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SAT Example: Equivalence Checking if-then-else Chains 2

optimization of if-then-else chains

original C code optimized C code

if(!a && !b) h(); if(a) f();
else if(!a) g(); else if(b) g();
else f(); else h();

⇓ ⇑

if(!a) { if(a) f();
if(!b) h(); ⇒ else {
else g(); if(!b) h();
} else f(); else g(); }

How to check that these two versions are equivalent?
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SAT Example cont. 3

1. represent procedures as independent boolean variables

original := optimized :=

if ¬a∧¬b then h if a then f
else if ¬a then g else if b then g
else f else h

2. compile if-then-else chains into boolean formulae

compile(if x then y else z) ≡ (x∧ y) ∨ (¬x∧ z)

3. check equivalence of boolean formulae

compile(original) ⇔ compile(optimized)
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Compilation 4

original ≡ if ¬a∧¬b then h else if ¬a then g else f

≡ (¬a∧¬b)∧h ∨ ¬(¬a∧¬b)∧ if ¬a then g else f

≡ (¬a∧¬b)∧h ∨ ¬(¬a∧¬b)∧ (¬a∧g ∨ a∧ f )

optimized ≡ if a then f else if b then g else h

≡ a∧ f ∨ ¬a∧ if b then g else h

≡ a∧ f ∨ ¬a∧ (b∧g ∨ ¬b∧h)

(¬a∧¬b)∧h ∨ ¬(¬a∧¬b)∧ (¬a∧g ∨ a∧ f ) ⇔ a∧ f ∨ ¬a∧ (b∧g ∨ ¬b∧h)
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How to Check (In)Equivalence? 5

Reformulate it as a satisfiability (SAT) problem:

Is there an assignment to a,b, f ,g,h,
which results in different evaluations of original and optimized?

or equivalently:

Is the boolean formula compile(original) 6↔ compile(optimized) satisfiable?

such an assignment would provide an easy to understand counterexample

Note: by concentrating on counterexamples we moved from Co-NP to NP
(this is just a theoretical note and not really important for applications)
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SAT Example: Circuit Equivalence Checking 6

c

a

b

c

a

b

b ∨ a∧ c (a∨b) ∧ (b∨ c)

equivalent?

b ∨ a∧ c ⇔ (a∨b) ∧ (b∨ c)
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SAT 7

SAT (Satisfiability) the classical NP complete Problem:

Given a propositional formula f over n propositional variables V = {x,y, . . .}.

Is there are an assignment σ : V →{0,1} with σ( f ) = 1 ?

SAT belongs to NP

There is a non-deterministic Touring-machine deciding SAT in polynomial time:

guess the assignment σ (linear in n), calculate σ( f ) (linear in | f |)

Note: on a real (deterministic) computer this would still require 2n time

SAT is complete for NP (see complexity / theory class)

Implications for us:
general SAT algorithms are probably exponential in time (unless NP = P)
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Conjunctive Normal Form 8

Definition

a formula in Conjunctive Normal Form (CNF) is a conjunction of clauses

C1∧C2∧ . . .∧Cn

each clause C is a disjunction of literals

C = L1∨ . . .∨Lm

and each literal is either a plain variable x or a negated variable x.

Example (a∨b∨ c)∧ (a∨b)∧ (a∨ c)

Note 1: two notions for negation: in x and ¬ as in ¬x for denoting negation.

Note 2: the original SAT problem is actually formulated for CNF

Note 3: SAT solvers mostly also expect CNF as input
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Negation Normal Form 9

Assumption: we only have conjunction, disjunction and negation as operators.

a formula is in Negation Normal Form (NNF),
if negations only occur in front of variables

⇒ all internal nodes in the formula tree are either ANDs or ORs

linear algorithms for generating NNF from an arbitrary formula

often NNF generations includes elimination of other non-monotonic operators:

NNF of f ↔ g is NNF of f ∧g ∨ f ∧g

in this case the result can be exponentially larger (see parity example later).
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NNF Algorithm 10

Formula

formula2nnf (Formula f, Boole sign)

{

  if (is_variable (f))

    return sign ? new_not_node (f) : f;

  if (op (f) == AND || op (f) == OR)

    {

      l = formula2nnf (left_child (f), sign);

      r = formula2nnf (right_child (f), sign);

      flipped_op = (op (f) == AND) ? OR : AND;

      return new_node (sign ? flipped_op : op (f), l, r);

    }

  else

    {

      assert (op (f) == NOT);

      return formula2nnf (child (f), !sign);

    }

}
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Simple Translation of Formula into CNF 11

