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Why do we need a resolution calculus for QBFs?

We need a QSAT solver in our rapid implementation approach. Why
not Q-resolution (Q-res)?

Although you will usually not see it, but in nearly every QDPLL
solver, there is Q-res inside.

Some QDPLL solvers deliver Q-res clause proofs (“refutations”) as
certificates for unsatisfiability.

Some even deliver Q-res cube “proofs” as certificates for satisfiability.

From such proofs, one can generate witness functions
(as mentioned earlier).
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A resolution calculus for QBFs: The definition of resolvents

Definition (propositional resolvent)

Given two clauses C1 and C2 and a pivot variable p with p ∈ C1 and
¬p ∈ C2, resolution produces the resolvent Cr = (C1 \ {p}) ∪ (C2 \ {¬p}).

Definition (Q-resolution with existential pivot variable)

Let C1, C2 be non-tautological clauses where v ∈ C1, ¬v ∈ C2 for an
∃-variable v .

Tentative Q-resolvent of C1 and C2:
C1 ⊗ C2 := (UR(C1) ∪ UR(C2)) \ {v , ¬v}.

If {x , ¬x} ⊆ C1 ⊗ C2 for some variable x , then no Q-resolvent exists.

Otherwise, the non-tautological Q-resolvent is C := C1 ⊗ C2.
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A resolution calculus for QBFs: The quantification level

Definition (Quantification level)

Let Q be a sequence of quantifiers. Associate to each alternation its level
as follows. The left-most quantifier block gets level 1, and each alternation
increments the level.

Example (QBF with 4 quantification levels and 3 quantifier alternations)

∀x1∀x2
︸ ︷︷ ︸

level 1

∃y1∃y2∃y3
︸ ︷︷ ︸

level 2

∀x3
︸︷︷︸

level 3

∃y4
︸︷︷︸

level 4

ϕ

An ordering between variables is defined according to their occurrence in
the quantifier prefix and extended to literals. For instance,

x2 < y4 as well as x1 < ¬x3.
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A resolution calculus for QBFs: Universal reduction

Definition (universal reduction (UR))

Given a clause C , UR on C produces the clause

UR(C) := C \ {ℓ ∈ C | q(ℓ) = ∀ and ∀ℓ′ ∈ C with q(ℓ′) = ∃ : ℓ′ < ℓ},

where < is the linear variable ordering given by the quantifier prefix.

Universal reduction deletes “trailing” universal literals from clauses.

Clauses are shortened by UR.

Example

Given Φ := ∀y∃x1∀z∃x2.(x1 ∨ z
︸ ︷︷ ︸

C

) ∧ (¬y ∨ ¬x1) ∧ (¬y ∨ x2), we have

UR(C) := x1.
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A resolution calculus for QBFs

Definition (Q-resolution calculus)

The Q-resolution (Q-res) calculus consists of the Q-resolution rule and the
universal reduction rule.

Remark

1 Resolution operations are only allowed over existential literals.

2 Tautological resolvents are never generated.

We will relax these requirements later on.
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Soundness and completeness or Q-resolution

Theorem (Kleine Büning, Karpinski, Flögel, Inf. Comput., 1995)

A QBF in PCNF without tautological clauses is false iff there is a
derivation of the empty clause � (= a refutation) in the Q-resolution
calculus.

Example

Let Φ be ∃a∀x∃b∀y∃c .C1 ∧ · · · ∧ C6 with

C1 : a ∨ b ∨ y ∨ c C2 : a ∨ x ∨ b ∨ y ∨ ¬c
C3 : x ∨ ¬b C4 : ¬y ∨ c
C5 : ¬a ∨ ¬x ∨ b ∨ ¬c C6 : ¬x ∨ ¬b
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A Q-resolution refutation of Φ

C1 C2

a ∨ x ∨ b ∨ y
R

a ∨ x ∨ b
UR

(C3)
x ∨ ¬b

a ∨ x R

a UR

(C4)
¬y ∨ c

(C5)
¬a ∨ ¬x ∨ b ∨ ¬c

¬a ∨ ¬x ∨ b ∨ ¬y
R

¬a ∨ ¬x ∨ b
UR

(C6)
¬x ∨ ¬b

¬a ∨ ¬x R

¬a UR

�
R

Example (again)

Let Φ be ∃a∀x∃b∀y∃c .C1 ∧ · · · ∧ C6 with

C1 : a ∨ b ∨ y ∨ c C2 : a ∨ x ∨ b ∨ y ∨ ¬c
C3 : x ∨ ¬b C4 : ¬y ∨ c
C5 : ¬a ∨ ¬x ∨ b ∨ ¬c C6 : ¬x ∨ ¬b
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A resolution calculus for QBFs (cont’d)

Is the following rule allowed/sound?

