Reasoning Engines for Rigorous System Engineering

Block 3: Quantified Boolean Formulas and DepQBF

2. Basic Deduction Concepts for Quantified Boolean Formulas

Uwe Egly Florian Lonsing

Knowledge-Based Systems Group Institute of Information Systems Vienna University of Technology

A resolution calculus for QBFs in PCNF

2 Long distance resolution

Gentzen/sequent systems for arbitrary QBFs

Why do we need a resolution calculus for QBFs?

- We need a QSAT solver in our rapid implementation approach. Why not Q-resolution (Q-res)?
- Although you will usually not see it, but in nearly every QDPLL solver, there is Q-res inside.
- Some QDPLL solvers deliver Q-res clause proofs ("refutations") as certificates for unsatisfiability.
- Some even deliver Q-res cube "proofs" as certificates for satisfiability.
- From such proofs, one can generate witness functions (as mentioned earlier).

A resolution calculus for QBFs: The definition of resolvents

Definition (propositional resolvent)

Given two clauses C_1 and C_2 and a pivot variable p with $p \in C_1$ and $\neg p \in C_2$, resolution produces the resolvent $C_r = (C_1 \setminus \{p\}) \cup (C_2 \setminus \{\neg p\})$.

Definition (Q-resolution with existential pivot variable)

- Let C_1 , C_2 be non-tautological clauses where $v \in C_1$, $\neg v \in C_2$ for an \exists -variable v.
- Tentative Q-resolvent of C_1 and C_2 : $C_1 \otimes C_2 := (UR(C_1) \cup UR(C_2)) \setminus \{v, \neg v\}.$

• If $\{x, \neg x\} \subseteq C_1 \otimes C_2$ for some variable x, then no Q-resolvent exists.

• Otherwise, the non-tautological Q-resolvent is $C := C_1 \otimes C_2$.

A resolution calculus for QBFs: The quantification level

Definition (Quantification level)

Let Q be a sequence of quantifiers. Associate to each alternation its level as follows. The left-most quantifier block gets level 1, and each alternation increments the level.

Example (QBF with 4 quantification levels and 3 quantifier alternations) $\underbrace{\forall x_1 \forall x_2}_{\text{level 1}} \underbrace{\exists y_1 \exists y_2 \exists y_3}_{\text{level 2}} \underbrace{\forall x_3}_{\text{level 3}} \underbrace{\exists y_4}_{\text{level 4}} \varphi$ An ordering between variables is defined according to their occurrence in the quantifier prefix and extended to literals. For instance, $x_2 < y_4$ as well as $x_1 < \neg x_3$.

A resolution calculus for QBFs: Universal reduction

Definition (universal reduction (UR))

Given a clause C, UR on C produces the clause

 $UR(C) := C \setminus \{\ell \in C \mid q(\ell) = \forall \text{ and } \forall \ell' \in C \text{ with } q(\ell') = \exists : \ell' < \ell\},\$

where < is the linear variable ordering given by the quantifier prefix.

- Universal reduction deletes "trailing" universal literals from clauses.
- Clauses are shortened by UR.

Example

Given
$$\Phi := \forall y \exists x_1 \forall z \exists x_2 . (\underbrace{x_1 \lor z}_{C}) \land (\neg y \lor \neg x_1) \land (\neg y \lor x_2)$$
, we have
 $UR(C) := x_1.$

A resolution calculus for QBFs

Definition (Q-resolution calculus)

The Q-resolution (Q-res) calculus consists of the Q-resolution rule and the universal reduction rule.

Remark

- Resolution operations are only allowed over existential literals.
- **2** Tautological resolvents are never generated.

We will relax these requirements later on.

Theorem (Kleine Büning, Karpinski, Flögel, Inf. Comput., 1995)

A QBF in PCNF without tautological clauses is false iff there is a derivation of the empty clause \Box (= a refutation) in the Q-resolution calculus.

