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Outline

© A resolution calculus for QBFs in PCNF

© Long distance resolution

© Gentzen/sequent systems for arbitrary QBFs
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Why do we need a resolution calculus for QBFs?

m We need a QSAT solver in our rapid implementation approach. Why
not Q-resolution (Q-res)?

m Although you will usually not see it, but in nearly every QDPLL
solver, there is Q-res inside.

m Some QDPLL solvers deliver Q-res clause proofs (“refutations”) as
certificates for unsatisfiability.

m Some even deliver Q-res cube “proofs” as certificates for satisfiability.

m From such proofs, one can generate witness functions
(as mentioned earlier).
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A resolution calculus for QBFs: The definition of resolvents

Definition (propositional resolvent)

Given two clauses C; and G, and a pivot variable p with p € C; and
—p € Gy, resolution produces the resolvent C, = (C1 \ {p}) U (G2 \ {—p}).

Definition (Q-resolution with existential pivot variable)

m Let C;, (5 be non-tautological clauses where v € Ci, —v € G for an
J-variable v.

m Tentative Q-resolvent of C; and Cs:
G ® G = (UR(CG) U UR(G)) \ {v, v}

m If {x,x} C G ® G, for some variable x, then no Q-resolvent exists.

m Otherwise, the non-tautological Q-resolvent is C := CG; ® G.
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A resolution calculus for QBFs: The quantification level

Definition (Quantification level)

Let @ be a sequence of quantifiers. Associate to each alternation its level
as follows. The left-most quantifier block gets level 1, and each alternation
increments the level.

Example (QBF with 4 quantification levels and 3 quantifier alternations)

Vx1Vxo dy1dyrdys Vxs dya
—— ————— =~
level 1 level 2 level 3 level 4
An ordering between variables is defined according to their occurrence in
the quantifier prefix and extended to literals. For instance,
X < Vg as well as x] < —X3.
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A resolution calculus for QBFs: Universal reduction

Definition (universal reduction (UR))
Given a clause C, UR on C produces the clause
UR(C):=C\{{eC|qt)=Vand W' € C with q(¢')=3: ¢ < 1},
where < is the linear variable ordering given by the quantifier prefix.
m Universal reduction deletes “trailing” universal literals from clauses.

m Clauses are shortened by UR.

Example

Given @ :=Vy3x;Vz3xo.(x1 V 2) A (-y V =x1) A (my V x2), we have
C

UR(C) := x1.
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A resolution calculus for QBFs

Definition (Q-resolution calculus)

The Q-resolution (Q-res) calculus consists of the Q-resolution rule and the
universal reduction rule.

Remark

© Resolution operations are only allowed over existential literals.

@ Tautological resolvents are never generated.

We will relax these requirements later on.
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Soundness and completeness or Q-resolution

Theorem (Kleine Biining, Karpinski, Flégel, Inf. Comput., 1995)

A QBF in PCNF without tautological clauses is false iff there is a

derivation of the empty clause O (= a refutation) in the Q-resolution
calculus.

Example
Let ® be davVx3dbVydc.C3 A --- A G with

Ci: avbVyvVece G: aVxVbVyV-c
CG3: xV-b Cy: —yVec
CGs: —aV-xVbV-c Cs: —xV-b
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A Q-resolution refutation of ¢

(Ca) (Gs)
G G —yVc —aV-xVbV-c
— R R
aVxVbVy U (G) —aV-xVbV-y UR (Go)
avxVvbhb x\/ﬂbR -aV-xVbhb —|x\/—\bR
VX R AV X R
R
O
Example (again)
Let ® be davVxdbVydc.Ci A --- A Cg with
CGi: avbVyVec C: avVxVbVyV-—c
Gs: xV-b Cy: —yVec
CG: —aV-xVbV-c Ce: —-xV-b
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A resolution calculus for QBFs (cont'd)

Is the following rule allowed/sound?

Definition (QU-resolution with universal pivot variable)

m Let ¢, G5 be non-tautological clauses where v € Ci, —v € ( for an
V-variable v.

m Tentative QU-resolvent of C; and Go:
G ® G = (UR(C1) U UR(G)) \ {v, —v}.

m If {x,—x} C G; ® G, for some variable x, then no QU-resolvent exists.

m Otherwise, the non-tautological QU-resolvent is C := G; ® GC,.
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A resolution calculus for QBFs (cont'd)

Is the following rule allowed/sound?

