SAT

ReRiSE'14 Winter School
 Reasoning for Rigorous System Enineering

http://fmv.jku.at/rerise14

Johannes Kepler University
Linz, Austria

Armin Biere
Institute for Formal Models and Verification
http://fmv.jku.at

optimization of if-then-else chains

original C code
\Downarrow
if (!a) \{
if (! b) h(); \Rightarrow
else 9() ;
$\}$ else $f() ;$

```
if(!a && !b) h();
```

if(!a \&\& !b) h();
else if(!a) g();
else if(!a) g();
else f();

```
else f();
```

 1f(!.b) h(); \(\Rightarrow\)
 How to check that these two versions are equivalent?

1. represent procedures as independent boolean variables

$$
\begin{array}{cc}
\text { original }:= & \text { optimized }:= \\
\text { if } \neg a \wedge \neg b \text { then } h & \text { if } a \text { then } f \\
\text { else if } \neg a \text { then } g & \text { else if } b \text { then } g \\
\text { else } f & \text { else } h
\end{array}
$$

2. compile if-then-else chains into boolean formulae

$$
\text { compile }(\text { if } x \text { then } y \text { else } z) \equiv(x \wedge y) \vee(\neg x \wedge z)
$$

3. check equivalence of boolean formulae

$$
\text { compile(original) } \Leftrightarrow \text { compile(optimized) }
$$

$$
\begin{aligned}
\text { original } & \equiv \text { if } \neg a \wedge \neg b \text { then } h \text { else if } \neg a \text { then } g \text { else } f \\
& \equiv(\neg a \wedge \neg b) \wedge h \vee \neg(\neg a \wedge \neg b) \wedge \text { if } \neg a \text { then } g \text { else } f \\
& \equiv(\neg a \wedge \neg b) \wedge h \vee \neg(\neg a \wedge \neg b) \wedge(\neg a \wedge g \vee a \wedge f)
\end{aligned}
$$

optimized \equiv if a then f else if b then g else h

$\equiv a \wedge f \vee \neg a \wedge$ if b then g else h
$\equiv a \wedge f \vee \neg a \wedge(b \wedge g \vee \neg b \wedge h)$

$$
(\neg a \wedge \neg b) \wedge h \vee \neg(\neg a \wedge \neg b) \wedge(\neg a \wedge g \vee a \wedge f) \quad \Leftrightarrow \quad a \wedge f \vee \neg a \wedge(b \wedge g \vee \neg b \wedge h)
$$

Reformulate it as a satisfiability (SAT) problem:

Is there an assignment to a, b, f, g, h, which results in different evaluations of original and optimized?
or equivalently:
Is the boolean formula compile(original) \nleftarrow compile(optimized) satisfiable?
such an assignment would provide an easy to understand counterexample

Note: by concentrating on counterexamples we moved from Co-NP to NP (this is just a theoretical note and not really important for applications)

$b \vee a \wedge c$

$(a \vee b) \wedge(b \vee c)$
equivalent?
$b \vee a \wedge c$
\Leftrightarrow
$(a \vee b) \wedge(b \vee c)$

SAT (Satisfiability) the classical NP complete Problem:

Given a propositional formula f over n propositional variables $V=\{x, y, \ldots\}$.
Is there are an assignment $\sigma: V \rightarrow\{0,1\}$ with $\sigma(f)=1$?

SAT belongs to NP

There is a non-deterministic Touring-machine deciding SAT in polynomial time:
guess the assignment σ (linear in n), calculate $\sigma(f)$ (linear in $|f|$)

Note: on a real (deterministic) computer this would still require 2^{n} time

SAT is complete for NP (see complexity / theory class)

Implications for us:

general SAT algorithms are probably exponential in time (unless NP = P)

Conjunctive Normal Form

Definition

a formula in Conjunctive Normal Form (CNF) is a conjunction of clauses

$$
C_{1} \wedge C_{2} \wedge \ldots \wedge C_{n}
$$

each clause C is a disjunction of literals

$$
C=L_{1} \vee \ldots \vee L_{m}
$$

and each literal is either a plain variable x or a negated variable \bar{x}.

Example $\quad(a \vee b \vee c) \wedge(\bar{a} \vee \bar{b}) \wedge(\bar{a} \vee \bar{c})$

Note 1: two notions for negation: in \bar{x} and \neg as in $\neg x$ for denoting negation.

Note 2: the original SAT problem is actually formulated for CNF

Note 3: SAT solvers mostly also expect CNF as input

Assumption: we only have conjunction, disjunction and negation as operators.
a formula is in Negation Normal Form (NNF), if negations only occur in front of variables
\Rightarrow all internal nodes in the formula tree are either ANDs or ORs
linear algorithms for generating NNF from an arbitrary formula
often NNF generations includes elimination of other non-monotonic operators:

$$
\text { NNF of } \quad f \leftrightarrow g \quad \text { is NNF of } \quad f \wedge g \vee \bar{f} \wedge \bar{g}
$$

in this case the result can be exponentially larger (see parity example later).

```
Formula
formula2nnf (Formula f, Boole sign)
{
    if (is_variable (f))
        return sign ? new_not_node (f) : f;
    if (op (f) == AND || op (f) == OR)
        {
            l = formula2nnf (left_child (f), sign);
            r = formula2nnf (right_child (f), sign);
            flipped_op = (op (f) == AND) ? OR : AND;
            return new_node (sign ? flipped_op : op (f), l, r);
        }
    else
        {
            assert (op (f) == NOT);
            return formula2nnf (child (f), !sign);
        }
}
```

```
Formula
formula2cnf_aux (Formula f)
{
    if (is_cnf (f))
        return f;
    if (op (f) == AND)
        {
            l = formula2cnf_aux (left_child (f));
            r = formula2cnf_aux (right_child (f));
            return new_node (AND, l, r);
        }
    else
    {
            assert (op (f) == OR);
            l = formula2cnf_aux (left_child (f));
            r = formula2cnf_aux (right_child (f));
            return merge_cnf (l, r);
    }
}
```

```
Formula
formula2cnf (Formula f)
{
    return formula2cnf_aux (formula2nnf (f, 0));
}
```

```
Formula
```

Formula
merge_cnf (Formula f, Formula g)
merge_cnf (Formula f, Formula g)
{
{
res = new_constant_node (TRUE);
res = new_constant_node (TRUE);
for (c = first_clause (f); c; c = next_clause (f, c))
for (c = first_clause (f); c; c = next_clause (f, c))
for (d = first_clause (g); d; d = next_clause (g, d))
for (d = first_clause (g); d; d = next_clause (g, d))
res = new_node (AND, res, new_node (OR, c, d));
res = new_node (AND, res, new_node (OR, c, d));
return res;
return res;
}

```
}
```


DAG may be exponentially more succinct than expanded Tree

Examples: adder circuit, parity, mutual exclusion

```
Boole
parity (Boole a, Boole b, Boole c, Boole d, Boole e,
        Boole f, Boole g, Boole h, Boole i, Boole j)
{
    tmp0 = b ? !a : a;
    tmp1 = c ? !tmp0 : tmp0;
    tmp2 = d ? !tmp1 : tmp1;
    tmp3 = e ? !tmp2 : tmp2;
    tmp4 = f ? !tmp3 : tmp3;
    tmp5 = g ? !tmp4 : tmp4;
    tmp6 = h ? !tmp5 : tmp5;
    tmp7 = i ? !tmp6 : tmp6;
    return j ? !tmp7 : tmp7;
}
```

Eliminiate the tmp... variables through substitution.