Example

Let Φ be $\exists a \forall x \exists b \forall y \exists c . C_1 \land \cdots \land C_6$ with

A Q-resolution refutation of Φ

Example (again)

Let Φ be $\exists a \forall x \exists b \forall y \exists c . C_1 \land \cdots \land C_6$ with

$$C_{1}: a \lor b \lor y \lor c \qquad C_{2}: a \lor x \lor b \lor y \lor \neg c$$

$$C_{3}: x \lor \neg b \qquad C_{4}: \neg y \lor c$$

$$C_{5}: \neg a \lor \neg x \lor b \lor \neg c \qquad C_{6}: \neg x \lor \neg b$$

A resolution calculus for QBFs (cont'd)

Is the following rule allowed/sound?

Definition (QU-resolution with universal pivot variable)

- Let C_1 , C_2 be non-tautological clauses where $v \in C_1$, $\neg v \in C_2$ for an \forall -variable v.
- Tentative QU-resolvent of C_1 and C_2 : $C_1 \otimes C_2 := (UR(C_1) \cup UR(C_2)) \setminus \{v, \neg v\}.$
- If $\{x, \neg x\} \subseteq C_1 \otimes C_2$ for some variable x, then no QU-resolvent exists.
- Otherwise, the non-tautological QU-resolvent is $C := C_1 \otimes C_2$.

A resolution calculus for QBFs (cont'd)

Is the following rule allowed/sound?

Definition (QU-resolution with universal pivot variable)

- Let C_1 , C_2 be non-tautological clauses where $v \in C_1$, $\neg v \in C_2$ for an \forall -variable v.
- Tentative QU-resolvent of C_1 and C_2 : $C_1 \otimes C_2 := (UR(C_1) \cup UR(C_2)) \setminus \{v, \neg v\}.$
- If $\{x, \neg x\} \subseteq C_1 \otimes C_2$ for some variable x, then no QU-resolvent exists.
- Otherwise, the non-tautological QU-resolvent is $C := C_1 \otimes C_2$.

YES. Q-resolution can be extended by this rule yielding QU-resolution!

A stronger resolution calculus for QBFs

Definition (QU-resolution calculus)

The Q-resolution (Q-res) calculus consists of the Q-resolution rule, the QU-resolution rule and the universal reduction rule.

- The QU-resolution calculus is a slight extension of the Q-resolution calculus, but . . .
- it has the potential to enable shorter proofs.
- We will demonstrate this in the following.

A hard class of formulas for Q-resolution

Definition (Class $(\Psi_k)_{k\geq 1}$ of unsatisfiable QBFs) $\Psi_{(k\geq 1)} := \exists d_1 \exists e_1 \forall \mathbf{x_1} \exists d_2 \exists e_2 \forall \mathbf{x_2} \cdots \exists d_k \exists e_k \forall \mathbf{x_k} \exists f_1 \cdots \exists f_k.$ $(\overline{d_1} \vee \overline{e_1}) \wedge$ (1) $(d_k \vee \overline{\mathbf{x}_k} \vee \overline{f_1} \vee \cdots \vee \overline{f_k}) \wedge$ (2) $(e_k \vee \mathbf{x}_k \vee \overline{f_1} \vee \cdots \vee \overline{f_k}) \wedge$ (3) $igwedge_{j=1}^{k-1} \left(d_j \lor \overline{x_j} \lor \overline{d_{j+1}} \lor \overline{e_{j+1}}
ight)$ Λ (4) $\bigwedge_{i=1}^{k-1} (e_j \lor \underline{x_j} \lor \overline{d_{j+1}} \lor \overline{e_{j+1}})$ \wedge (5) $\bigwedge_{j=1}^k (\overline{\mathbf{x}_j} \lor f_j) \quad \land$ (6) $\bigwedge_{i=1}^{k} (\mathbf{x}_{j} \lor f_{j})$ (7)

A hard class of formulas for Q-resolution

Theorem (Kleine Büning, Karpinski, Flögel, Inf. Comput., 1995) Any Q-resolution proof of Ψ_k has at least 2^k resolution steps.

Result is a bit surprising, because

- the existential part (in black) is Horn and
- propositional Horn clause sets have short (unit) resolution proofs.
- Short proofs are possible for Horn clause sets containing \forall variables.

Universal non-Horn part forces exponential proof length!