Definition (QU-resolution with universal pivot variable)

Let C1, C2 be non-tautological clauses where v ∈ C1, ¬v ∈ C2 for an
∀-variable v .

Tentative QU-resolvent of C1 and C2:
C1 ⊗ C2 := (UR(C1) ∪ UR(C2)) \ {v , ¬v}.

If {x , ¬x} ⊆ C1 ⊗ C2 for some variable x , then no QU-resolvent exists.

Otherwise, the non-tautological QU-resolvent is C := C1 ⊗ C2.
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A resolution calculus for QBFs (cont’d)

Is the following rule allowed/sound?

Definition (QU-resolution with universal pivot variable)

Let C1, C2 be non-tautological clauses where v ∈ C1, ¬v ∈ C2 for an
∀-variable v .

Tentative QU-resolvent of C1 and C2:
C1 ⊗ C2 := (UR(C1) ∪ UR(C2)) \ {v , ¬v}.

If {x , ¬x} ⊆ C1 ⊗ C2 for some variable x , then no QU-resolvent exists.

Otherwise, the non-tautological QU-resolvent is C := C1 ⊗ C2.

YES. Q-resolution can be extended by this rule yielding QU-resolution!
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A stronger resolution calculus for QBFs

Definition (QU-resolution calculus)

The Q-resolution (Q-res) calculus consists of the Q-resolution rule, the
QU-resolution rule and the universal reduction rule.

The QU-resolution calculus is a slight extension of the Q-resolution
calculus, but . . .

it has the potential to enable shorter proofs.

➥ We will demonstrate this in the following.
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A hard class of formulas for Q-resolution

Definition (Class (Ψk)k≥1 of unsatisfiable QBFs)

Ψ(k≥1) := ∃d1 ∃e1 ∀x1 ∃d2 ∃e2 ∀x2 · · · ∃dk ∃ek ∀xk ∃f1 · · · ∃fk .

(d1 ∨ e1) ∧ (1)

(dk ∨ xk ∨ f1 ∨ · · · ∨ fk) ∧ (2)

(ek ∨ xk ∨ f1 ∨ · · · ∨ fk) ∧ (3)
∧k−1

j=1
(dj ∨ xj ∨ dj+1 ∨ ej+1) ∧ (4)

∧k−1

j=1
(ej ∨ xj ∨ dj+1 ∨ ej+1) ∧ (5)

∧k

j=1
(xj ∨ fj) ∧ (6)

∧k

j=1
(xj ∨ fj) (7)
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A hard class of formulas for Q-resolution

Theorem (Kleine Büning, Karpinski, Flögel, Inf. Comput., 1995)

Any Q-resolution proof of Ψk has at least 2k resolution steps.

Result is a bit surprising, because

the existential part (in black) is Horn and

propositional Horn clause sets have short (unit) resolution proofs.

Short proofs are possible for Horn clause sets containing ∀ variables.

➥ Universal non-Horn part forces exponential proof length!
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QU-resolution and the class (Ψk)k≥1

In general: QU-res allows to derive clauses which Q-res cannot derive.

In particular for formula Ψk : QU-res allows to derive unit clauses.

Key observation: unit clauses fi (1 ≤ i ≤ k) obtained by
QU-resolution allow for short proofs of Ψk .

Proposition (Van Gelder 2012)

Every formula Ψk has a QU-resolution proof with O(k) resolution steps.
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Short QU-res proofs for Ψk (k ≥ 1)

Example (Ψ2 in QDIMACS format)

c k=2

p cnf 8 9

e 1 2 0

a 3 0

e 4 5 0

a 6 0

e 7 8 0

-1 -2 0

1 -3 -4 -5 0

2 3 -4 -5 0

4 -6 -7 -8 0

5 6 -7 -8 0

3 7 0

-3 7 0

6 8 0

-6 8 0

Derive new unit clauses from all the binary clauses by
QU-resolution over universal variables. The result are
two clauses f1 and f2 (7 0) and (8 0).