Definition (QU-resolution with universal pivot variable)

m Let ¢, G5 be non-tautological clauses where v € Ci, —v € ( for an
V-variable v.

m Tentative QU-resolvent of C; and Go:
G ® G = (UR(C1) U UR(G)) \ {v, —v}.

m If {x,—x} C G; ® G, for some variable x, then no QU-resolvent exists.

m Otherwise, the non-tautological QU-resolvent is C := G; ® GC,.

YES. Q-resolution can be extended by this rule yielding QU-resolution!
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A stronger resolution calculus for QBFs

Definition (QU-resolution calculus)

The Q-resolution (Q-res) calculus consists of the Q-resolution rule, the
QU-resolution rule and the universal reduction rule.

m The QU-resolution calculus is a slight extension of the Q-resolution
calculus, but ...

m it has the potential to enable shorter proofs.

= \We will demonstrate this in the following.
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A hard class of formulas for Q-resolution

Definition (Class (Wy)x>1 of unsatisfiable QBFs)
w(kZI) = E|d1 Elel VXl Hdg 36‘2 VXQ e Hdk Elek VXk 3)‘1 s ka.
(hve) A (1)
(dk VXLV AV -V ) A (2)
(ex VXk VAV ---VE) A (3)
k—1 —
N (VR Vdnvers) A (4)
k—1 _—
/\j=1 (6 VX Vdit1 VeET) A (5)
ko
A G5V A (6)
k
Ay G5V 5) (7)
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A hard class of formulas for Q-resolution

Theorem (Kleine Biining, Karpinski, Flogel, Inf. Comput., 1995)
Any Q-resolution proof of W has at least 2% resolution steps. J

Result is a bit surprising, because

m the existential part (in black) is Horn and
m propositional Horn clause sets have short (unit) resolution proofs.

m Short proofs are possible for Horn clause sets containing V variables.

= Universal non-Horn part forces exponential proof length!
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QU-resolution and the class (Wy)x>1

m In general: QU-res allows to derive clauses which Q-res cannot derive.
m In particular for formula W,: QU-res allows to derive unit clauses.

m Key observation: unit clauses f; (1 < i < k) obtained by
QU-resolution allow for short proofs of Wy.

Proposition (Van Gelder 2012)
Every formula V. has a QU-resolution proof with O(k) resolution steps. J
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Short QU-res proofs for W (k > 1)

Example (W, in QDIMACS format)
c k=2
p cnf 89 m Derive new unit clauses from all the binary clauses by
e120 QU-resolution over universal variables. The result are
a3o two clauses f; and £, (7 0) and (8 0).
e450
a6 0 m Observe: the unit clauses resulting from the previous
e 780 step cannot be derived by Q-res.
-1-20 m We derive (4 0) and (5 0) by Q-resolutions and UR.
1-3-4-50
2 3 -4 -50 m Use the new unit clauses to successively shorten all the
4 -6 -7 -8 0 clauses of size four by unit resolution and universal
5 6 -7 -8 0 reduction. Further unit clauses can be obtained this way.
2 ; 8 m Finally the empty clause is derived using (-1 -2 0).
6 80 m This resolution strategy can be applied to W for all k.
-6 80
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Outline

© Long distance resolution
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Motivation

Resolution so far:
m Resolvents with existential or universal pivot variables

m Q(U)-resolvents are non-tautological
(i.e., clause which does not contain v and —v for some variable v).

v

How do we continue?
m We extend the concept by allowing (certain) tautological resolvents

m It was first used in the clause learning procedure of yquaffle
(Zhang and Malik, 2002)

m Recently it was formalized as a calculus (Balabanov and Jiang, 2012)
m Implemented in the solver DepQBF (E., Lonsing, Widl 2013)

m We show that an exponential speed-up in proof length is possible.
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Long distance Q-resolution: The basic idea

Definition
Two clauses C and D have distance k > 1 if there are literals ¢1,..., 0k

such that, for all 1 < < k, literal ¢; occurs in C and the dual of ¢; occurs
in D. If there is no such literal then the clauses have distance 0.

m The usual resolution rules require two parent clauses of distance 1.

m Tentatively, we allow two parent clauses of distance > 1, provided
© the pivot (say ¢1) is existential,
@ all other literals /5, ..., ¢, are universal, and
Q (<l foralli=2,...,k (“the pivot is minimal in ¢y, 0o, ... C").

m A more precise description follows later.
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Long distance Q-resolution: Some examples

$: davVxdbVyde. GAGAGAG

aVxV-bVyV-c —\a\/ﬂx\/—\b\/—'cR
xX*V-abVyV-c

The two parent clauses have distance 2 (based on a and x).