QU-resolution and the class $(\Psi_k)_{k\geq 1}$

- In general: QU-res allows to derive clauses which Q-res cannot derive.
- In particular for formula Ψ_k : QU-res allows to derive unit clauses.
- Key observation: unit clauses f_i $(1 \le i \le k)$ obtained by QU-resolution allow for short proofs of Ψ_k .

Proposition (Van Gelder 2012)

Every formula Ψ_k has a QU-resolution proof with $\mathcal{O}(k)$ resolution steps.

Short QU-res proofs for Ψ_k ($k \ge 1$)

Example (Ψ_2 in QDIMACS format)

c k=2 p cnf 8 9 e 1 2 0 a 3 0 e 4 5 0 a 6 0 e 7 8 0 -1 -2 0 1 -3 -4 -5 0

2 3 -4 -5 0

4 -6 -7 -8 0

5 6 -7 -8 0 3 7 0

-3 7 0

6 8 0 -6 8 0 • Derive new unit clauses from all the binary clauses by QU-resolution over universal variables. The result are two clauses f_1 and f_2 (7 0) and (8 0).

 Observe: the unit clauses resulting from the previous step cannot be derived by Q-res.

- We derive $(4 \ 0)$ and $(5 \ 0)$ by Q-resolutions and UR.
- Use the new unit clauses to successively shorten all the clauses of size four by unit resolution and universal reduction. Further unit clauses can be obtained this way.
- Finally the empty clause is derived using (-1 -2 0).
- This resolution strategy can be applied to Ψ_k for all k.

A resolution calculus for QBFs in $\ensuremath{\mathsf{PCNF}}$

Gentzen/sequent systems for arbitrary QBFs

Motivation

Resolution so far:

- Resolvents with existential or universal pivot variables
- Q(U)-resolvents are non-tautological
 (i.e., clause which does not contain v and ¬v for some variable v).

How do we continue?

- We extend the concept by allowing (certain) tautological resolvents
 - It was first used in the clause learning procedure of yquaffle (Zhang and Malik, 2002)
 - Recently it was formalized as a calculus (Balabanov and Jiang, 2012)
 - Implemented in the solver DepQBF (E., Lonsing, Widl 2013)
- We show that an exponential speed-up in proof length is possible.

Long distance Q-resolution: The basic idea

Definition

Two clauses *C* and *D* have distance $k \ge 1$ if there are literals ℓ_1, \ldots, ℓ_k such that, for all $1 \le i \le k$, literal ℓ_i occurs in *C* and the dual of ℓ_i occurs in *D*. If there is no such literal then the clauses have distance 0.

- The usual resolution rules require two parent clauses of distance 1.
- \blacksquare Tentatively, we allow two parent clauses of distance \geq 1, provided
 - the pivot (say ℓ_1) is existential,
 - 2 all other literals ℓ_2, \ldots, ℓ_k are universal, and
 - $\label{eq:linear_li$

A more precise description follows later.

Long distance Q-resolution: Some examples

 $\Phi: \quad \exists a \forall x \exists b \forall y \exists c. C_1 \land C_2 \land C_3 \land C_4$

$$\frac{a \lor x \lor \neg b \lor y \lor \neg c \quad \neg a \lor \neg x \lor \neg b \lor \neg c}{x^* \lor \neg b \lor y \lor \neg c} R$$

The two parent clauses have distance 2 (based on a and x).
The pivot variable is a, a < x and x* is a shorthand for x ∨ ¬x.

$$\frac{x^* \vee \neg b \vee \neg c \qquad b \vee \neg c}{x^* \vee \neg c} R$$

- The two parent clauses have distance 1 (based on b).
- The pivot variable is *b* and no level restriction is required here.

Long distance Q-resolution: Some examples (cont'd)

 $\Phi: \quad \exists a \forall x \exists b \forall y \exists c. C_1 \land C_2 \land C_3 \land C_4$

$$\frac{a \lor x \lor \neg b \lor y \lor \neg c \quad \neg a \lor \neg x \lor \neg b \lor \neg y \lor \neg c}{x^* \lor \neg b \lor y^* \lor \neg c} R$$

The two parent clauses have distance 3 (based on a, x and y).
The pivot variable is a and a < x as well as a < y holds.

$$\frac{a \lor x \lor \neg b \lor y \lor \neg c}{a \lor x^* \lor y^* \lor \neg c} R$$

The two parent clauses have distance 3 (based on b, x and y).