Observe: the unit clauses resulting from the previous
step cannot be derived by Q-res.

We derive (4 0) and (5 0) by Q-resolutions and UR.

Use the new unit clauses to successively shorten all the
clauses of size four by unit resolution and universal
reduction. Further unit clauses can be obtained this way.

Finally the empty clause is derived using (-1 -2 0).

This resolution strategy can be applied to Ψk for all k.
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Outline

1 A resolution calculus for QBFs in PCNF

2 Long distance resolution

3 Gentzen/sequent systems for arbitrary QBFs
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Motivation

Resolution so far:

Resolvents with existential or universal pivot variables

Q(U)-resolvents are non-tautological
(i.e., clause which does not contain v and ¬v for some variable v).

How do we continue?

We extend the concept by allowing (certain) tautological resolvents

It was first used in the clause learning procedure of yquaffle
(Zhang and Malik, 2002)

Recently it was formalized as a calculus (Balabanov and Jiang, 2012)

Implemented in the solver DepQBF (E., Lonsing, Widl 2013)

We show that an exponential speed-up in proof length is possible.
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Long distance Q-resolution: The basic idea

Definition

Two clauses C and D have distance k ≥ 1 if there are literals ℓ1, . . . , ℓk

such that, for all 1 ≤ i ≤ k, literal ℓi occurs in C and the dual of ℓi occurs
in D. If there is no such literal then the clauses have distance 0.

The usual resolution rules require two parent clauses of distance 1.

Tentatively, we allow two parent clauses of distance ≥ 1, provided

1 the pivot (say ℓ1) is existential,

2 all other literals ℓ2, . . . , ℓk are universal, and

3 ℓ1 < ℓi for all i = 2, . . . , k (“the pivot is minimal in ℓ1, ℓ2, . . . , ℓk”).

A more precise description follows later.
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Long distance Q-resolution: Some examples

Φ: ∃a ∀x∃b ∀y∃c . C1 ∧ C2 ∧ C3 ∧ C4

a ∨ x ∨ ¬b ∨ y ∨ ¬c ¬a ∨ ¬x ∨ ¬b ∨ ¬c

x∗ ∨ ¬b ∨ y ∨ ¬c
R

The two parent clauses have distance 2 (based on a and x).

The pivot variable is a, a < x and x∗ is a shorthand for x ∨ ¬x .

x∗ ∨ ¬b ∨ ¬c b ∨ ¬c
x∗ ∨ ¬c

R

The two parent clauses have distance 1 (based on b).

The pivot variable is b and no level restriction is required here.
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Long distance Q-resolution: Some examples (cont’d)

Φ: ∃a ∀x∃b ∀y∃c . C1 ∧ C2 ∧ C3 ∧ C4

a ∨ x ∨ ¬b ∨ y ∨ ¬c ¬a ∨ ¬x ∨ ¬b ∨ ¬y ∨ ¬c

x∗ ∨ ¬b ∨ y∗ ∨ ¬c
R

The two parent clauses have distance 3 (based on a, x and y).

The pivot variable is a and a < x as well as a < y holds.

a ∨ x ∨ ¬b ∨ y ∨ ¬c a ∨ ¬x ∨ b ∨ ¬y ∨ ¬c

a ∨ x∗ ∨ y∗ ∨ ¬c
R

The two parent clauses have distance 3 (based on b, x and y).

The pivot variable is b, b < y , but b 6< x hold.

This is a faulty application of long distance resolution!
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Long distance Q-resolution: The restriction on the pivot

Φ: ∀x ∃a. (¬x ∨ a) ∧ (x ∨ ¬a)

Φ is true! Simply set a to the same value as x .

Without the restriction on the pivot, we can derive the empty clause!

¬x ∨ a x ∨ ¬a
x∗ R?

�
UR

The two parent clauses of R? have distance 2 (based on a and x).

The pivot variable is a and a 6< x holds.