Formula

formula2cnf_aux (Formula f)

{

  if (is_cnf (f))

    return f;

  if (op (f) == AND)

    {

      l = formula2cnf_aux (left_child (f));

      r = formula2cnf_aux (right_child (f));

      return new_node (AND, l, r);

    }

  else

    {

      assert (op (f) == OR);

      l = formula2cnf_aux (left_child (f));

      r = formula2cnf_aux (right_child (f));

      return merge_cnf (l, r);

    }

}
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Merging two CNFs 12

Formula

formula2cnf (Formula f)

{

  return formula2cnf_aux (formula2nnf (f, 0));

}

Formula

merge_cnf (Formula f, Formula g)

{

  res = new_constant_node (TRUE);

  for (c = first_clause (f); c; c = next_clause (f, c))

    for (d = first_clause (g); d; d = next_clause (g, d))

      res = new_node (AND, res, new_node (OR, c, d));

  return res;

}
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Why are Sharing / Circuits / DAGs important? 13

DAG may be exponentially more succinct than expanded Tree

Examples: adder circuit, parity, mutual exclusion
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Parity Example 14

Boole

parity (Boole a, Boole b, Boole c, Boole d, Boole e,

        Boole f, Boole g, Boole h, Boole i, Boole j)

{

  tmp0 = b ? !a : a;

  tmp1 = c ? !tmp0 : tmp0;

  tmp2 = d ? !tmp1 : tmp1;

  tmp3 = e ? !tmp2 : tmp2;

  tmp4 = f ? !tmp3 : tmp3;

  tmp5 = g ? !tmp4 : tmp4;

  tmp6 = h ? !tmp5 : tmp5;

  tmp7 = i ? !tmp6 : tmp6;

  return j ? !tmp7 : tmp7;

}

Eliminiate the tmp. . . variables through substitution.

What is the size of the DAG vs the Tree representation?
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How to detect Sharing 15

through caching of results in algorithms operating on formulas
(examples: substitution algorithm, generation of NNF for non-monotonic ops)

when modeling a system: variables are introduced for subformulae
(then these variables are used multiple times in the toplevel formula)

structural hashing: detects structural identical subformulae
(see Signed And Graphs later)

equivalence extraction: e.g. BDD sweeping, Stålmarcks Method
(we will look at both techniques in more detail later)
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Example of Tseitin Transformation: Circuit to CNF 16

CNF

c

b

a

w

v

w

u
o

x

y

o ∧
(x ↔ a∧ c) ∧
(y ↔ b∨ x) ∧
(u ↔ a∨b) ∧
(v ↔ b∨ c) ∧
(w↔ u∧ v) ∧
(o ↔ y⊕w)

o∧ (x→ a)∧ (x→ c)∧ (x← a∧ c)∧ . . .

o∧ (x∨a)∧ (x∨ c)∧ (x∨a∨ c)∧ . . .
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Algorithmic Description of Tseitin Transformation 17

1. for each non input circuit signal s generate a new variable xs

2. for each gate produce complete input / output constraints as clauses

3. collect all constraints in a big conjunction

the transformation is satisfiability equivalent :
the result is satisfiable iff and only the original formula is satisfiable

not equivalent in the classical sense to original formula: it has new variables

extract satisfying assignment for original formula, from one of the result
(just project satisfying assignment onto the original variables)
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Tseitin Transformation: Input / Output Constraints 18

Negation: x↔ y ⇔ (x→ y)∧ (y→ x)
⇔ (x∨ y)∧ (y∨ x)

Disjunction: x↔ (y∨ z) ⇔ (y→ x)∧ (z→ x)∧ (x→ (y∨ z))
⇔ (y∨ x)∧ (z∨ x)∧ (x∨ y∨ z)

Conjunction: x↔ (y∧ z) ⇔ (x→ y)∧ (x→ z)∧ ((y∧ z)→ x)
⇔ (x∨ y)∧ (x∨ z)∧ ((y∧ z)∨ x)
⇔ (x∨ y)∧ (x∨ z)∧ (y∨ z∨ x)