What is the size of the DAG vs the Tree representation?

- through caching of results in algorithms operating on formulas (examples: substitution algorithm, generation of NNF for non-monotonic ops)
- when modeling a system: variables are introduced for subformulae (then these variables are used multiple times in the toplevel formula)
- structural hashing: detects structural identical subformulae (see Signed And Graphs later)
- equivalence extraction: e.g. BDD sweeping, Stålmarcks Method (we will look at both techniques in more detail later)

CNF

1. for each non input circuit signal s generate a new variable x_{s}
2. for each gate produce complete input / output constraints as clauses
3. collect all constraints in a big conjunction
the transformation is satisfiability equivalent: the result is satisfiable iff and only the original formula is satisfiable
not equivalent in the classical sense to original formula: it has new variables
extract satisfying assignment for original formula, from one of the result (just project satisfying assignment onto the original variables)

Negation:

$$
\begin{aligned}
x \leftrightarrow \bar{y} & \Leftrightarrow(x \rightarrow \bar{y}) \wedge(\bar{y} \rightarrow x) \\
& \Leftrightarrow(\bar{x} \vee \bar{y}) \wedge(y \vee x)
\end{aligned}
$$

Disjunction:

$$
\begin{aligned}
x \leftrightarrow(y \vee z) & \Leftrightarrow(y \rightarrow x) \wedge(z \rightarrow x) \wedge(x \rightarrow(y \vee z)) \\
& \Leftrightarrow(\bar{y} \vee x) \wedge(\bar{z} \vee x) \wedge(\bar{x} \vee y \vee z)
\end{aligned}
$$

Conjunction: $\quad x \leftrightarrow(y \wedge z) \Leftrightarrow(x \rightarrow y) \wedge(x \rightarrow z) \wedge((y \wedge z) \rightarrow x)$
$\Leftrightarrow \quad(\bar{x} \vee y) \wedge(\bar{x} \vee z) \wedge(\overline{(y \wedge z)} \vee x)$
$\Leftrightarrow(\bar{x} \vee y) \wedge(\bar{x} \vee z) \wedge(\bar{y} \vee \bar{z} \vee x)$

Equivalence:

$$
\begin{aligned}
x \leftrightarrow(y \leftrightarrow z) & \Leftrightarrow(x \rightarrow(y \leftrightarrow z)) \wedge((y \leftrightarrow z) \rightarrow x) \\
& \Leftrightarrow(x \rightarrow((y \rightarrow z) \wedge(z \rightarrow y)) \wedge((y \leftrightarrow z) \rightarrow x) \\
& \Leftrightarrow(x \rightarrow(y \rightarrow z) \wedge \wedge(x \rightarrow(z \rightarrow y)) \wedge((y \leftrightarrow z) \rightarrow x) \\
& \Leftrightarrow(\bar{x} \vee \bar{y} \vee z) \wedge(\bar{x} \vee \bar{z} \vee y) \wedge((y \leftrightarrow z) \rightarrow x) \\
& \Leftrightarrow(\bar{x} \vee \bar{y} \vee z) \wedge(\bar{x} \vee \bar{z} \vee y) \wedge(((y \wedge z) \vee(\bar{y} \wedge \bar{z})) \rightarrow x) \\
& \Leftrightarrow(\bar{x} \vee \bar{y} \vee z) \wedge(\bar{x} \vee \bar{z} \vee y) \wedge((y \wedge z) \rightarrow x) \wedge((\bar{y} \wedge \bar{z}) \rightarrow x) \\
& \Leftrightarrow(\bar{x} \vee \bar{y} \vee z) \wedge(\bar{x} \vee \bar{z} \vee y) \wedge(\bar{y} \vee \bar{z} \vee x) \wedge(y \vee z \vee x)
\end{aligned}
$$

- goal is smaller CNF (less variables, less clauses)
- extract multi argument operands (removes variables for intermediate nodes)
- half of AND, OR node constraints can be removed for unnegated nodes a node occurs negated if it has an ancestor which is a negation half of the constraints determine parent assignment from child assignment those are unnecessary if node is not used negated [PlaistedGreenbaum'86] and then [ChambersManoliosVroon'09]
- structural circuit optimizations like in the ABC tool from Berkeley
- however might be simulated on CNF level [JärvisaloBiereHeule-TACAS'10]
- compact technology mapping based encoding [EénMishchenkoSörensson’07]
- encoding directly into CNF is hard, so we use intermediate levels:

1. application level
2. bit-precise semantics world-level operations: bit-vector theory
3. bit-level representations such as AIGs
or vectors of AIGs
4. CNF

- encoding application level formulas into word-level:
as generating machine code
- word-level to bit-level: bit-blasting similar to hardware synthesis
- encoding "logical" constraints is another story
addition of 4-bit numbers x, y with result s also 4-bit: $\quad s=x+y$

$$
\left[s_{3}, s_{2}, s_{1}, s_{0}\right]_{4}=\left[x_{3}, x_{2}, x_{1}, x_{0}\right]_{4}+\left[y_{3}, y_{2}, y_{1}, y_{0}\right]_{4}
$$

$$
\begin{aligned}
& {\left[s_{3}, \cdot\right]_{2}=\operatorname{FullAdder}\left(x_{3}, y_{3}, c_{2}\right)} \\
& {\left[s_{2}, c_{2}\right]_{2}=\operatorname{FullAdder}\left(x_{2}, y_{2}, c_{1}\right)} \\
& {\left[s_{1}, c_{1}\right]_{2}=\operatorname{FullAdder}\left(x_{1}, y_{1}, c_{0}\right)} \\
& {\left[s_{0}, c_{0}\right]_{2}=\operatorname{FullAdder}\left(x_{0}, y_{0}, \text { false }\right)}
\end{aligned}
$$

where

$$
\begin{aligned}
{[s, o]_{2} } & =\text { FullAdder }(x, y, i) \quad \text { with } \\
s & =x \text { xor } y \text { xor } i \\
o & =(x \wedge y) \vee(x \wedge i) \vee(y \wedge i)=((x+y+i) \geq 2)
\end{aligned}
$$