- The pivot variable is b, b < y, but $b \not< x$ hold.
- This is a faulty application of long distance resolution!

Long distance Q-resolution: The restriction on the pivot

$$\Phi: \quad \forall x \exists a. (\neg x \lor a) \land (x \lor \neg a)$$

- Φ is true! Simply set *a* to the same value as *x*.
- Without the restriction on the pivot, we can derive the empty clause!

$$\frac{\neg x \lor a \qquad x \lor \neg a}{\frac{x^*}{\Box} \quad UR} \quad R?$$

- The two parent clauses of R? have distance 2 (based on a and x).
- The pivot variable is a and $a \not< x$ holds.
- Ordering restrictions are important for correctness!

The long distance Q-resolution (LDQ) calculus for QBFs $_{\mbox{Notations}}$

- The \exists variable *p* is the pivot element of the resolutions.
- The variable *x* is universal.
- x^* is a shorthand for $x \vee \neg x$. x^* is called the merged literal.

• X^{I} , X^{r} are sets of universal literals (merged or unmerged), such that

- for each literal $m \in X^{l}$ (with variable x), it holds that if m is not a merged literal, then the dual of m is in X^{r} , and otherwise
- either of $x \in X^r$, $\neg x \in X^r$, $x^* \in X^r$, and
- X^r does not contain any additional literal.
- X^* contains the merged literals of each literal in X^{\prime} .

The long distance Q-resolution (LDQ) calculus for QBFs

Resolution rule R_1

$$\frac{C' \vee p \qquad C' \vee \neg p}{C' \vee C'} R_1$$

For all literals $m \in C'$ it holds that the dual of m is not in C^r . Resolution rule R_2

$$\frac{C' \vee p \vee X' \quad C' \vee \neg p \vee X'}{C' \vee C' \vee X^*} \ [R_2]$$

For all literals $m \in X^r$ it holds that p < m, for all literals $m \in C^l$ it holds that the dual of m is not in C^r .

Universal reduction rule UR

$$\frac{C \lor \mathbf{x'}}{C}$$
 [UR]

For $x' \in \{x, \neg x, x^*\}$ and for any \exists variable $e \in C$ it holds that e < x'.

Symmetric rules are omitted!

Examples for R_2 with $\Phi: \exists a \forall x \exists b \forall y \exists c. C_1 \land C_2 \land C_3 \land C_4$

$$\frac{a \lor x \lor \neg b \lor y \lor \neg c \quad \neg a \lor \neg x \lor \neg b \lor \neg c}{x^* \lor \neg b \lor y \lor \neg c} R_2$$

The two parent clauses have distance 2 (based on a and x).
The pivot variable is a and C^l = {¬b, y, ¬c} and C^r = {¬b, ¬c}.
a < x, X^l = {x}, X^r = {¬x} and X^{*} = {x*}.

$$\frac{x^* \vee \neg b \vee y \vee \neg c \quad b \vee \neg y \vee \neg c}{x^* \vee y^* \vee \neg c} R_2$$

The two parent clauses have distance 2 (based on b and y).
The pivot variable is b and C^l = {x*, ¬c} and C^r = {¬c}.
b < y, X^l = {y}, X^r = {¬y} and X* = {y*}.
Since x* is not in X^l or X^r, b < y is sufficient for correctness.

An LDQ-resolution proof of Φ

$$\Phi: \exists a \forall x \exists b \forall y \exists c. C_1 \land C_2 \land C_3 \land C_4$$

$$\frac{(C_1) \qquad (C_2)}{\underbrace{a \lor x \lor \neg b \lor y \lor \neg c \qquad \neg a \lor \neg x \lor \neg b \lor \neg c}_{X^* \lor \neg b \lor y \lor \neg c} R \qquad (C_3)}{\underbrace{\frac{x^* \lor \neg b \lor y \lor \neg c}_{X^* \lor y^* \lor \neg c}_{X^* \lor y^* \lor \neg c} R \qquad (C_4)}_{X^* \lor y^* \lor \neg c} R$$