Equivalence: x↔ (y↔ z) ⇔ (x→ (y↔ z))∧ ((y↔ z)→ x)
⇔ (x→ ((y→ z)∧ (z→ y))∧ ((y↔ z)→ x)
⇔ (x→ (y→ z))∧ (x→ (z→ y))∧ ((y↔ z)→ x)
⇔ (x∨ y∨ z)∧ (x∨ z∨ y)∧ ((y↔ z)→ x)
⇔ (x∨ y∨ z)∧ (x∨ z∨ y)∧ (((y∧ z)∨ (y∧ z))→ x)
⇔ (x∨ y∨ z)∧ (x∨ z∨ y)∧ ((y∧ z)→ x)∧ ((y∧ z)→ x)
⇔ (x∨ y∨ z)∧ (x∨ z∨ y)∧ (y∨ z∨ x)∧ (y∨ z∨ x)
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Optimizations for Tseitin Transformation 19

goal is smaller CNF (less variables, less clauses)

extract multi argument operands (removes variables for intermediate nodes)

half of AND, OR node constraints can be removed for unnegated nodes

a node occurs negated if it has an ancestor which is a negation

half of the constraints determine parent assignment from child assignment

those are unnecessary if node is not used negated

[PlaistedGreenbaum’86] and then [ChambersManoliosVroon’09]

structural circuit optimizations like in the ABC tool from Berkeley

however might be simulated on CNF level [JärvisaloBiereHeule-TACAS’10]

compact technology mapping based encoding [EénMishchenkoSörensson’07]
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Intermediate Representations 20

encoding directly into CNF is hard, so we use intermediate levels:

1. application level

2. bit-precise semantics world-level operations: bit-vector theory

3. bit-level representations such as AIGs or vectors of AIGs

4. CNF

encoding application level formulas into word-level: as generating machine code

word-level to bit-level: bit-blasting similar to hardware synthesis

encoding “logical” constraints is another story
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Bit-Blasting of 4-Bit Addition 21

addition of 4-bit numbers x,y with result s also 4-bit: s = x+ y

[s3,s2,s1,s0]4 = [x3,x2,x1,x0]4+[y3,y2,y1,y0]4

[s3, · ]2 = FullAdder(x3,y3,c2)

[s2,c2]2 = FullAdder(x2,y2,c1)

[s1,c1]2 = FullAdder(x1,y1,c0)

[s0,c0]2 = FullAdder(x0,y0, false)

where

[ s , o ]2 = FullAdder(x,y, i) with

s = x xor y xor i

o = (x∧ y)∨ (x∧ i)∨ (y∧ i) = ((x+ y+ i)≥ 2)
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And-Inverter-Graphs (AIG) 22

widely adopted bit-level intermediate representation

see for instance our AIGER format http://fmv.jku.at/aiger

used in Hardware Model Checking Competition (HWMCC)

also used in the structural track in SAT competitions

many companies use similar techniques

basic logical operators: conjunction and negation

DAGs: nodes are conjunctions, negation/sign as edge attribute
bit stuffing: signs are compactly stored as LSB in pointer

automatic sharing of isomorphic graphs, constant time (peep hole) simplifications

or even SAT sweeping, full reduction, etc . . . see ABC system from Berkeley
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XOR as AIG 23

yx

negation/sign are edge attributes
not part of node

x xor y ≡ (x∧ y)∨ (x∧ y) ≡ (x∧ y)∧ (x∧ y)
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Bit-Stuffing Techniques for AIGs in C 24

typedef struct AIG AIG;

struct AIG

{

  enum Tag tag;                 /* AND, VAR */

  void *data[2];

  int mark, level;              /* traversal */

  AIG *next;                    /* hash collision chain */

};

#define sign_aig(aig) (1 & (unsigned) aig)

#define not_aig(aig) ((AIG*)(1 ^ (unsigned) aig))

#define strip_aig(aig) ((AIG*)(~1 & (unsigned) aig))

#define false_aig ((AIG*) 0)

#define true_aig ((AIG*) 1)

assumption for correctness:
sizeof(unsigned) == sizeof(void*)

SAT ReRiSE’14 Winter School Armin Biere



2

1[1]

4

2[1]

6

1[2]

8

2[2]

1 0

1[3]

1 2

2[3]

1 4

1[0]

1 6

2[0]1 8

20

22

24

26

28

30

32

34

36

38

4042

44

46 48

50

52

54

56

58

60

62

O0

O1

O2

O3

��FMX�EHHIV

2

1[1]

4

2[1]

6

1[2]

8

2[2]

1 0

1[3]

1 2

2[3]

1 4

1[4]

1 6

2[4]

1 8

1[5]

2 0

2[5]

2 2

1[6]

2 4

2[6]

2 6

1[7]

2 8

2[7]

3 0

1[0]

3 2

2[0]3 4

36

38

40

42

44

46

48

50

52

54

56

58

60

62

64

66

68

70

72

74

76

78

80

82

84

86

88

90

92

94

9698

100

102 104

106

108

110

112

114

116

118

120

122

124

126

128

130

132

134

O0

O1

O2

O3

O4

O5

O6

O7

��FMX�EHHIV



2

2[0]