- widely adopted bit-level intermediate representation
- see for instance our AIGER format http://fmv.jku.at/aiger
- used in Hardware Model Checking Competition (HWMCC)
- also used in the structural track in SAT competitions
- many companies use similar techniques
- basic logical operators: conjunction and negation
- DAGs: nodes are conjunctions, negation/sign as edge attribute bit stuffing: signs are compactly stored as LSB in pointer
- automatic sharing of isomorphic graphs, constant time (peep hole) simplifications
- or even SAT sweeping, full reduction, etc ...

negation/sign are edge attributes
not part of node
x xor $y \equiv(\bar{x} \wedge y) \vee(x \wedge \bar{y}) \equiv \overline{\overline{(\bar{x} \wedge y)} \wedge \overline{(x \wedge \bar{y})}}$

```
typedef struct AIG AIG;
struct AIG
{
    enum Tag tag; /* AND, VAR */
    void *data[2];
    int mark, level; /* traversal */
    AIG *next; /* hash collision chain */
};
#define sign_aig(aig) (1 & (unsigned) aig)
#define not_aig(aig) ((AIG*) (1 ^ (unsigned) aig))
#define strip_aig(aig) ((AIG*) (~1 & (unsigned) aig))
#define false_aig ((AIG*) 0)
#define true_aig ((AIG*) 1)
```

assumption for correctness:

```
sizeof(unsigned) == sizeof(void*)
```


bit-vector of length 16 shifted by bit-vector of length 4

- Tseitin's construction suitable for most kinds of "model constraints"
- assuming simple operational semantics: encode an interpreter
- small domains: one-hot encoding large domains: binary encoding
- harder to encode properties or additional constraints
- temporal logic / fix-points
- environment constraints
- example for fix-points / recursive equations: $\quad x=(a \vee y), \quad y=(b \vee x)$
- has unique least fix-point $\quad x=y=(a \vee b)$
- and unique largest fix-point $x=y=$ true but unfortunately
- only largest fix-point can be (directly) encoded in SAT
- given a set of literals $\left\{l_{1}, \ldots l_{n}\right\}$
- constraint the number of literals assigned to true
- $\left|\left\{l_{1}, \ldots, l_{n}\right\}\right| \geq k \quad$ or $\quad\left|\left\{l_{1}, \ldots, l_{n}\right\}\right| \leq k \quad$ or $\quad\left|\left\{l_{1}, \ldots, l_{n}\right\}\right|=k$
- multiple encodings of cardinality constraints
- naïve encoding exponential: at-most-two quadratic, at-most-three cubic, etc.
- quadratic $O(k \cdot n)$ encoding goes back to Shannon
- linear $O(n)$ parallel counter encoding [Sinz'05]
- for an $O(n \cdot \log n)$ encoding see Prestwich's chapter in our Handbook of SAT
- generalization Pseudo-Boolean constraints (PB), e.g. $2 \cdot \bar{a}+\bar{b}+c+\bar{d}+2 \cdot e \geq 3$ actually used to handle MaxSAT in SAT4J for configuration in Eclipse

$$
2 \leq\left|\left\{l_{1}, \ldots, l_{9}\right\}\right| \leq 3
$$

"then" edge downward, "else" edge to the right

- dates back to the 50ies:
original version is resolution based (less successful)
- idea: case analysis (try $x=0,1$ in turn and recurse)
- most successful SAT solvers
works for very large instances
- recent (≤ 20 years) optimizations:
backjumping, learning, UIPs, dynamic splitting heuristics, fast data structures (we will have a look at each of them)
- basis for first (less successful) resolution based DP
- can be extended to first order logic
- helps to explain learning

Resolution Rule

$$
C \cup\{v\} \quad D \cup\{\neg v\}
$$

$$
\{v, \neg v\} \cap C=\{v, \neg v\} \cap D=0
$$

$C \cup D$

Read: resolving the clause $C \cup\{v\}$ with the clause $D \cup\{\neg v\}$, both above the line, on the variable v, results in the clause $D \cup C$ below the line.

Usage of such rules: if you can derive what is above the line (premise) then you are allowed to deduce what is below the line (conclusion).

Theorem. (premise satisfiable \Rightarrow conclusion satisfiable)

$$
\sigma(C \cup\{v\})=\sigma(D \cup\{\neg v\})=1 \quad \Rightarrow \quad \sigma(C \cup D)=1
$$

Proof.

let $c \in C, d \in D$ with $\quad(\sigma(c)=1$ or $\sigma(v)=1) \quad$ and $\quad(\sigma(d)=1$ or $\sigma(\neg v)=1)$
if $\quad \sigma(c)=1$ or $\sigma(d)=1 \quad$ conclusion follows immediately
otherwise $\quad \sigma(v)=\sigma(\neg v)=1 \quad \Rightarrow$ contradiction

Completeness of Resolution Rule

Theorem. (conclusion satisfiable \Rightarrow premise satisfiable)

$$
\sigma(C \cup D)=1 \quad \Rightarrow \quad \exists \sigma^{\prime} \quad \text { with } \quad \sigma^{\prime}(C \cup\{v\})=\sigma^{\prime}(D \cup\{\neg v\})=1
$$

Proof.
with out loss of generality pick $c \in C$ with $\sigma(c)=1$
define $\quad \sigma^{\prime}(x)= \begin{cases}0 & \text { if } x=v \\ \sigma(x) & \text { else }\end{cases}$
since v and $\neg v$ do not occur in C, we still have $\sigma^{\prime}(C)=1$ and thus $\sigma^{\prime}(C \cup\{v\})=1$
by definition $\sigma^{\prime}(\neg v)=1$ and thus $\sigma^{\prime}(D \cup\{\neg v\})=1$

Idea: use resolution to existentially quantify out variables

1. if empty clause found then terminate with result unsatisfiable
2. find variables which only occur in one phase (only positive or negative)
3. remove all clauses in which these variables occur
4. if no clause left then terminate with result satisfiable
5. choose x as one of the remaining variables with occurrences in both phases
6. add results of all possible resolutions on this variable
7. remove all trivial clauses and all clauses in which x occurs
8. continue with 1.
check whether XOR is weaker than OR, i.e. validity of:

$$
a \vee b \rightarrow(a \oplus b)
$$

which is equivalent to unsatisfiability of the negation:

$$
(a \vee b) \wedge \neg(a \oplus b)
$$

since negation of XOR is XNOR (equivalence):

$$
(a \vee b) \wedge(a \leftrightarrow b)
$$

we end up checking the following CNF for satisfiability:

$$
(a \vee b) \wedge(\neg a \vee b) \wedge(a \vee \neg b)
$$

$$
(a \vee b) \wedge(\neg a \vee b) \wedge(a \vee \neg b)
$$

initially we can skip 1. - 4. of the algorithm and choose $x=b$ in 5.
in 6. we resolve $(\neg a \vee b)$ with $(a \vee \neg b)$ and $(a \vee b)$ with $(a \vee \neg b)$ both on b and add the results $(a \vee \neg a)$ and $(a \vee a)$:

$$
(a \vee b) \wedge(\neg a \vee b) \wedge(a \vee \neg b) \wedge(a \vee \neg a) \wedge(a \vee a)
$$

the trivial clause $(a \vee \neg a)$ and clauses with ocurrences of b are removed:

$$
(a \vee a)
$$

in 2. we find a to occur only positive and in 3. the remaining clause is removed
the test in 4. succeeds and the CNF turns out to be satisfiable (thus the original formula is invalid - not a tautology)