The pivot variable is a, a < x and x* is a shorthand for x V —x.

x*V =bV —=c bV —c
x*V =c

R

The two parent clauses have distance 1 (based on b).

The pivot variable is b and no level restriction is required here.
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Long distance Q-resolution: Some examples (cont'd)

$: daVxdbVyde. GAGAGAG

aVxV-bVyV-c —|a\/ﬂx\/ﬂb\/—\y\/ﬂcR
x*V bV y* Vo

The two parent clauses have distance 3 (based on a, x and y).

The pivot variable is a and a < x as well as a < y holds.

avVxV-bVyV-c a\/—|x\/b\/ﬂy\/—|cR
aVvx*Vy*V-c

The two parent clauses have distance 3 (based on b, x and y).
The pivot variable is b, b < y, but b £ x hold.

m This is a faulty application of long distance resolution!
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Long distance Q-resolution: The restriction on the pivot

®:  Vx3da.(—xVa)A(xV-a)

m O is true! Simply set a to the same value as x.
m Without the restriction on the pivot, we can derive the empty clause!

—xVa = xV —a R?
— UR
]

m The two parent clauses of R? have distance 2 (based on a and x).
m The pivot variable is a and a £ x holds.

w Ordering restrictions are important for correctness!
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The long distance Q-resolution (LDQ) calculus for QBFs

Notations

m The J variable p is the pivot element of the resolutions.
m The variable x is universal.
m x" is a shorthand for x V —x. x* is called the merged literal.

m X', X" are sets of universal literals (merged or unmerged), such that

m for each literal m € X/ (with variable x), it holds that if m is not a
merged literal, then the dual of mis in X", and otherwise

m either of x € X", —=x € X", x* € X", and

m X" does not contain any additional literal.

m X* contains the merged literals of each literal in X'.
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The long distance Q-resolution (LDQ) calculus for QBFs

Resolution rule Ry Resolution rule R»
C'vp Cr\/—|pR C'vpvX! C"V-pVX (2]
1
c'vcr clv Crv X ?

For all literals m € X" it holds that
p < m, for all literals m € C' it holds
that the dual of mis not in C".

For all literals m € C' it holds that
the dual of mis not in C".

Universal reduction rule UR

Cvx
C

For x" € {x,—x,x*} and for any 3 variable
e € C it holds that e < x'.

[UR]

Symmetric rules are omitted!
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Examples for ry with ®: daVxdbVydc. G A G A G A G

aVxV-bVyV-c —aV-xV-bV-c
xX*V-abVyV-c

R2

The two parent clauses have distance 2 (based on a and x).
The pivot variable is a and C' = {=b,y,~c} and C" = {-b, ~c}.
a<x, X'={x}, X" = {-x} and X* = {x*}.

x*VabVyV-c bV-yV-c R
x*Vy*V-c

2

The two parent clauses have distance 2 (based on b and y).
The pivot variable is b and C' = {x*,~c} and C" = {~c}.
b<y X'={y}, X" ={-y} and X* = {y"}.

Since x* is not in X! or X", b < y is sufficient for correctness.
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An LDQ-resolution proof of ®

®: daVxdbVyde. GANGAGACG

(G) (&)
aVxV-bVyV-c —|a\/ﬁx\/—\bv—|cR (&)
x*V-abVyV-c b\/ﬂy\/—|cR (Cs)
x*Vy*V-c CR
X*\/ *
Y UR

0
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Short LDQ-resolution proofs of W

Definition (Class (Wy)x>1 of unsatisfiable QBFs from Kleine Biining op. cit.)
W(sny = 3dy Fey Yy 3dy Jeo Vs -+ 3 Jey Ve Iy -+ 3y

(Ve A
(de VXV AV -V i)

>

(ek VXk VAV -~ VF) A
k—1 — k—1 _

/\j:1 (VX VdiiVerr) A /\J.:1 (¢ VX Vdiy1 VEGT) A

k

A GVE A A (gVh)

Theorem (E., Lonsing, Widl 2013)

There are LDQ- resolution proofs for Wy with O(k) clauses.
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Short LDQ-resolution proofs for W, (k > 1)

Example (W, in QDIMACS format)

c k=2

p cuf 8 9 U
el120 -
a30

e450 L
a6 o0

e780 -
-1 -20
1-3-4-50 "
2 3-4-50 m

4 -6 -7 -8 0

5 6-7-80
370

370 "
680

680 -

Derive (5 6 -7 0) from (5 6 -7 -8 0) and (6 8 0).
Derive (4 -6 -7 0) from (4 -6 -7 -8 0) and (-6 8 0).