4

2[1]

6

2[2]

8

1[0]

1 0

2[3]

1 2

1[1]

1 4

1[2]

1 6

1[3]

1 8

1[4]

2 0

1[5]

2 2

1[6]

2 4

1[7]

2 6

1[8]

2 8

1[9]

3 0

1[10]

32

1[11]

34

1[12]

36

1[13]

38

1[14]

40

1[15]

42 44

46

48

50 52

54

56

58

60

62 64

66

68

7072

74

76

78

80

82

84

86 88

90

92

94 96

98

100

102

104

106 108

110

112

114 116

118

120

122

124

126

128

130

132 134

136

138

140 142

144

146

148

150

152 154

156

158

160 162

164

166

168

170

172

174

176 178

180

182

184 186

188

190

192

194

196 198

200

202

204

206

208

210

212

214

216

218 220

222

224

226 228

230

232

234

236

238 240

242

244

246

248

250

252

254

256 258

260

262

264 266

268

270

272

274

276 278

280

282

284

286

288

290

292

294 296

298

300

302

304

306

308 310

312

314

316

318

320

322 324

326

328

330

332

334

336 338

340

342

344

346

348

350 352 354 356358 360362 364

O0 O1 O2 O3O4 O5O6 O7

O8 O9 O10 O11O12 O13O14 O15

bit-vector of length 16 shifted by bit-vector of length 4



2

1[6]

4

2[7]

6

1[7]8

2[6]

1 0

1[5]

1 2

2[5]

1 4

1[4]

1 6

2[4]

1 8

1[3]

2 0

2[3]

2 2

1[2]

2 4

2[2]

2 6

1[1]

2 8

2[1]

3 0

1[0]

3 2

2[0]

3 4

36

38

40 42

44 46

48

50 52

54

56

58

60

62

64

66 68

70

72 74

76 78

80 82

84

86 88

90

92

94

96

98

100

102

104 106

108

110 112

114 116

118 120

122

124 126

128 130

132 134

136

138 140

142

144

146

148

150

152

154

156

158 160

162

164 166

168 170

172 174

176

178 180

182 184

186 188

190

192 194

196 198

200 202

204

206 208

210

212

214

216

218

220

222

224

226

228 230

232

234 236

238 240

242 244

246

248 250

252 254

256 258

260

262 264

266 268

270 272

274

276 278

280 282

284 286

288

290 292

294 296

298

300

302

304

306

308

310 312

314 316

318

320322

324 326

328 330

332

334 336

338340

342344

346

348350

352 354

356 358

360

362 364

366 368

370 372

374

376378

380 382

384386

388

390392

394 396

398400

402

404

406

408

410

412

414

416

418

420

422

424

426

428

O0

O1

O2

O3

O4

O5

O6

O7



Encoding Logical Constraints 28

Tseitin’s construction suitable for most kinds of “model constraints”

assuming simple operational semantics: encode an interpreter

small domains: one-hot encoding large domains: binary encoding

harder to encode properties or additional constraints

temporal logic / fix-points

environment constraints

example for fix-points / recursive equations: x = (a∨ y), y = (b∨ x)

has unique least fix-point x = y = (a∨b)

and unique largest fix-point x = y = true but unfortunately

only largest fix-point can be (directly) encoded in SAT otherwise need ASP
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Example of Logical Constraints: Cardinality Constraints 29

given a set of literals {l1, . . . ln}

constraint the number of literals assigned to true

|{l1, . . . , ln}| ≥ k or |{l1, . . . , ln}| ≤ k or |{l1, . . . , ln}|= k

multiple encodings of cardinality constraints

naı̈ve encoding exponential: at-most-two quadratic, at-most-three cubic, etc.

quadratic O(k ·n) encoding goes back to Shannon

linear O(n) parallel counter encoding [Sinz’05]

for an O(n · logn) encoding see Prestwich’s chapter in our Handbook of SAT

generalization Pseudo-Boolean constraints (PB), e.g. 2 ·a+b+ c+d +2 · e ≥ 3
actually used to handle MaxSAT in SAT4J for configuration in Eclipse

SAT ReRiSE’14 Winter School Armin Biere



BDD based Encoding of Cardinality Constraints 30

2≤ |{l1, . . . , l9}| ≤ 3
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“then” edge downward, “else” edge to the right