Proof. in three steps:
(A) show that termination criteria are correct
(B) each transformation preserves satisfiability
(C) each transformation preserves unsatisfiability

Ad (A):
an empty clause is an empty disjunction, which is unsatisfiable
if literals occur only in one phase assign those to $1 \Rightarrow$ all clauses satisfied

CNF transformations preserve satisfiability:

removing a clause does not change satisfiability
thus only adding clauses could potentially not preserve satisfiability
the only clauses added are the results of resolution
correctness of resolution rule shows:
if the original CNF is satisfiable, then the added clause are satisfiable (even with the same satisfying assignment)

CNF transformations preserve unsatisfiability:

adding a clause does not change unsatisfiability
thus only removing clauses could potentially not preserve unsatisfiability
trivial clauses $(v \vee \neg v \vee \ldots)$ are always valid and can be removed
let f be the CNF after removing all trivial clauses (in step 7.)
let g be the CNF after removing all clauses in which x occurs (after step 7.)
we need to show (f unsat $\Rightarrow g$ unsat), or equivalently (g sat $\Rightarrow f$ sat)
the latter can be proven as the completeness proof for the resolution rule (see next slide)

If we interpret \cup as disjunction and clauses as formulae, then

$$
\left(C_{1} \vee x\right) \wedge \ldots \wedge\left(C_{k} \vee x\right) \wedge\left(D_{1} \vee \neg x\right) \wedge \ldots \wedge\left(D_{l} \vee \neg x\right)
$$

is, via distributivity law, equivalent to

$$
(\underbrace{\left(C_{1} \wedge \ldots \wedge C_{k}\right)}_{C} \vee x) \wedge(\underbrace{\left(D_{1} \wedge \ldots \wedge D_{l}\right)}_{D} \vee \neg x)
$$

and the same proof applies as for the completeness of the resolution rule.

Note: just using the completeness of the resolution rule alone does not work, since those σ^{\prime} derived for multiple resolutions are formally allowed to assign different values for the resolution variable.

- if variables have many occurences, then many resolutions are necessary
- in the worst x and $\neg x$ occur in half of the clauses ...
- ... then the number of clauses increases quadratically
- clauses become longer and longer
- unfortunately in real world examples the CNF explodes
(we might latter see how BDDs can be used to overcome some of these problems)
- How to obtain the satisfying assignment efficiently (counter example)?
- resolution based version often called DP, second version DPLL (DP after [DavisPutnam60] and DPLL after [DavisLogemannLoveland62])
- it eliminates variables through case analysis: time vs space
- only unit resolution used (also called boolean constraint propagation)
- case analysis is on-the-fly:
cases are not elaborated in a predefined fixed order, but ...
... only remaining crucial cases have to be considered
- allows sophisticated optimizations
a unit clause is a clause with a single literal
in CNF a unit clause forces its literal to be assigned to 1
unit resolution is an application of resolution, where one clause is a unit clause
also called boolean constraint propagation

Unit-Resolution Rule

$$
C \cup\{\neg l\} \quad\{l\}
$$

$$
\{l, \neg l\} \cap C=0
$$

C
here we identify $\neg \neg v$ with v for all variables v.
check whether XNOR is weaker than AND, i.e. validity of:

$$
a \wedge b \rightarrow(a \leftrightarrow b)
$$

which is equivalent to unsatisfiability of the CNF (exercise)

$$
a \wedge b \wedge(a \vee b) \wedge(\neg a \vee \neg b)
$$

adding clause obtained from unit resolution on a results in

$$
a \wedge b \wedge(a \vee b) \wedge(\neg a \vee \neg b) \wedge(\neg b)
$$

removing clauses containing a or $\neg a$

$$
b \wedge(\neg b)
$$

unit resolution on b results in an empty clause and we conclude unsatisfiability.

- if unit resolution produces a unit, e.g. resolving $(a \vee \neg b)$ with b produces a, continue unit resolution with this new unit
- often this repeated application of unit resolution is also called unit resolution
- unit resolution + removal of subsumed clauses never increases size of CNF

$$
C \text { subsumes } D \quad: \Leftrightarrow \quad C \subseteq D
$$

a unit(-clause) l subsumes all clauses in which l occurs in the same phase

- boolean constraint propagation (BCP): given a unit l, remove all clauses in which l occurs in the same phase, and remove all literals $\neg l$ in clauses, where it occurs in the opposite phase (the latter is unit resolution)

1. apply repeated unit resolution and removal of all subsumed clauses (BCP)
2. if empty clause found then return unsatisfiable
3. find variables which only occur in one phase (only positive or negative)
4. remove all clauses in which these variables occur (pure literal rule)
5. if no clause left then return satisfiable
6. choose x as one of the remaining variables with occurrences in both phases
7. recursively call DPLL on current CNF with the unit clause $\{x\}$ added
8. recursively call DPLL on current CNF with the unit clause $\{\neg x\}$ added
9. if one of the recursive calls returns satisfiable return satisfiable
10. otherwise return unsatisfiable

$$
(\neg a \vee b) \wedge(a \vee \neg b) \wedge(\neg a \vee \neg b)
$$

Skip 1. - 6., and choose $x=a$. First recursive call:

$$
(\neg a \vee b) \wedge(a \vee \neg b) \wedge(\neg a \vee \neg b) \wedge a
$$

unit resolution on a and removal of subsumed clauses gives

$$
b \wedge(\neg b)
$$

BCP gives empty clause, return unsatisfiable. Second recursive call:

$$
(\neg a \vee b) \wedge(a \vee \neg b) \wedge(\neg a \vee \neg b) \wedge \neg a
$$

BCP gives $\neg b$, only positive recurrence of b left, return satisfiable (satisfying assignment $\{a \mapsto 0, b \mapsto 0\}$)

Theorem.

$$
f(x) \equiv x \wedge f(1) \vee \bar{x} \wedge f(0)
$$

Proof.