➥ Ordering restrictions are important for correctness!
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The long distance Q-resolution (LDQ) calculus for QBFs
Notations

The ∃ variable p is the pivot element of the resolutions.

The variable x is universal.

x∗ is a shorthand for x ∨ ¬x . x∗ is called the merged literal.

X l , X r are sets of universal literals (merged or unmerged), such that

for each literal m ∈ X l (with variable x), it holds that if m is not a
merged literal, then the dual of m is in X r , and otherwise

either of x ∈ X r , ¬x ∈ X r , x∗ ∈ X r , and

X r does not contain any additional literal.

X ∗ contains the merged literals of each literal in X l .
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The long distance Q-resolution (LDQ) calculus for QBFs

Resolution rule R1 Resolution rule R2

C l ∨ p C r ∨ ¬p

C l ∨ C r
R1

C l ∨ p ∨ X l C r ∨ ¬p ∨ X r

C l ∨ C r ∨ X∗
[R2]

For all literals m ∈ C l it holds that
the dual of m is not in C r .

For all literals m ∈ X r it holds that
p < m, for all literals m ∈ C l it holds
that the dual of m is not in C r .

Universal reduction rule UR

C ∨ x ′

C
[UR]

For x ′ ∈ {x , ¬x , x∗} and for any ∃ variable
e ∈ C it holds that e < x ′.

Symmetric rules are omitted!
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Examples for R2 with Φ: ∃a ∀x∃b ∀y∃c . C1 ∧ C2 ∧ C3 ∧ C4

a ∨ x ∨ ¬b ∨ y ∨ ¬c ¬a ∨ ¬x ∨ ¬b ∨ ¬c

x∗ ∨ ¬b ∨ y ∨ ¬c
R2

The two parent clauses have distance 2 (based on a and x).

The pivot variable is a and C l = {¬b, y , ¬c} and C r = {¬b, ¬c}.

a < x , X l = {x}, X r = {¬x} and X ∗ = {x∗}.

x∗ ∨ ¬b ∨ y ∨ ¬c b ∨ ¬y ∨ ¬c

x∗ ∨ y∗ ∨ ¬c
R2

The two parent clauses have distance 2 (based on b and y).

The pivot variable is b and C l = {x∗, ¬c} and C r = {¬c}.

b < y , X l = {y}, X r = {¬y} and X ∗ = {y∗}.

Since x∗ is not in X l or X r , b < y is sufficient for correctness.
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An LDQ-resolution proof of Φ

Φ: ∃a ∀x∃b ∀y∃c . C1 ∧ C2 ∧ C3 ∧ C4

(C1)
a ∨ x ∨ ¬b ∨ y ∨ ¬c

(C2)
¬a ∨ ¬x ∨ ¬b ∨ ¬c

x∗ ∨ ¬b ∨ y ∨ ¬c
R

(C3)
b ∨ ¬y ∨ ¬c

x∗ ∨ y∗ ∨ ¬c
R (C4)

c

x∗ ∨ y∗ R

�
UR
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Short LDQ-resolution proofs of Ψk

Definition (Class (Ψk)k≥1 of unsatisfiable QBFs from Kleine Büning op. cit.)

Ψ(k≥1) := ∃d1 ∃e1 ∀x1 ∃d2 ∃e2 ∀x2 · · · ∃dk ∃ek ∀xk ∃f1 · · · ∃fk .

(d1 ∨ e1) ∧

(dk ∨ xk ∨ f1 ∨ · · · ∨ fk) ∧ (ek ∨ xk ∨ f1 ∨ · · · ∨ fk) ∧
∧k−1

j=1
(dj ∨ xj ∨ dj+1 ∨ ej+1) ∧

∧k−1

j=1
(ej ∨ xj ∨ dj+1 ∨ ej+1) ∧

∧k

j=1
(xj ∨ fj) ∧

∧k

j=1
(xj ∨ fj)

Theorem (E., Lonsing, Widl 2013)

There are LDQ- resolution proofs for Ψk with O(k) clauses.
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Short LDQ-resolution proofs for Ψk (k ≥ 1)

Example (Ψ2 in QDIMACS format)

c k=2

p cnf 8 9

e 1 2 0

a 3 0

e 4 5 0

a 6 0

e 7 8 0

-1 -2 0

1 -3 -4 -5 0

2 3 -4 -5 0

4 -6 -7 -8 0

5 6 -7 -8 0

3 7 0

-3 7 0

6 8 0

-6 8 0

Derive (5 6 -7 0) from (5 6 -7 -8 0) and (6 8 0).