SAT ReRiSE’14 Winter School Armin Biere



Davis & Putnam Procedure (DP) 31

dates back to the 50ies:

original version is resolution based (less successful)

idea: case analysis (try x = 0,1 in turn and recurse)

most successful SAT solvers

works for very large instances

recent (≤ 20 years) optimizations:

backjumping, learning, UIPs, dynamic splitting heuristics, fast data structures

(we will have a look at each of them)
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Resolution 32

basis for first (less successful) resolution based DP

can be extended to first order logic

helps to explain learning

Resolution Rule

C∪{v} D∪{¬v}
{v,¬v}∩C = {v,¬v}∩D = /0

C∪D

Read: resolving the clause C∪{v} with the clause D∪{¬v}, both above the line, on the
variable v, results in the clause D∪C below the line.
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Correctness of Resolution Rule 33

Usage of such rules: if you can derive what is above the line (premise) then you are allowed
to deduce what is below the line (conclusion).

Theorem. (premise satisfiable⇒ conclusion satisfiable)

σ(C∪{v}) = σ(D∪{¬v}) = 1 ⇒ σ(C∪D) = 1

Proof.

let c ∈C, d ∈ D with (σ(c) = 1 or σ(v) = 1) and (σ(d) = 1 or σ(¬v) = 1)

if σ(c) = 1 or σ(d) = 1 conclusion follows immediately

otherwise σ(v) = σ(¬v) = 1 ⇒ contradiction
q.e.d.
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Completeness of Resolution Rule 34

Theorem. (conclusion satisfiable⇒ premise satisfiable)

σ(C∪D) = 1 ⇒ ∃σ′ with σ′(C∪{v}) = σ′(D∪{¬v}) = 1

Proof.

with out loss of generality pick c ∈C with σ(c) = 1

define σ′(x) =

{
0 if x = v

σ(x) else

since v and ¬v do not occur in C, we still have σ′(C) = 1 and thus σ′(C∪{v}) = 1

by definition σ′(¬v) = 1 and thus σ′(D∪{¬v}) = 1
q.e.d.
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Resolution Based DP 35

Idea: use resolution to existentially quantify out variables

1. if empty clause found then terminate with result unsatisfiable

2. find variables which only occur in one phase (only positive or negative)

3. remove all clauses in which these variables occur

4. if no clause left then terminate with result satisfiable

5. choose x as one of the remaining variables with occurrences in both phases

6. add results of all possible resolutions on this variable

7. remove all trivial clauses and all clauses in which x occurs

8. continue with 1.
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Example for Resolution DP 36

check whether XOR is weaker than OR, i.e. validity of:

a∨b → (a⊕b)

which is equivalent to unsatisfiability of the negation:

(a∨b) ∧ ¬(a⊕b)

since negation of XOR is XNOR (equivalence):

(a∨b) ∧ (a↔ b)

we end up checking the following CNF for satisfiability:

(a∨b) ∧ (¬a∨b)∧ (a∨¬b)
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Example for Resolution DP cont. 37

(a∨b) ∧ (¬a∨b)∧ (a∨¬b)

initially we can skip 1. - 4. of the algorithm and choose x = b in 5.

in 6. we resolve (¬a∨b) with (a∨¬b) and (a∨b) with (a∨¬b) both on b

and add the results (a∨¬a) and (a∨a) :

(a∨b) ∧ (¬a∨b)∧ (a∨¬b)∧ (a∨¬a)∧ (a∨a)

the trivial clause (a∨¬a) and clauses with ocurrences of b are removed:

(a∨a)

in 2. we find a to occur only positive and in 3. the remaining clause is removed

the test in 4. succeeds and the CNF turns out to be satisfiable

(thus the original formula is invalid – not a tautology)
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Correctness of Resolution Based DP 38

Proof. in three steps:

(A) show that termination criteria are correct

(B) each transformation preserves satisfiability

(C) each transformation preserves unsatisfiability

Ad (A):

an empty clause is an empty disjunction, which is unsatisfiable

if literals occur only in one phase assign those to 1⇒ all clauses satisfied
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Correctness of Resolution Based DP Part (B) 39

CNF transformations preserve satisfiability:

removing a clause does not change satisfiability

thus only adding clauses could potentially not preserve satisfiability

the only clauses added are the results of resolution

correctness of resolution rule shows:

if the original CNF is satisfiable, then the added clause are satisfiable

(even with the same satisfying assignment)
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Correctness of Resolution Based DP Part (C) 40

CNF transformations preserve unsatisfiability:

adding a clause does not change unsatisfiability

thus only removing clauses could potentially not preserve unsatisfiability

trivial clauses (v∨¬v∨ . . .) are always valid and can be removed

let f be the CNF after removing all trivial clauses (in step 7.)