Let σ be an arbitrary assignment to variables in f including x
case $\sigma(x)=0$:

$$
\sigma(f(x))=\sigma(f(0))=\sigma(0 \wedge f(1) \vee 1 \wedge f(0))=\sigma(x \wedge f(1) \vee \bar{x} \wedge f(0))
$$

case $\sigma(x)=1$:

$$
\sigma(f(x))=\sigma(f(1))=\sigma(1 \wedge f(1) \vee 0 \wedge f(0))=\sigma(x \wedge f(1) \vee \bar{x} \wedge f(0))
$$

first observe: $x \wedge f(x)$ is satisfiable iff $x \wedge f(1)$ is satisfiable
similarly, $\bar{x} \wedge f(x)$ is satisfiable iff $\bar{x} \wedge f(0)$ is satisfiable
then use expansion theorem of Shannon:
$f(x)$ satisfiable iff $\bar{x} \wedge f(0)$ or $x \wedge f(1)$ satisfiable iff $\bar{x} \wedge f(x)$ or $x \wedge f(x)$ satisfiable rest follows along the lines of the the correctness proof for resolution based DP

- each variable is marked as unassigned, false, or true $(\{X, 0,1\})$
- no explicit resolution:
- when a literal is assigned visit all clauses where its negation occurs
- find those clauses which have all but one literal assigned to false
- assign remaining non false literal to true and continue
- decision:
- heuristically find a variable that is still unassigned
- heuristically determine phase for assignment of this variable
- decision level is the depth of recursive calls (= \#nested decisions)
- the trail is a stack to remember order in which variables are assigned
- for each decision level the old trail height is saved on the control stack
- undoing assignments in backtracking:
- get old trail height from control stack
- unassign all variables up to the old trail height

Variables

Decide

Assign

BCP

Variables

Decide

Variables

Clauses

Example cont.

- static heuristics:
- one linear order determined before solver is started
- usually quite fast, since only calculated once
- can also use more expensive algorithms
- dynamic heuristics
- typically calculated from number of occurences of literals (in unsatisfied clauses)
- rather expensive, since it requires traversal of all clauses (or more expensive updates in BCP)
- recently, second order dynamic heuristics (VSIDS in Chaff \Rightarrow see learning)
- view CNF as a graph:
clauses as nodes, edges between clauses with same variable
- a cut is a set of variables that splits the graph in two parts
- recursively find short cuts that cut of parts of the graph
- static or dynamically order variables according to the cuts

Cut Width Algorithm

```
int
sat (CNF cnf)
{
    SetOfVariables cut = generate_good_cut (cnf);
    CNF assignment, left, right;
    left = cut_off_left_part (cut, cnf);
    right = cut_off_right_part (cut, cnf);
    forall_assignments (assignment, cut)
    {
        if (sat (apply (assignment, left)) && sat (apply (assignment, right)))
            return 1;
    }
    return 0;
}
```

- resembles cuts in circuits when CNF is generated with Tseitin transformation
- ideally cuts have constant or logarithmic size ...
- for instance in tree like circuits
- so the problem is reconvergence: the same signal / variable is used multiple times
- ... then satisfiability actually becomes polynomial (see exercise)

A clause is called positive if it contains a positive literal.

A clause is called negative if all its literals are negative.

A clause is a Horn clause if contains at most one positive literal.

CNF is in Horn Form iff all clauses are Horn clause (Prolog without negation)

Order assignments point-wise: $\quad \sigma \leq \sigma^{\prime} \quad$ iff $\quad \sigma(x) \leq \sigma^{\prime}(x)$ for all $x \in V$

Horn Form with only positive clauses has minimal satisfying assignment.

Minimal satisfying assignment is obtained by BCP (polynomial).

A Horn Form is satisfiable iff the minimal assignments of its positive part satisfies all its negative clauses as well.

- CNF in Horn Form: use above specialized fast algorithm
- non Horn: split on literals which occurs positive in non Horn clauses
- actually choose variable which occurs most often in such clauses
- this gradually transforms non Horn CNF into Horn Form
- main heuristic in SAT solver SATO
- Note: In general, BCP in DP prunes search space by avoiding assignments incompatible to minimal satisfying assingment for the Horn part of the CNF.

$$
\begin{array}{|l|l|}
\hline \text { non Horn part of CNF } & \text { Horn part of CNF } \\
\hline
\end{array}
$$

- Dynamic Largest Individual Sum (DLIS)
- fastest dynamic first order heuristic (e.g. GRASP solver)
- choose literal (variable + phase) which occurs most often
- ignore satisfied clauses
- requires explicit traversal of CNF (or more expensive BCP)
- look-forward heuristics (e.g. SATZ or MARCH solver) failed literals, probing
- do trial assignments and BCP for all unassigned variables (both phases)
- if BCP leads to conflict, force toggled assignment of current trial decision
- skip trial assignments implied by previous trial assignments (removes a factor of $|V|$ from the runtime of one decision search)
- decision variable maximizes number of propagated assignments
- distribution of SAT solver run-time shows heavy tail behaviour
- for satisfiable instances the solver may get stuck in the unsatisfiable part
- even if the search space contains a large satisfiable part
- often it is a good strategy to abandon the current search and restart
- restart after the number of decisions reached a restart limit
- avoid to run into the same dead end
- by randomization (either on the decision variable or its phase)
- and/or just keep all the learned clauses
- for completeness dynamically increase restart limit

378 restarts in 104408 conflicts


```
int inner = 100, outer = 100;
int restarts = 0, conflicts = 0;
for (; ;)
    {
        ... // run SAT core loop for 'inner' conflicts
        restarts++;
        conflicts += inner;
        if (inner >= outer)
        {
            outer *= 1.1;
            inner = 100;
        }
        else
        inner *= 1.1;
    }
```

70 restarts in 104448 conflicts


```
unsigned
luby (unsigned i)
{
    unsigned k;
    for (k = 1; k < 32; k++)
        if (i == (1 << k) - 1)
            return 1 << (k - 1);
        for (k = 1;; k++)
        if ((1<< (k - 1)) <= i && i < (1 << k) - 1)
            return luby (i - (1 << (k-1)) + 1);
}
limit = 512 * luby (++restarts);
... // run SAT core loop for 'limit' conflicts
```

[Knuth'12]

$$
\begin{aligned}
&\left(u_{1}, v_{1}\right):=(1,1) \\
&\left(u_{n+1}, v_{n+1}\right):=\left(u_{n} \&-u_{n}=v_{n} ?\left(u_{n}+1,1\right):\left(u_{n}, 2 v_{n}\right)\right) \\
&(1,1),(2,1),(2,2),(3,1),(4,1),(4,2),(4,4),(5,1), \ldots
\end{aligned}
$$

- phase assignment:
- assign decision variable to 0 or 1 ?
- the only thing that matters in satisfiable instances
- "phase saving" as in RSat:
- pick phase of last assignment
(if not forced to, do not toggle assignment)
- initially use statically computed phase (typically LIS)
- rapid restarts: varying restart interval with bursts of restarts
- not ony theoretically avoids local minima
- works nicely together with phase saving

If y has never been used to derive a conflict, then skip \bar{y} case.