Use both to derive (2 3 6" -7 0) from (2 3 -4 -5 0).
Observe that 4 < 6 and 5 < 6.

Similarly, derive (1 -3 6* -7 0).
Derive (2 3 6* 0) from (2 3 6* -7 0) and (3 7 0).
Derive (1 -3 6" 0) from (1 -3 6* -7 0) and (-3 7 0).

Use (-1 -2 0) to derive (3* 6* 0). Observe that 1 < 3,
1<6,2<3and2<6.

Universal reduction applied to (3* 6* 0) results [1.

This resolution strategy can be applied to Wy for all k.
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LDQ-resolution in DepQBF: Some experimental results

m Preprocessed benchmarks from QBF Evaluation 2012.

m DepQBF with traditional Q-resolution solves more benchmarks:

QBFEVAL'12-pre (276 formulas)

DepQBF 120 (62 sat, 58 unsat)
DepQBF-LDQ 117 (62 sat, 55 unsat)

m LDQ-resolution (DepQBF-LDQ) results in shorter proofs:

115 solved by both: DepQBF-LDQ
Avg. assignments 13.7 x 10°
Avg. backtracks 43,676
Avg. resolutions 573,245
Avg. learn.clauses 31,939 (taut: 5,571)
Avg. run time 51.77

DepQBF
14.4 x 100
50,116
899,931
36,854
57.78

m Still missing: much more detailed experimental analysis.
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Outline

© Gentzen/sequent systems for arbitrary QBFs
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Why yet another inference system?

m Sequent systems have been introduced by G. Gentzen in 1934/35.

m Theorem proving for “non-normal forms” are easily possible
(not only for QBFs; also for propositional /FO/non-classical logic).

m Vast amount of proof-theoretical knowledge about them
(like, e.g., cut elimination).

m Tableau systems (a variant of Gentzen systems) are often used in
implementations.
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Sequents

Sequent systems do not work on formulas, but on sequents.

Definition (Sequent)

A sequent S is an ordered pair of the form I = A, where I (antecedent)
and A (succedent) are finite multisets of formulas. We write “ A" or
“I' " whenever ' or A is the empty sequence, respectively.

Intuitively, a sequent states that

“if all formulas in I are true, then at least one formula in A is true.”

An example for a (true) sequent is:
O,V EV, o
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The propositional rules of a sequent calculus for QBFs

r-A r-A

NN r-oao"
M, ¢.0.0H+FA FE AL ®, 0, A,
M, LA € FF AL, A
e A o® orEa
o, rra ! FFA -0
¢7W,FFA/ r-A o FI—A,\IJ/\
oAw T F AN FTFAGAY r
O.THA WUTFA NER
VU, T F A vi Frroaovy
A0 wrea orrav
VT FA N
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Example: A sequent proof for - (=(aV b)) — (—a A —b)

F(=(aV b)) — (—aA-b)
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Example: A sequent proof for - (=(aV b)) — (—a A —b)

—(aVb)F—-aA-b

F(=(av b)) = (man—b)
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Example: A sequent proof for - (=(aV b)) — (—a A —b)

FaVvb,maA-b |
—(aVb)F—-an—b
- (—(aV b)) = (—a A —b)

—r
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Example: A sequent proof for - (=(aV b)) — (—a A —b)

Fa, b maA-b vr
FaVvb,maA-b

—(aV b)F —aA—b -

F(=(aV b)) = (—aA—b)

—r
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Example: A sequent proof for - (=(aV b)) — (—a A —b)

Fa, b, -a Fa, b, b
Fa, b maA-b vr
FaVvb,maA-b

—(aV b)F —aA—b -
F(=(aV b)) = (—aA—b)

Ar

—r
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Example: A sequent proof for - (=(aV b)) — (—a A —b)

alka, b
Fa b, —a Fa, b, —b
Fa, b maA-b
Favb —an—b "
—(aV b)F —aA—b -
- (=(aV b)) — (=a A —b)

Ar

—r
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Example: A sequent proof for - (=(aV b)) — (—a A —b)

abk a
alka, b
Fa b, —a Fa, b, —b
Fa, b maA-b
Favb —an—b "
—(aV b)F —aA—b -
- (=(aV b)) — (—a A —b)

wr

Ar

—r
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Example: A sequent proof for - (=(aV b)) — (—a A —b)

abk a
aFa b’ bra b
Fa b, —a Fa b, =b _
-2, b, —ah—b AT
Favb —an—b "
—(aV b)F —aA—b -
- (=(aV b)) — (=a A —b)

r

—r
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Example: A sequent proof for - (=(aV b)) — (—a A —b)

abk a b b

wr

alka, b . bt a, b _
Fa, b, -a Fa, b, b
-2, b, —ah—b AT
Favb —an—b "
—(aV b)F —aA—b -
F (=(aV b)) — (—a A —b)

wr
r

—r

The backward proof development stops at axioms at a and b+ b.
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The axioms and possible quantifier rules