Derive (4 -6 -7 0) from (4 -6 -7 -8 0) and (-6 8 0).

Use both to derive (2 3 6∗ -7 0) from (2 3 -4 -5 0).
Observe that 4 < 6 and 5 < 6.

Similarly, derive (1 -3 6∗ -7 0).

Derive (2 3 6∗ 0) from (2 3 6∗ -7 0) and (3 7 0).

Derive (1 -3 6∗ 0) from (1 -3 6∗ -7 0) and (-3 7 0).

Use (-1 -2 0) to derive (3∗ 6∗ 0). Observe that 1 < 3,
1 < 6, 2 < 3 and 2 < 6.

Universal reduction applied to (3∗ 6∗ 0) results �.

This resolution strategy can be applied to Ψk for all k.
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LDQ-resolution in DepQBF: Some experimental results

Preprocessed benchmarks from QBF Evaluation 2012.

DepQBF with traditional Q-resolution solves more benchmarks:

QBFEVAL’12-pre (276 formulas)
DepQBF 120 (62 sat, 58 unsat)
DepQBF-LDQ 117 (62 sat, 55 unsat)

LDQ-resolution (DepQBF-LDQ) results in shorter proofs:

115 solved by both: DepQBF-LDQ DepQBF
Avg. assignments 13.7 × 106 14.4 × 106

Avg. backtracks 43,676 50,116
Avg. resolutions 573,245 899,931
Avg. learn.clauses 31,939 (taut: 5,571) 36,854
Avg. run time 51.77 57.78

Still missing: much more detailed experimental analysis.
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Outline

1 A resolution calculus for QBFs in PCNF

2 Long distance resolution

3 Gentzen/sequent systems for arbitrary QBFs
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Why yet another inference system?

Sequent systems have been introduced by G. Gentzen in 1934/35.

Theorem proving for “non-normal forms” are easily possible
(not only for QBFs; also for propositional/FO/non-classical logic).

Vast amount of proof-theoretical knowledge about them
(like, e.g., cut elimination).

Tableau systems (a variant of Gentzen systems) are often used in
implementations.
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Sequents

Sequent systems do not work on formulas, but on sequents.

Definition (Sequent)

A sequent S is an ordered pair of the form Γ ⊢ ∆, where Γ (antecedent)
and ∆ (succedent) are finite multisets of formulas. We write “⊢ ∆” or
“Γ ⊢” whenever Γ or ∆ is the empty sequence, respectively.

Intuitively, a sequent states that

“if all formulas in Γ are true, then at least one formula in ∆ is true.”

An example for a (true) sequent is:

Φ, Ψ1 ⊢ Ψ2, Φ
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The propositional rules of a sequent calculus for QBFs

Γ ⊢ ∆
Φ, Γ ⊢ ∆

wl
Γ ⊢ ∆

Γ ⊢ ∆, Φ
wr

Γ1, Φ, Φ, Γ2 ⊢ ∆

Γ1, Φ, Γ2 ⊢ ∆
cl

Γ ⊢ ∆1, Φ, Φ, ∆2

Γ ⊢ ∆1, Φ, ∆2
cr

Γ ⊢ ∆, Φ

¬Φ, Γ ⊢ ∆
¬l

Φ, Γ ⊢ ∆

Γ ⊢ ∆, ¬Φ
¬r

Φ, Ψ, Γ ⊢ ∆

Φ ∧ Ψ, Γ ⊢ ∆
∧l

Γ ⊢ ∆, Φ Γ ⊢ ∆, Ψ

Γ ⊢ ∆, Φ ∧ Ψ
∧r

Φ, Γ ⊢ ∆ Ψ, Γ ⊢ ∆

Φ ∨ Ψ, Γ ⊢ ∆
∨l

Γ ⊢ ∆, Φ, Ψ

Γ ⊢ ∆, Φ ∨ Ψ
∨r

Γ ⊢ ∆, Φ Ψ, Γ ⊢ ∆

Φ → Ψ, Γ ⊢ ∆
→l

Φ, Γ ⊢ ∆, Ψ

Γ ⊢ ∆, Φ → Ψ
→r
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Example: A sequent proof for ⊢ (¬(a ∨ b)) → (¬a ∧ ¬b)