Immediately jump back to the \bar{x} case - assuming x was used.
$\left(\begin{array}{ll}-3 & 1\end{array}\right)$
(-32)
$(-1-2 \not 又)$
$(-1-2)$
(-12)
$(1-2)$
(12)

Split on -3 first (bad decision).

Split on -1 and get first conflict.
(-31)
(-32)
$(->-2>X)$
$(->-2 才)$
$(X 12)$
$(1-2)$
(12)

Regularly backtrack and assign 1 to get second conflict.

Backtrack to root, assign 3 and derive same conflicts.
(-3 1)

Assignment -3 does not contribute to conflict.

So just backjump to root before assigning 1.

- backjumping helps to recover from bad decisions
- bad decisions are those that do not contribute to conflicts
- without backjumping same conflicts are generated in second branch
- with backjumping the second branch of bad decisions is just skipped
- particularly useful for unsatisfiable instances
- in satisfiable instances good decisions will guide us to the solution
- with backjumping many bad decisions increase search space roughly quadratically instead of exponentially with the number of bad decisions
- the implication graph maps inputs to the result of resolutions
- backward from the empty clause all contributing clauses can be found
- the variables in the contributing clauses are contributing to the conflict
- important optimization, since we only use unit resolution
- generate graph only for resolutions that result in unit clauses
- the assignment of a variable is result of a decision or a unit resolution
- therefore the graph can be represented by saving the reasons for assignments with each assigned variable

(edges of directed hyper graphs may have multiple source and target nodes)

- graph becomes an ordinary (non hyper) directed graph
- simplifies implementation:
- store a pointer to the reason clause with each assigned variable
- decision variables just have a null pointer as reason
- decisions are the roots of the graph
- can we learn more from a conflict?
- backjumping does not fully avoid the occurrence of the same conflict
- the same (partial) assignments may generate the same conflict
- generate conflict clauses and add them to CNF
- the literals contributing to a conflict form a partial assignment
- this partial assignment is just a conjunction of literals
- its negation is a clause (implied by the original CNF)
- adding this clause avoids this partial assignment to happen again

[MarquesSilvaSakallah'96: GRASP]

- observation: current decision always contributes to conflict
- otherwise BCP would have generated conflict one decision level lower
- conflict clause has (exactly one) literal assigned on current decision level
- instead of backtracking
- generate and add conflict clause
- undo assignments as long conflict clause is empty or unit clause (in case conflict clause is the empty clause conclude unsatisfiability)
- resulting assignment from unit clause is called conflict driven assignment

```
-3}
3 -1 0
3-2 0
-4 -1 0
-4 -2 0
-3 4 0
3-4 0
-3 5 6 0
3-5 0
    A clause is a zero terminated list of integers.
3-6 0
4 5 6 0
We use a version of the DIMACS format.
Variables are represented as positive integers.
Integers represent literals.
Subtraction means negation.
A clause is a zero terminated list of integers.
```

CNF has a good cut made of variables 3 and 4 (cf Exercise $4+5$). (but we are going to apply DP with learning to it)

unit clause -3 is generated as learned clause and we backtrackt to $l=0$

since -3 has a real unit clause as reason, an empty conflict clause is learned
$l=0 \quad$ (no unit clause originally, so no implications)

since FIRST clause was used to derive 2 , conflict clause is $(1-3)$
backtrack to $l=1$ (smallest level for which conflict clause is a unit clause)
$l=0 \quad$ (no unit clause originally, so no implications)

learned conflict clause is the unit clause 1
backtrack to decision level $l=0$

$$
l=0
$$

unit
since the learned clause is the empty clause, conclude unsatisfiability
$l=0 \quad$ (no unit clause originally, so no implications)

learn the unit clause -3 and BACKJUMP to decision level $l=0$

finally the empty clause is derived which proves unsatisfiability

```
int
sat (Solver solver)
{
    Clause conflict;
    for (;;)
        {
            if (bcp_queue_is_empty (solver) && !decide (solver))
                return SATISFIABLE;
            conflict = deduce (solver);
            if (conflict && !backtrack (solver, conflict))
                return UNSATISFIABLE;
    }
}
```

```
int
backtrack (Solver solver, Clause conflict)
{
    Clause learned_clause; Assignment assignment; int new_level;
    if (decision_level(solver) == 0)
        return 0;
    analyze (solver, conflict);
    learned_clause = add (solver);
    assignment = drive (solver, learned_clause);
    enqueue_bcp_queue (solver, assignment);
    new_level = jump (solver, learned_clause);
    undo (solver, new_level);
    return 1;
}
```

- conflict clause: obtained by backward resolving empty clause with reasons
- start at clause which has all its literals assigned to false
- resolve one of the false literals with its reason
- invariant: result still has all its literals assigned to false
- continue until user defined size is reached
- gives a nice correspondence between resolution and learning in DP
- allows to generate a resolution proof from a DP run
- implemented in RELSAT solver [BayardoSchrag'97]

a simple cut always exists: set of roots (decisions) contributing to the conflict

UIP = articulation point in graph decomposition into biconnected components (simply a node which, if removed, would disconnect two parts of the graph)

- can be found by graph traversal in the order of made assignments
- trail respects this order
- traverse reasons of variables on trail starting with conflict
- count "open paths" (initially size of clause with only false literals)
- if all paths converged at one node, then UIP is found
- decision of current decision level is a UIP and thus a sentinel
- assume a non decision UIP is found
- this UIP is part of a potential cut
- graph traversal may stop (everything behind the UIP is ignored)
- negation of the UIP literal constitutes the conflict driven assignment
- may start new clause generation (UIP replaces conflict)
- each conflict may generate multiple learned clauses
- however, using only the first UIP encountered seems to work best

1st UIP learned clause increases chance of backjumping ("pulls in" as few decision levels as possible)

- intuitively is is important to localize the search (cf cutwidth heuristics)
- cuts for learned clauses may only include UIPs of current decision level
- on lower decision levels an arbitrary cut can be chosen
- multiple alternatives
- include all the roots contributing to the conflict
- find minimal cut (heuristically)
- cut off at first literal of lower decision level (works best)

Two step algorithm:

1. mark all variables in 1 st UIP clause
2. remove literals with all antecedent literals also marked

Correctness:

- removal of literals in step 2 are self subsuming resolution steps.
- implication graph is acyclic.

Confluence: produces a unique result.

[MiniSAT 1.13]

Four step algorithm:

1. mark all variables in 1st UIP clause
2. for each candidate literal: search implication graph
3. start at antecedents of candidate literals
4. if search always terminates at marked literals remove candidate

Correctness and Confluence as in local version!!!