Short LDQ-resolution proofs of Ψ_k

Definition (Class $(\Psi_k)_{k\geq 1}$ of unsatisfiable QBFs from Kleine Büning op. cit.) $\Psi_{(k\geq 1)} := \exists d_1 \exists e_1 \forall x_1 \exists d_2 \exists e_2 \forall x_2 \cdots \exists d_k \exists e_k \forall x_k \exists f_1 \cdots \exists f_k.$

$$\begin{array}{ccc} (\overline{d_1} \lor \overline{e_1}) & \wedge \\ (d_k \lor \overline{x_k} \lor \overline{f_1} \lor \dots \lor \overline{f_k}) & \wedge & (e_k \lor x_k \lor \overline{f_1} \lor \dots \lor \overline{f_k}) & \wedge \\ \bigwedge_{j=1}^{k-1} (d_j \lor \overline{x_j} \lor \overline{d_{j+1}} \lor \overline{e_{j+1}}) & \wedge & \bigwedge_{j=1}^{k-1} (e_j \lor x_j \lor \overline{d_{j+1}} \lor \overline{e_{j+1}}) & \wedge \\ & \bigwedge_{j=1}^k (\overline{x_j} \lor f_j) & \wedge & \bigwedge_{j=1}^k (x_j \lor f_j) \end{array}$$

Theorem (E., Lonsing, Widl 2013)

There are LDQ- resolution proofs for Ψ_k with O(k) clauses.

Short LDQ-resolution proofs for Ψ_k ($k \ge 1$)

Example (Ψ_2 i	n QDIMACS format)
c k=2 p cnf 8 9	■ Derive (5 6 -7 0) from (5 6 -7 -8 0) and (6 8 0).
e 1 2 0	Derive $(4 - 6 - 7 0)$ from $(4 - 6 - 7 - 8 0)$ and $(-6 8 0)$.
a 3 0 e 4 5 0 a 6 0	■ Use both to derive (2 3 6^* -7 0) from (2 3 -4 -5 0). Observe that 4 < 6 and 5 < 6.
e 7 8 0	■ Similarly, derive (1 <mark>-3 6</mark> * -7 0).
-1 -2 0 1 <mark>-3</mark> -4 -5 0	■ Derive (2 3 6* 0) from (2 3 6* -7 0) and (3 7 0).
2 3 -4 -5 0	Derive $(1 -3 6^* 0)$ from $(1 -3 6^* -7 0)$ and $(-3 7 0)$.
4 -6 -7 -8 0 5 6 -7 -8 0 3 7 0	■ Use (-1 -2 0) to derive ($3^* 6^* 0$). Observe that 1 < 3, 1 < 6, 2 < 3 and 2 < 6.
-3 70	• Universal reduction applied to $(3^* 6^* 0)$ results \Box .
680 -680	• This resolution strategy can be applied to Ψ_k for all k .

LDQ-resolution in DepQBF: Some experimental results

- Preprocessed benchmarks from QBF Evaluation 2012.
- DepQBF with traditional Q-resolution solves more benchmarks:

QBFEVAL'12-pre (276 formulas)				
DepQBF	120 (62 sat, 58 unsat)			
DepQBF-LDQ	117 (62 sat, 55 unsat)			

LDQ-resolution (DepQBF-LDQ) results in shorter proofs:

115 solved by both:	DepQBF-LDQ	DepQBF
Avg. assignments	$13.7 imes10^6$	$14.4 imes10^{6}$
Avg. backtracks	43,676	50,116
Avg. resolutions	573,245	899,931
Avg. learn.clauses	31,939 (taut: 5,571)	36,854
Avg. run time	51.77	57.78

Still missing: much more detailed experimental analysis.

A resolution calculus for QBFs in PCNF

3 Gentzen/sequent systems for arbitrary QBFs

Why yet another inference system?

Sequent systems have been introduced by G. Gentzen in 1934/35.

- Theorem proving for "non-normal forms" are easily possible (not only for QBFs; also for propositional/FO/non-classical logic).
- Vast amount of proof-theoretical knowledge about them (like, e.g., cut elimination).
- Tableau systems (a variant of Gentzen systems) are often used in implementations.