The axioms: ¢ F ¢ Ax 1+ 1/ T Tr

Some possible quantifier rules:

r= A V{p/q} vy V{p/q}, T - A o)
e A vpw e YT - A ¢
Vip/p}, T F A vl rE A V{p/p} o
vpu, T A F ENE Y
V{p/T}, W{p/L},T - A » r = A V{p/ThHV{p/L} a
VpW.T F A s FrF A, 3pVv s
F = A V{p/ThAV{p/L} v Wip/T}vW¥{p/L}, T - A .
[ - A Vv s YT - A s

q does not occur as a free variable in the conclusion of Vre / /.
@ is a propositional formula.

U. Egly and F. Lonsing (TU Wien) QBFs and DepQBF: Deduction Concepts 34 / 40



Sequent calculi for QBFs

Take the rules for propositional logic and add quantifier rules.
m Vre, 3le, Ve and 3rs: Gafe (Ggfe®) is the (tree) calculus

m Vre, dle, VI, and 3r,: Restrict ¢ in V¢, drr to a variable and 1, T
Gqve (Gqve®) is the (tree) calculus

m Vre, dle, VIs and Jrs: Ggse (Ggse™) is the (tree) calculus

All these calculi are cut-free, i.e., they do not have the following rule:

MMEA, WV V. I F A, ;
M, Mo Ayq, A cu

WV is the cut formula. The cut is propositional if the cut formula is.
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Sequent calculi for QBFs: Some simulation result

Proposition (E. 2012)

@ Gqgse with propositional cut cannot p-simulate Gqve®.
@ Gqve with propositional cut cannot p-simulate Gqfe*.

© Q-resolution (with proofs in dag form) cannot p-simulate Gqve*.
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The basic proof search algorithm for QBFs in NNF

m Based on DPLL (successful in SAT-/QBF-solving in (P)CNF)

m Relatively simple extension for nonprenex QBFs in NNF
(implementation follows the semantics using s quantifier rules)

BOOLEAN split(QBF @& in NNF) {

switch (simplify (®)): /* simplify works inside ¢ */

case |: return True;

case |l : return False;

case (®1V Py): return (split(P;) || split(da));

case (P APy): return (split(Pp) && split(Pr));

case (QXW): select x € X;
if Q =3 return (split(IX WV[x/L]) | split(3IX V[x/T]);
if Q =V return (split(VX W[x/Ll]) && split(VX V[x/T]);
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Simplifying formulas

simplify(®): returns ¢ simplified wrt some equivalences:

(a) - T=1, -L=T,

(b)) TAP=9¢;, LAd=1, TVve=T;, LVd=0,;
(c) (Qx®) = @, if Q € {V, 3}, and x does not occur in P;

(d) ¥x(PAV) = (VxP) A (VX V),

(e) Vx(®V V) = (Vx®)V WV, whenever x does not occur in V;
(f) Ix(PV V)= (IxP) VvV (IxV),

(g) Ix (P AV) = (IxP) AV, whenever x does not occur in V.

Rewritings (d)—(g) are known as miniscoping.
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Additional mechanisms

m Basic procedure clearly not sufficient for competitive solver

m Desirable extension: generalization of pruning techniques
m Unit literal elimination
m Pure literal elimination

m Dependency-directed backtracking
(works for true and false subproblems)

m Learning
= split looks like an implementation of a sequent calculus
= Extensions of split formalized as a sequent calculus (for NNF)

= Such a formalization is the basis of Martina Seidl’s solver gpro.
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Conclusion (for the second part)

m We have seen different resolution concepts for QBFs in PCNF . ..
m as well as sequent systems for arbitrary QBFs.

m We classified calculi wrt their ability to allow for succinct proofs.

w \What is next:

Learn how most of the deduction concepts can be used inside QBF solvers.

U. Egly and F. Lonsing (TU Wien) QBFs and DepQBF: Deduction Concepts 40 / 40



	A resolution calculus for QBFs in PCNF
	Long distance resolution
	Gentzen/sequent systems for arbitrary QBFs