Optimization: terminate early with failure if new decision level is "pulled in"

		solved instances		time in hours		space in GB		out of memory		deleted literals
MiniSAtwithpreprocessing	recur	788	9\%	170	11\%	198	49\%	11	89\%	33\%
	local	774	7\%	177	8\%	298	24\%	72	30\%	16\%
	none	726		192		392		103		
MiniSatwithoutpreprocessing	recur	705	13\%	222	8\%	232	59\%	11	94\%	37\%
	local	642	3\%	237	2\%	429	24\%	145	26\%	15\%
	none	623		242		565		196		
$\begin{gathered} \text { PICOSAT } \\ \text { with } \\ \text { preprocessing } \end{gathered}$	recur	767	10\%	182	13\%	144	45\%	10	60\%	31\%
	local	745	6\%	190	9\%	188	29\%	10	60\%	15\%
	none	700		209		263		25		
$\begin{gathered} \text { PicoSAT } \\ \text { without } \\ \text { preprocessing } \end{gathered}$	recur	690	6\%	221	8\%	105	63\%	10	68\%	33\%
	local	679	5\%	230	5\%	194	31\%	10	68\%	14\%
	none	649		241		281		31		
altogether	recur	2950	9\%	795	10\%	679	55\%	42	88\%	34\%
	local	2840	5\%	834	6\%	1109	26\%	237	33\%	15\%
	none	2698		884		1501		355		

10 runs for each configuration with 10 seeds for random number generator

		MiniSAT					
			with preprocessing				

[MoskewiczMadiganZhaoZhangMalik-DAC'01: CHAFF]

■ "second order" because it involves statistics about the search

- Variable State Independent Decaying Sum (VSIDS) decision heuristic (implemented in Chaff, Limmat, MiniSAT, PicoSAT, and many more)
- VSIDS just counts the occurrences of a literals in conflict clauses
- literal/variable with maximal count (score) is chosen (from a priority queue ordered by score)
- score is multiple by a factor $f<1$ after a certain number of conflicts occurred (this is the "decaying" part and also called rescoring)
- emphasizes (negation of) literals contributing recently to conflicts (localization)

[Biere-SAT'08]

- VSIDS score can be normalized to the interval $[0,1]$ as follows:
- pick a decay factor f per conflict: typically $f=0.95$
- each variable is punished by this decay factor at every conflict
- if a variable is involved in conflict, add $1-f$ to score

$$
s, f \leq 1, \quad \text { then } \quad s^{\prime} \leq \underbrace{\text { decay in any case }}_{\text {increment if involved }} \underbrace{+1-f}_{\text {in }} \leq f+1-f=1
$$

with s old score before conflict, s^{\prime} new score after conflict

- recomputing score of all variables at each conflict is costly
- linear in the number of variables, e.g. millions
- particularly, because number of involved variabels \ll number of variables
- Chaff: precision of score traded for faster decay
- increment score of involved variables by 1
- decay score of all variables every 256 conflicts by halfing the score
- sort priority queue after decay and not at every conflict
- MiniSAT uses Exponential VSIDS
- also just update score of involved variables
- dynamically adjust increment: $\quad \delta^{\prime}=\delta \cdot \frac{1}{f} \quad$ (typically increment δ by 5%)
- use floating point representation of score
- "rescore" to avoid overflow in regular intervals
- EVSIDS linearly related to NVSIDS
consider again only one variable with score sequence s_{n} resp. S_{n}

$$
\delta_{k}= \begin{cases}1 & \text { if involved in } k \text {-th conflict } \\ 0 & \text { otherwise }\end{cases}
$$

$$
i_{k}=(1-f) \cdot \delta_{k}
$$

$$
\begin{aligned}
& \left.s_{n}=\left(\ldots\left(i_{1} \cdot f+i_{2}\right) \cdot f+i_{3}\right) \cdot f \cdots\right) \cdot f+i_{n}=\sum_{k=1}^{n} i_{k} \cdot f^{n-k}=(1-f) \cdot \sum_{k=1}^{n} \delta_{k} \cdot f^{n-k} \\
& S_{n}=\frac{f^{-n}}{(1-f)} \cdot s_{n}=\frac{f^{-n}}{(1-f)} \cdot(1-f) \cdot \sum_{k=1}^{n} \delta_{k} \cdot f^{n-k}=\sum_{k=1}^{n} \delta_{k} \cdot f^{-k}
\end{aligned}
$$

[GoldbergNovikov-DATE'02]

- observation:
- recently added conflict clauses contain all the good variables of VSIDS
- the order of those clauses is not used in VSIDS
- basic idea:
- simply try to satisfy recently learned clauses first
- use VSIDS to chose the decision variable for one clause
- if all learned clauses are satisfied use other heuristics
- intuitively obtains another order of localization (no proofs yet)
- results are mixed (by some authors considered to be more robust than just VSIDS)
- variable move to front strategy (VMTF)
- Siege SAT Solver [Ryan'04]
- easy and cheap to implement with doubly linked list
- need pointer to last picked variable in queue
- reset during back-tracking
- rather aggressive
- clause move to front strategy (CMTF)
- HaifaSAT [GershanStrichman'08] variant keeps clauses in a queue
- queue can also be used to find less important clauses to throw away
- refined version in PrecoSAT [Biere'09]
- SAT solver picks unassigned variable with largest score as next decision
- consider only change of the score s_{i} of one variable v during i-th conflict
- let $\beta_{i}=1$ if v is bumped in the i-th conflict otherwise 0
- some possible variable score update functions:
- static $\quad s_{i+1}=s_{i} \quad$ initialize score statically and do not change it
- inc $s_{i+1}=s_{i}+\beta_{i} \quad$ this is in essence DLIS from Grasp
- vmtf $\quad s_{i+1}=i$
- sum $\quad s_{i+1}=s_{i}+i \cdot \beta_{i}$
emphasis on recent conflicts
unpublished
- vsids $\quad s_{i+1}=d \cdot s_{i}+\beta_{i}$
decay $d \in[0,1)$
e.g. $d=0.95$
- evsids $\quad s_{i+1}=s_{i}+g_{i} \cdot \beta_{i}, \quad g_{i+1}=e \cdot g_{i} \quad$ factor $e \in[1,2)$
e.g. $e=1.05$
- avg $s_{i+1}=s_{i}+\beta_{i} \cdot\left(i-s_{i}\right) / 2 \quad$ another filter function
- last four share the idea of "low-pass filtering" of the involvement of variables
- for this interpretation see our SAT'08 paper and the video
- important practical issue: number of bumped variables is usually small