Sequents

Sequent systems do not work on formulas, but on sequents.

Definition (Sequent)

A sequent S is an ordered pair of the form $\Gamma \vdash \Delta$, where Γ (antecedent) and Δ (succedent) are finite multisets of formulas. We write " $\vdash \Delta$ " or " $\Gamma \vdash$ " whenever Γ or Δ is the empty sequence, respectively.

Intuitively, a sequent states that

"if all formulas in Γ are true, then at least one formula in Δ is true."

An example for a (true) sequent is:

$$\Phi,\,\Psi_1\vdash\Psi_2,\,\Phi$$

The propositional rules of a sequent calculus for QBFs

$$\begin{array}{cccc} \frac{\Gamma \vdash \Delta}{\Phi, \Gamma \vdash \Delta} & wl & & \frac{\Gamma \vdash \Delta}{\Gamma \vdash \Delta, \Phi} & wr \\ \\ \frac{\Gamma_{1}, \Phi, \Phi, \Gamma_{2} \vdash \Delta}{\Gamma_{1}, \Phi, \Gamma_{2} \vdash \Delta} & cl & & \frac{\Gamma \vdash \Delta_{1}, \Phi, \Phi, \Delta_{2}}{\Gamma \vdash \Delta_{1}, \Phi, \Delta_{2}} & cr \\ \\ \frac{\Gamma \vdash \Delta, \Phi}{\neg \Phi, \Gamma \vdash \Delta} & \neg l & & \frac{\Phi, \Gamma \vdash \Delta}{\Gamma \vdash \Delta, \neg \Phi} & \neg r \\ \\ \frac{\Phi, \Psi, \Gamma \vdash \Delta}{\Phi \lor \Psi, \Gamma \vdash \Delta} & \land l & & \frac{\Gamma \vdash \Delta, \Phi}{\Gamma \vdash \Delta, \Phi \lor \Psi} \land r \\ \\ \\ \frac{\Gamma \vdash \Delta, \Phi}{\Phi \lor \Psi, \Gamma \vdash \Delta} & \rightarrow l & & \frac{\Phi, \Gamma \vdash \Delta, \Psi}{\Gamma \vdash \Delta, \Phi \lor \Psi} \rightarrow r \end{array}$$

$$\overline{\vdash (\neg(a \lor b)) \to (\neg a \land \neg b)}$$

$$\frac{\overline{\neg(a \lor b) \vdash \neg a \land \neg b}}{\vdash (\neg(a \lor b)) \to (\neg a \land \neg b)} \to r$$

$$\frac{\overline{\vdash a \lor b, \neg a \land \neg b}}{\neg (a \lor b) \vdash \neg a \land \neg b} \neg l \\ \vdash (\neg (a \lor b)) \rightarrow (\neg a \land \neg b) \rightarrow r$$

$$\frac{ \begin{array}{c} \vdash a, b, \neg a \land \neg b \\ \vdash a \lor b, \neg a \land \neg b \\ \hline \neg (a \lor b) \vdash \neg a \land \neg b \\ \hline \vdash (\neg (a \lor b)) \rightarrow (\neg a \land \neg b) \end{array} \lor r$$

$$\frac{\overline{\vdash a, b, \neg a} \qquad \overline{\vdash a, b, \neg b}}{\frac{\vdash a, b, \neg a \land \neg b}{\vdash a \lor b, \neg a \land \neg b} \lor r} \land r$$

$$\frac{\frac{\vdash a, b, \neg a \land \neg b}{\vdash a \lor b, \neg a \land \neg b} \lor r}{\neg (a \lor b) \vdash \neg a \land \neg b} \neg r$$

$$\frac{\overline{a \vdash a, b}}{\vdash a, b, \neg a} \neg r \qquad \overline{\vdash a, b, \neg b} \\ \overline{\vdash a, b, \neg a \land \neg b} \\ \frac{\overline{\vdash a \lor b, \neg a \land \neg b}}{\neg (a \lor b) \vdash \neg a \land \neg b} \neg l \\ \overline{\neg (a \lor b))} \rightarrow (\neg a \land \neg b) \\ \rightarrow r$$

