\Phi}{1}{}\wedge\mp@subsup{\Phi}{2}{}): return (split( ( $ ) && split ( ( $ ) )
    case (QX\Psi): select }x\inX\mathrm{ ;
        if Q = \exists return (split (\existsX\Psi[x/\perp]) | split(\existsX\Psi[x/\top]));
        if Q = \forall return (split (}\forallX\Psi[x/\perp]) && split (\forallX\Psi[x/\top]))
```

\}

Simplifying formulas

simplify (Φ) : returns Φ^{\prime} simplified wrt some equivalences:
(a) $\neg \top \Rightarrow \perp ; \quad \neg \perp \Rightarrow \top$;
(b) $\top \wedge \Phi \Rightarrow \Phi ; \quad \perp \wedge \Phi \Rightarrow \perp ; \quad \top \vee \Phi \Rightarrow \top ; \quad \perp \vee \Phi \Rightarrow \Phi$;
(c) $(\mathrm{Q} x \Phi) \Rightarrow \Phi$, if $\mathrm{Q} \in\{\forall, \exists\}$, and x does not occur in Φ;
(d) $\forall x(\Phi \wedge \Psi) \Rightarrow(\forall x \Phi) \wedge(\forall x \Psi)$;
(e) $\forall x(\Phi \vee \Psi) \Rightarrow(\forall x \Phi) \vee \Psi$, whenever x does not occur in Ψ;
(f) $\exists x(\Phi \vee \Psi) \Rightarrow(\exists x \Phi) \vee(\exists x \Psi)$;
(g) $\exists x(\Phi \wedge \Psi) \Rightarrow(\exists x \Phi) \wedge \Psi$, whenever x does not occur in Ψ.

Rewritings (d)-(g) are known as miniscoping.

Additional mechanisms

- Basic procedure clearly not sufficient for competitive solver
- Desirable extension: generalization of pruning techniques

■ Unit literal elimination

- Pure literal elimination
- Dependency-directed backtracking (works for true and false subproblems)
- Learning
\Rightarrow split looks like an implementation of a sequent calculus
\Leftrightarrow Extensions of split formalized as a sequent calculus (for NNF)
\Leftrightarrow Such a formalization is the basis of Martina Seidl's solver qpro.

Conclusion (for the second part)

■ We have seen different resolution concepts for QBFs in PCNF ...

- as well as sequent systems for arbitrary QBFs.
- We classified calculi wrt their ability to allow for succinct proofs.
\Rightarrow What is next:
Learn how most of the deduction concepts can be used inside QBF solvers.