- should not keep all learned clauses forever
- some of them become useless
- for instance subsumed or satisfied under learned units
- were but are not anymore relevant to current search focus
- memory consumption / BCP speed
- throw unimportant learned clauses away (reduce)
- in regular intervals (controlled by geometric, Luby, arithmetic scheme)
- size heuristics: discard long clauses
- least recently used (LRU): as in HW cache (see also CMTF)
- clause scores with bumping scheme as for VSDIS (BerkMin)
- glucose level: number decision levels in learned clause called also LBD in original paper [AudemardLaurentSimon'09]
- similar to look-ahead heuristics: polynomially bounded search
- may be recursively applied (however, is often too expensive)
- Stålmarck's Method
- works on triplets (intermediate form of the Tseitin transformation):

$$
x=(a \wedge b), y=(c \vee d), z=(e \oplus f) \text { etc. }
$$

- generalization of BCP to (in)equalities between variables
- test rule splits on the two values of a variable
- Recursive Learning (Kunz \& Pradhan)
- (originally) works on circuit structure (derives implications)
- splits on different ways to justify a certain variable value

1. BCP over (in)equalities: $\frac{x=y \quad z=(x \oplus y)}{z=0} \quad \frac{x=0 \quad z=(x \vee y)}{z=y} \quad$ etc.
2. structural rules: $\frac{x=(a \vee b) y=(a \vee b)}{x=y}$ etc.

\[

\]

Assume $x=0$, BCP and derive (in)equalities E_{0}, then assume $x=1$, BCP and derive (in)equalities E_{1}. The intersection of E_{0} and E_{1} contains the (in)equalities valid in any case.

$x=0$		$x=1$	
\Downarrow		\Downarrow	
$y=0$	$y=1$	$y=0$	$y=1$
\Downarrow	\Downarrow	\Downarrow	\Downarrow
E_{00}	E_{01}	E_{10}	E_{11}
E_{0}		E_{1}	

(we do not show the (in)equalities that do not change)

- recursive application
- depth of recursion bounded by number of variables
- complete procedures (determines satisfiability or unsatisfiability)
- for a fixed (constant) recursion depth k polynomial!
- k-saturation:
- apply split rule on recursively up to depth k on all variables
- 0-saturation: apply all rules accept test rule (just BCP: linear)
- 1-saturation: apply test rule (not recursively) for all variables (until no new (in)equalities can be derived)
- circuits

output 0 implies middle input 0 indirectly
- CNF
- for each clause c in the CNF
- for each literal l in the clause c
- assume l and propagate
- collect set of all implied literals (direct/indirect "implications" of l)
- intersect these sets of implied literals over all l in c
- literals in the intersection are implied without any assumption
[DavisPutnam60][Biere SAT’04] [SubbarayanPradhan SAT’04] [EénBiere SAT’05]
- use DP to existentially quantify out variables as in [DavisPutnam60]
- only remove a variable if this does not add (too many) clauses
- do not count tautological resolvents
- detect units on-the-fly
- schedule removal attempts with a priority queue
[Biere SAT'04] [EénBiere SAT'05]
- variables ordered by the number of occurrences
- strenthen and remove subsumed clauses (on-the-fly) (SATeLite [EénBiere SAT'05] and Quantor [Biere SAT'04])
- for each (new or strengthened) clause
- traverse list of clauses of the least occuring literal in the clause
- check whether traversed clauses are subsumed or
- strengthen traversed clauses by self-subsumption [EénBiere SAT'05]
- use Bloom Filters (as in "bit-state hashing"), aka signatures
- checking new clauses against existing clauses: backward (self) subsumption
- new clause (self) subsumes existing clause
- new clause smaller or equal in size
- check clause being subsumed by existing clauses
- can be made more efficient by one-watcher scheme [Zhang-SAT'05]
- for all iterals l
- for all clauses c in which l occurs (with this particular phase)
- assume the negation of all the other literals in c, assume l
- if BCP does not lead to a conflict continue with next literal in outer loop
- if all clauses produced a conflict permanently assign $\neg l$

Correctness: Let $c=l \vee d$, assume $\neg d \wedge l$.

If this leads to a conflict $d \vee \neg l$ could be learned (but is not added to the CNF).

Self subsuming resolution with c results in d and c is removed.

If all such cases lead to a conflict, $\neg l$ becomes a pure literal.

Autarkies

Generalization of pure literals.

Given a partial assignment σ.

A clause of a CNF is "touched" by σ if it contains a literal assigned by σ.

A clause of a CNF is "satisfied" by σ if it contains a literal assigned to true by σ.

If all touched clauses are satisfied then σ is an "autarky".

All clauses touched by an autarky can be removed.

Example: $\quad(-12)(-13)(1-2-3)(25) \cdots \quad$ (more clauses without 1 and 3$)$.

Then $\sigma=\{-1,-3\}$ is an autarky.
[Kullman'99]
blocked clause $C \in F \quad$ all clauses in F with \bar{l}
fix a CNF F

$$
(\bar{l} \vee \bar{a} \vee c)
$$

$(a \vee b \vee l)$

$$
(\bar{l} \vee \bar{b} \vee d)
$$

since all resolvents of C on l are tautological C can be removed

Proof

assignment σ satisfying $F \backslash C$ but not C
can be extended to a satisfying assignment of F by flipping value of l

```
[JärvisaloBiereHeule-TACAS'10]
```

COI Cone-of-Influence reduction
MIR Monontone-Input-Reduction
NSI Non-Shared Inputs reduction
PG Plaisted-Greenbaum polarity based encoding
TST standard Tseitin encoding
VE Variable-Elimination as in DP / Quantor / SATeLite
BCE Blocked-Clause-Elimination

PrecoSAT [Biere'09], Lingeling [Biere'10], also in CryptoMiniSAT (Mate Soos)

- preprocessing can be extremely beneficial
- most SAT competition solvers use variable elimination (VE) [EénBiere SAT'05]
- equivalence / XOR reasoning
- probing / failed literal preprocessing / hyper binary resolution
- however, even though polynomial, can not be run until completion
- simple idea to benefit from full preprocessing without penalty
- "preempt" preprocessors after some time
- resume preprocessing between restarts
- limit preprocessing time in relation to search time
- special case incremental preprocessing:
- preprocessing during incremental SAT solving
- allows to use costly preprocessors
- without increasing run-time "much" in the worst-case
- still useful for benchmarks where these costly techniques help
- good examples: probing and distillation
- additional benefit:
- makes units / equivalences learned in search available to preprocessing
- particularly interesting if preprocessing simulates encoding optimizations
- danger of hiding "bad" implementation though ...
- ... and hard(er) to debug and get right
[JävisaloHeuleBiere'12]

Literals

invariant: first two literals are watched

invariant: first two literals are watched

Additional Binary Clause Watcher Stack

observation: often the other watched literal satisfies the clause
so cache this literals in watch list to avoid pointer dereference
for binary clause no need to store clause at all
can easily be adjusted for ternary clauses (with full occurrence lists)

LINGELING uses more compact pointer-less variant