$$\frac{\frac{a \vdash a}{a \vdash a, b} wr}{\frac{\vdash a, b, \neg a}{\neg r} \frac{\vdash a, b, \neg b}{\neg a, b, \neg b} \wedge r} \wedge r$$

$$\frac{\frac{\vdash a, b, \neg a \wedge \neg b}{\vdash a \vee b, \neg a \wedge \neg b} \vee r}{\frac{\neg (a \vee b) \vdash \neg a \wedge \neg b}{\neg (a \vee b)) \rightarrow (\neg a \wedge \neg b)} \rightarrow r$$

$$\frac{\frac{a \vdash a}{a \vdash a, b} wr}{\vdash a, b, \neg a} \neg r \qquad \frac{\overline{b \vdash a, b}}{\vdash a, b, \neg b} \neg r \\ \frac{\frac{a \vdash a, b}{\vdash a, b, \neg a} \nabla r}{\vdash a \lor b, \neg a \land \neg b} \lor r \\ \frac{\frac{\neg a \lor b}{\vdash a \lor b, \neg a \land \neg b} \nabla r}{\neg (a \lor b) \vdash \neg a \land \neg b} \neg l \\ \frac{\neg (a \lor b)) \rightarrow (\neg a \land \neg b)}{\vdash (\neg (a \lor b)) \rightarrow (\neg a \land \neg b)} \rightarrow r$$

$$\frac{\frac{a \vdash a}{a \vdash a, b} wr}{\vdash a, b, \neg a} \neg r \qquad \frac{\frac{b \vdash b}{b \vdash a, b} wr}{\vdash a, b, \neg b} \neg r} \\ \frac{\frac{a \vdash a}{b \vdash a, b} vr}{\vdash a, b, \neg a \land \neg b} \lor r \\ \frac{\frac{a \vdash a}{b \vdash a, b} vr}{\neg (a \lor b) \vdash \neg a \land \neg b} \neg l} \\ \frac{\frac{a \vdash a}{b \vdash a, b} vr}{\vdash (\neg (a \lor b)) \rightarrow (\neg a \land \neg b)} \rightarrow r$$

The backward proof development stops at axioms $a \vdash a$ and $b \vdash b$.

The axioms and possible quantifier rules

The axioms: $\Phi \vdash \Phi Ax \quad \perp \vdash \perp I \quad \vdash \top \top r$

Some possible quantifier rules:

$$\begin{array}{ll} \frac{\Gamma \vdash \Delta, \Psi\{p/q\}}{\Gamma \vdash \Delta, \forall p \Psi} \ \forall r_{e} & \qquad \frac{\Psi\{p/q\}, \Gamma \vdash \Delta}{\exists p \Psi, \Gamma \vdash \Delta} \ \exists I_{e} \\ \\ \frac{\Psi\{p/\varphi\}, \Gamma \vdash \Delta}{\forall p \Psi, \Gamma \vdash \Delta} \ \forall I_{f} & \qquad \frac{\Gamma \vdash \Delta, \Psi\{p/\varphi\}}{\Gamma \vdash \Delta, \exists p \Psi} \ \exists r_{f} \\ \\ \frac{\Psi\{p/T\}, \Psi\{p/\bot\}, \Gamma \vdash \Delta}{\forall p \Psi, \Gamma \vdash \Delta} \ \forall I_{s} & \qquad \frac{\Gamma \vdash \Delta, \Psi\{p/T\}, \Psi\{p/\bot\}}{\Gamma \vdash \Delta, \exists p \Psi} \ \exists r_{s} \\ \\ \frac{\Gamma \vdash \Delta, \Psi\{p/T\} \land \Psi\{p/\bot\}}{\Gamma \vdash \Delta, \forall p \Psi} \ \forall r_{s} & \qquad \frac{\Psi\{p/T\} \lor \Psi\{p/\bot\}, \Gamma \vdash \Delta}{\exists p \Psi, \Gamma \vdash \Delta} \ \exists I_{s} \end{array}$$

q does not occur as a free variable in the conclusion of $\forall r_e / \exists l_e$. φ is a propositional formula.

Sequent calculi for QBFs

Take the rules for propositional logic and add quantifier rules.