let g be the CNF after removing all clauses in which x occurs (after step 7.)

we need to show ( f unsat⇒ g unsat), or equivalently (g sat⇒ f sat)

the latter can be proven as the completeness proof for the resolution rule

(see next slide)

SAT ReRiSE’14 Winter School Armin Biere



Correctness of Resolution Based DP Part (C) cont. 41

If we interpret ∪ as disjunction and clauses as formulae, then

(C1∨ x)∧ . . .∧ (Ck∨ x) ∧ (D1∨¬x)∧ . . .∧ (Dl ∨¬x)

is, via distributivity law, equivalent to

((C1∧ . . .∧Ck)︸ ︷︷ ︸
C

∨x) ∧ ((D1∧ . . .∧Dl)︸ ︷︷ ︸
D

∨¬x)

and the same proof applies as for the completeness of the resolution rule.

Note: just using the completeness of the resolution rule alone does not work, since those
σ′ derived for multiple resolutions are formally allowed to assign different values for the
resolution variable.
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Problems with Resolution Based DP 42

if variables have many occurences, then many resolutions are necessary

in the worst x and ¬x occur in half of the clauses . . .

. . . then the number of clauses increases quadratically

clauses become longer and longer

unfortunately in real world examples the CNF explodes

(we might latter see how BDDs can be used to overcome some of these problems)

How to obtain the satisfying assignment efficiently (counter example)?
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Second version of DP 43

resolution based version often called DP, second version DPLL
(DP after [DavisPutnam60] and DPLL after [DavisLogemannLoveland62])

it eliminates variables through case analysis: time vs space

only unit resolution used (also called boolean constraint propagation)

case analysis is on-the-fly:

cases are not elaborated in a predefined fixed order, but . . .

. . . only remaining crucial cases have to be considered

allows sophisticated optimizations
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Unit-Resolution 44

a unit clause is a clause with a single literal

in CNF a unit clause forces its literal to be assigned to 1

unit resolution is an application of resolution, where one clause is a unit clause

also called boolean constraint propagation

Unit-Resolution Rule

C∪{¬l} {l}
{l,¬l}∩C = /0

C

here we identify ¬¬v with v for all variables v.
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Unit-Resolution Example 45

check whether XNOR is weaker than AND, i.e. validity of:

a∧b → (a↔ b)

which is equivalent to unsatisfiability of the CNF (exercise)

a∧b ∧ (a∨b)∧ (¬a∨¬b)

adding clause obtained from unit resolution on a results in

a∧b ∧ (a∨b)∧ (¬a∨¬b)∧ (¬b)

removing clauses containing a or ¬a

b ∧ (¬b)

unit resolution on b results in an empty clause and we conclude unsatisfiability.
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Ad: Unit Resolution 46

if unit resolution produces a unit, e.g. resolving (a∨¬b) with b produces a, continue
unit resolution with this new unit

often this repeated application of unit resolution is also called unit resolution

unit resolution + removal of subsumed clauses never increases size of CNF

C subsumes D :⇔ C ⊆ D

a unit(-clause) l subsumes all clauses in which l occurs in the same phase

boolean constraint propagation (BCP): given a unit l, remove all clauses in which l
occurs in the same phase, and remove all literals ¬l in clauses, where it occurs in the
opposite phase (the latter is unit resolution)
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Basic DPLL Algorithm 47

1. apply repeated unit resolution and removal of all subsumed clauses (BCP)

2. if empty clause found then return unsatisfiable

3. find variables which only occur in one phase (only positive or negative)

4. remove all clauses in which these variables occur (pure literal rule)

5. if no clause left then return satisfiable

6. choose x as one of the remaining variables with occurrences in both phases

7. recursively call DPLL on current CNF with the unit clause {x} added

8. recursively call DPLL on current CNF with the unit clause {¬x} added

9. if one of the recursive calls returns satisfiable return satisfiable

10. otherwise return unsatisfiable
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DPLL Example 48

(¬a∨b)∧ (a∨¬b)∧ (¬a∨¬b)

Skip 1. - 6., and choose x = a. First recursive call:

(¬a∨b)∧ (a∨¬b)∧ (¬a∨¬b)∧a

unit resolution on a and removal of subsumed clauses gives

b∧ (¬b)

BCP gives empty clause, return unsatisfiable. Second recursive call:

(¬a∨b)∧ (a∨¬b)∧ (¬a∨¬b)∧¬a

BCP gives ¬b, only positive recurrence of b left, return satisfiable

(satisfying assignment {a 7→ 0,b 7→ 0})
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Expansion Theorem of Shannon 49

Theorem.

f (x) ≡ x∧ f (1)∨ x∧ f (0)

Proof.