⊢ (¬(a ∨ b)) → (¬a ∧ ¬b)
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Example: A sequent proof for ⊢ (¬(a ∨ b)) → (¬a ∧ ¬b)

¬(a ∨ b) ⊢ ¬a ∧ ¬b

⊢ (¬(a ∨ b)) → (¬a ∧ ¬b)
→r
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Example: A sequent proof for ⊢ (¬(a ∨ b)) → (¬a ∧ ¬b)

⊢ a ∨ b, ¬a ∧ ¬b

¬(a ∨ b) ⊢ ¬a ∧ ¬b
¬l

⊢ (¬(a ∨ b)) → (¬a ∧ ¬b)
→r
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Example: A sequent proof for ⊢ (¬(a ∨ b)) → (¬a ∧ ¬b)

⊢ a, b, ¬a ∧ ¬b

⊢ a ∨ b, ¬a ∧ ¬b
∨r

¬(a ∨ b) ⊢ ¬a ∧ ¬b
¬l

⊢ (¬(a ∨ b)) → (¬a ∧ ¬b)
→r
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Example: A sequent proof for ⊢ (¬(a ∨ b)) → (¬a ∧ ¬b)

⊢ a, b, ¬a ⊢ a, b, ¬b

⊢ a, b, ¬a ∧ ¬b
∧r

⊢ a ∨ b, ¬a ∧ ¬b
∨r

¬(a ∨ b) ⊢ ¬a ∧ ¬b
¬l

⊢ (¬(a ∨ b)) → (¬a ∧ ¬b)
→r
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Example: A sequent proof for ⊢ (¬(a ∨ b)) → (¬a ∧ ¬b)

a ⊢ a, b

⊢ a, b, ¬a
¬r

⊢ a, b, ¬b

⊢ a, b, ¬a ∧ ¬b
∧r

⊢ a ∨ b, ¬a ∧ ¬b
∨r

¬(a ∨ b) ⊢ ¬a ∧ ¬b
¬l

⊢ (¬(a ∨ b)) → (¬a ∧ ¬b)
→r
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Example: A sequent proof for ⊢ (¬(a ∨ b)) → (¬a ∧ ¬b)
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Example: A sequent proof for ⊢ (¬(a ∨ b)) → (¬a ∧ ¬b)

a ⊢ a
a ⊢ a, b

wr

⊢ a, b, ¬a
¬r

b ⊢ b
b ⊢ a, b

wr

⊢ a, b, ¬b
¬r

⊢ a, b, ¬a ∧ ¬b
∧r

⊢ a ∨ b, ¬a ∧ ¬b
∨r

¬(a ∨ b) ⊢ ¬a ∧ ¬b
¬l

⊢ (¬(a ∨ b)) → (¬a ∧ ¬b)
→r

The backward proof development stops at axioms a ⊢ a and b ⊢ b.
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The axioms and possible quantifier rules

The axioms: Φ ⊢ Φ Ax ⊥ ⊢ ⊥l ⊢ ⊤ ⊤r

Some possible quantifier rules:

Γ ⊢ ∆, Ψ{p/q}

Γ ⊢ ∆, ∀p Ψ
∀re

Ψ{p/q}, Γ ⊢ ∆

∃p Ψ, Γ ⊢ ∆
∃le

Ψ{p/ϕ}, Γ ⊢ ∆

∀p Ψ, Γ ⊢ ∆
∀lf

Γ ⊢ ∆, Ψ{p/ϕ}

Γ ⊢ ∆, ∃p Ψ
∃rf

Ψ{p/⊤}, Ψ{p/⊥}, Γ ⊢ ∆

∀p Ψ, Γ ⊢ ∆
∀ls

Γ ⊢ ∆, Ψ{p/⊤},Ψ{p/⊥}

Γ ⊢ ∆, ∃p Ψ
∃rs

Γ ⊢ ∆, Ψ{p/⊤} ∧ Ψ{p/⊥}

Γ ⊢ ∆, ∀p Ψ
∀rs

Ψ{p/⊤} ∨ Ψ{p/⊥}, Γ ⊢ ∆

∃p Ψ, Γ ⊢ ∆
∃ls

q does not occur as a free variable in the conclusion of ∀re / ∃le .
ϕ is a propositional formula.
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Sequent calculi for QBFs

Take the rules for propositional logic and add quantifier rules.