- $\forall r_e, \exists l_e, \forall l_f \text{ and } \exists r_f: \text{ Gqfe } (\text{Gqfe}^*) \text{ is the (tree) calculus}$
- ∀r_e, ∃I_e, ∀I_v and ∃r_v: Restrict φ in ∀I_f, ∃r_f to a variable and ⊥, ⊤
 Gqve (Gqve*) is the (tree) calculus
- $\forall r_e, \exists l_e, \forall l_s \text{ and } \exists r_s: \text{ Gqse} (\text{Gqse}^*) \text{ is the (tree) calculus}$

All these calculi are cut-free, i.e., they do not have the following rule:

$$\frac{\Gamma_{1}\vdash\Delta_{1},\,\Psi\quad\Psi,\,\Gamma_{2}\vdash\Delta_{2}}{\Gamma_{1},\,\Gamma_{2}\vdash\Delta_{1},\,\Delta_{2}} \,\, \textit{cut}$$

 Ψ is the cut formula. The cut is propositional if the cut formula is.

Sequent calculi for QBFs: Some simulation result

Proposition (E. 2012)

- **Q** Gqse with propositional cut cannot p-simulate Gqve*.
- Q Gqve with propositional cut cannot p-simulate Gqfe^{*}.
- **③** *Q*-resolution (with proofs in dag form) cannot p-simulate Gqve^{*}.

The basic proof search algorithm for QBFs in NNF

- Based on DPLL (successful in SAT-/QBF-solving in (P)CNF)
- Relatively simple extension for nonprenex QBFs in NNF (implementation follows the semantics using s quantifier rules)

```
BOOLEAN split(QBF \Phi in NNF) {

switch (simplify (\Phi)): /* simplify works inside \phi */

case \top: return True;

case \bot: return False;

case (\Phi_1 \lor \Phi_2): return (split(\Phi_1) || split(\Phi_2));

case (\Phi_1 \land \Phi_2): return (split(\Phi_1) && split(\Phi_2));

case (QX \Psi): select x \in X;

if Q = \exists return (split(\exists X \Psi[x/\bot]) || split(\exists X \Psi[x/\top]));

if Q = \forall return (split(\forall X \Psi[x/\bot]) && split(\forall X \Psi[x/\top]));

}
```

Simplifying formulas

simplify(Φ): returns Φ' simplified wrt some equivalences:

(a)
$$\neg \top \Rightarrow \bot$$
; $\neg \bot \Rightarrow \top$;
(b) $\top \land \Phi \Rightarrow \Phi$; $\bot \land \Phi \Rightarrow \bot$; $\top \lor \Phi \Rightarrow \top$; $\bot \lor \Phi \Rightarrow \Phi$;
(c) $(Qx \Phi) \Rightarrow \Phi$, if $Q \in \{\forall, \exists\}$, and x does not occur in Φ ;
(d) $\forall x (\Phi \land \Psi) \Rightarrow (\forall x \Phi) \land (\forall x \Psi)$;
(e) $\forall x (\Phi \lor \Psi) \Rightarrow (\forall x \Phi) \lor \Psi$, whenever x does not occur in Ψ ;
(f) $\exists x (\Phi \lor \Psi) \Rightarrow (\exists x \Phi) \lor (\exists x \Psi)$;
(g) $\exists x (\Phi \land \Psi) \Rightarrow (\exists x \Phi) \land \Psi$, whenever x does not occur in Ψ .

Rewritings (d)–(g) are known as miniscoping.

Additional mechanisms

- Basic procedure clearly not sufficient for competitive solver
- Desirable extension: generalization of pruning techniques
 - Unit literal elimination
 - Pure literal elimination
 - Dependency-directed backtracking (works for true and false subproblems)
 - Learning
- split looks like an implementation of a sequent calculus
- Extensions of split formalized as a sequent calculus (for NNF)
- Such a formalization is the basis of Martina Seidl's solver qpro.

- We have seen different resolution concepts for QBFs in PCNF ...
- as well as sequent systems for arbitrary QBFs.
- We classified calculi wrt their ability to allow for succinct proofs.

What is next:

Learn how most of the deduction concepts can be used inside QBF solvers.