Let σ be an arbitrary assignment to variables in f including x

case σ(x) = 0:

σ( f (x)) = σ( f (0)) = σ(0∧ f (1)∨1∧ f (0)) = σ(x∧ f (1)∨ x∧ f (0))

case σ(x) = 1:

σ( f (x)) = σ( f (1)) = σ(1∧ f (1)∨0∧ f (0)) = σ(x∧ f (1)∨ x∧ f (0))
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Correctness of Basic DPLL Algorithm 50

first observe: x∧ f (x) is satisfiable iff x∧ f (1) is satisfiable

similarly, x∧ f (x) is satisfiable iff x∧ f (0) is satisfiable

then use expansion theorem of Shannon:

f (x) satisfiable iff x∧ f (0) or x∧ f (1) satisfiable iff x∧ f (x) or x∧ f (x) satisfiable

rest follows along the lines of the the correctness proof for resolution based DP
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Simple Data Structures in DP Implementation 51

1 2

−21

−1 2

−2−1

−1 −23

1

2

3

−3 2

1−3

Variables Clauses
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BCP Implementation Details 52

each variable is marked as unassigned, false, or true ({X ,0,1})

no explicit resolution:

when a literal is assigned visit all clauses where its negation occurs

find those clauses which have all but one literal assigned to false

assign remaining non false literal to true and continue

decision:

heuristically find a variable that is still unassigned

heuristically determine phase for assignment of this variable
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More Implementation Details 53

decision level is the depth of recursive calls (= #nested decisions)

the trail is a stack to remember order in which variables are assigned

for each decision level the old trail height is saved on the control stack

undoing assignments in backtracking:

get old trail height from control stack

unassign all variables up to the old trail height
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BCP Example 54
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Example cont. 55
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Example cont. 56

TrailControldecision level
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Example cont. 57

TrailControldecision level
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Example cont. 58

TrailControldecision level
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Example cont. 59

TrailControldecision level
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Example cont. 60

TrailControldecision level
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Decision Heuristics 61

static heuristics:

one linear order determined before solver is started

usually quite fast, since only calculated once

can also use more expensive algorithms

dynamic heuristics

typically calculated from number of occurences of literals
(in unsatisfied clauses)

rather expensive, since it requires traversal of all clauses
(or more expensive updates in BCP)

recently, second order dynamic heuristics (VSIDS in Chaff⇒ see learning)
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Cut Width Heuristics 62

view CNF as a graph:

clauses as nodes, edges between clauses with same variable

a cut is a set of variables that splits the graph in two parts

recursively find short cuts that cut of parts of the graph

static or dynamically order variables according to the cuts

−2 1 −3 1−1 2 3 −43 1, 2, −1, −2

assume
no occurences of

on the right side

short cut
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Cut Width Algorithm 63

int

sat (CNF cnf)

{

  SetOfVariables cut = generate_good_cut (cnf);

  CNF assignment, left, right;

  left = cut_off_left_part (cut, cnf);

  right = cut_off_right_part (cut, cnf);

  forall_assignments (assignment, cut)

  {

    if (sat (apply (assignment, left)) && sat (apply (assignment, right)))

      return 1;

  }

  return 0;

}
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Cut Width Heuristics cont. 64

resembles cuts in circuits when CNF is generated with Tseitin transformation

ideally cuts have constant or logarithmic size . . .

for instance in tree like circuits

so the problem is reconvergence:
the same signal / variable is used multiple times

. . . then satisfiability actually becomes polynomial (see exercise)
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CNF in Horn Form 65

A clause is called positive if it contains a positive literal.

A clause is called negative if all its literals are negative.

A clause is a Horn clause if contains at most one positive literal.

CNF is in Horn Form iff all clauses are Horn clause (Prolog without negation)

Order assignments point-wise: σ≤ σ′ iff σ(x)≤ σ′(x) for all x ∈V

Horn Form with only positive clauses has minimal satisfying assignment.

Minimal satisfying assignment is obtained by BCP (polynomial).