∀re , ∃le , ∀lf and ∃rf : Gqfe (Gqfe∗) is the (tree) calculus

∀re , ∃le , ∀lv and ∃rv : Restrict ϕ in ∀lf , ∃rf to a variable and ⊥, ⊤
Gqve (Gqve∗) is the (tree) calculus

∀re , ∃le , ∀ls and ∃rs : Gqse (Gqse∗) is the (tree) calculus

All these calculi are cut-free, i.e., they do not have the following rule:

Γ1 ⊢ ∆1, Ψ Ψ, Γ2 ⊢ ∆2

Γ1, Γ2 ⊢ ∆1, ∆2
cut

Ψ is the cut formula. The cut is propositional if the cut formula is.
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Sequent calculi for QBFs: Some simulation result

Proposition (E. 2012)

1 Gqse with propositional cut cannot p-simulate Gqve∗.

2 Gqve with propositional cut cannot p-simulate Gqfe∗.

3 Q-resolution (with proofs in dag form) cannot p-simulate Gqve∗.
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The basic proof search algorithm for QBFs in NNF

Based on DPLL (successful in SAT-/QBF-solving in (P)CNF)

Relatively simple extension for nonprenex QBFs in NNF
(implementation follows the semantics using s quantifier rules)

BOOLEAN split(QBF Φ in NNF) {

switch (simplify (Φ)): /* simplify works inside φ */

case ⊤: return True;

case ⊥: return False;

case (Φ1 ∨ Φ2): return (split(Φ1) ‖ split(Φ2));

case (Φ1 ∧ Φ2): return (split(Φ1) && split(Φ2));

case (QX Ψ): select x ∈ X;

if Q = ∃ return (split(∃X Ψ[x/⊥]) ‖ split(∃X Ψ[x/⊤]));

if Q = ∀ return (split(∀X Ψ[x/⊥]) && split(∀X Ψ[x/⊤]));

}
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Simplifying formulas

simplify(Φ): returns Φ′ simplified wrt some equivalences:

(a) ¬⊤ ⇒ ⊥; ¬⊥ ⇒ ⊤;

(b) ⊤ ∧ Φ ⇒ Φ; ⊥ ∧ Φ ⇒ ⊥; ⊤ ∨ Φ ⇒ ⊤; ⊥ ∨ Φ ⇒ Φ;

(c) (Qx Φ) ⇒ Φ, if Q ∈ {∀, ∃}, and x does not occur in Φ;

(d) ∀x (Φ ∧ Ψ) ⇒ (∀x Φ) ∧ (∀x Ψ);

(e) ∀x (Φ ∨ Ψ) ⇒ (∀x Φ) ∨ Ψ, whenever x does not occur in Ψ;

(f) ∃x (Φ ∨ Ψ) ⇒ (∃x Φ) ∨ (∃x Ψ);

(g) ∃x (Φ ∧ Ψ) ⇒ (∃x Φ) ∧ Ψ, whenever x does not occur in Ψ.

Rewritings (d)–(g) are known as miniscoping.
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Additional mechanisms

Basic procedure clearly not sufficient for competitive solver

Desirable extension: generalization of pruning techniques

Unit literal elimination

Pure literal elimination

Dependency-directed backtracking
(works for true and false subproblems)

Learning

➥ split looks like an implementation of a sequent calculus

➥ Extensions of split formalized as a sequent calculus (for NNF)

➥ Such a formalization is the basis of Martina Seidl’s solver qpro.
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Conclusion (for the second part)

We have seen different resolution concepts for QBFs in PCNF . . .

as well as sequent systems for arbitrary QBFs.

We classified calculi wrt their ability to allow for succinct proofs.

➥ What is next:

Learn how most of the deduction concepts can be used inside QBF solvers.
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