A Horn Form is satisfiable iff the minimal assignments of its positive part satisfies all its
negative clauses as well.
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DP and Horn Form 66

CNF in Horn Form: use above specialized fast algorithm

non Horn: split on literals which occurs positive in non Horn clauses

actually choose variable which occurs most often in such clauses

this gradually transforms non Horn CNF into Horn Form

main heuristic in SAT solver SATO

Note: In general, BCP in DP prunes search space by avoiding assignments incom-
patible to minimal satisfying assingment for the Horn part of the CNF.

non Horn part of CNF Horn part of CNF
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Other popular Decision Heuristics 67

Dynamic Largest Individual Sum (DLIS)

fastest dynamic first order heuristic (e.g. GRASP solver)

choose literal (variable + phase) which occurs most often

ignore satisfied clauses

requires explicit traversal of CNF (or more expensive BCP)

look-forward heuristics (e.g. SATZ or MARCH solver) failed literals, probing

do trial assignments and BCP for all unassigned variables (both phases)

if BCP leads to conflict, force toggled assignment of current trial decision

skip trial assignments implied by previous trial assignments
(removes a factor of |V | from the runtime of one decision search)

decision variable maximizes number of propagated assignments
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Restarts 68

distribution of SAT solver run-time shows heavy tail behaviour

for satisfiable instances the solver may get stuck in the unsatisfiable part

even if the search space contains a large satisfiable part

often it is a good strategy to abandon the current search and restart

restart after the number of decisions reached a restart limit

avoid to run into the same dead end

by randomization (either on the decision variable or its phase)

and/or just keep all the learned clauses

for completeness dynamically increase restart limit
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Inner/Outer Restart Intervals 69

378 restarts in 104408 conflicts
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Inner/Outer Restart Scheduling 70

int inner = 100, outer = 100;

int restarts = 0, conflicts = 0;

for (;;)

{

... // run SAT core loop for ’inner’ conflicts

restarts++;

conflicts += inner;

if (inner >= outer)

{

outer *= 1.1;

inner = 100;

}

else

inner *= 1.1;

}
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Luby’s Restart Intervals 71

70 restarts in 104448 conflicts
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Luby Restart Scheduling 72

unsigned

luby (unsigned i)

{

unsigned k;

for (k = 1; k < 32; k++)

if (i == (1 << k) - 1)

return 1 << (k - 1);

for (k = 1;; k++)

if ((1 << (k - 1)) <= i && i < (1 << k) - 1)

return luby (i - (1 << (k-1)) + 1);

}

limit = 512 * luby (++restarts);

... // run SAT core loop for ’limit’ conflicts
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Reluctant Doubling Sequence 73

[Knuth’12]

(u1,v1) := (1,1)

(un+1,vn+1) := (un &−un = vn ? (un+1,1) : (un,2vn))

(1,1), (2,1), (2,2), (3,1), (4,1), (4,2), (4,4), (5,1), . . .
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Phase Saving and Rapid Restarts 74

phase assignment:

assign decision variable to 0 or 1?

the only thing that matters in satisfiable instances

“phase saving” as in RSat:

pick phase of last assignment (if not forced to, do not toggle assignment)

initially use statically computed phase (typically LIS)

rapid restarts: varying restart interval with bursts of restarts

not ony theoretically avoids local minima

works nicely together with phase saving
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Backjumping 75

x

y

xx

y

If y has never been used to derive a conflict, then skip y case.

Immediately jump back to the x case – assuming x was used.
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Backjumping Example 76

−3

(1 2)

(1 −2)

(−1 2)

(−1 −2)

(−3 1)

(−3 2)

(−1 −2 3)

Split on −3 first (bad decision).
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Backjumping Example 77

−3

−1

(1 2)

(1 −2)

(−1 2)

(−1 −2)

(−3 1)

(−3 2)

(−1 −2 3)

Split on −1 and get first conflict.
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Backjumping Example 78

−3

1−1

(1 2)

(1 −2)

(−1 2)

(−1 −2)

(−3 1)

(−3 2)

(−1 −2 3)

Regularly backtrack and assign 1 to get second conflict.
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Backjumping Example 79

1−1

−3

1−1

(1 2)

(1 −2)

(−1 2)

(−1 −2)

(−3 1)

(−3 2)

(−1 −2 3)3

Backtrack to root, assign 3 and derive same conflicts.
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Backjumping Example 80

−3

−1

(1 2)

(1 −2)

(−1 2)

(−1 −2)

(−3 1)

(−3 2)

(−1 −2 3)

Assignment −3 does not contribute to conflict.
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Backjumping Example 81

(1 2)

(1 −2)

(−1 2)

(−1 −2)

(−3 1)

(−3 2)

(−1 −2 3)−3

−1

1

So just backjump to root before assigning 1.
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Backjumping 82

backjumping helps to recover from bad decisions

bad decisions are those that do not contribute to conflicts

without backjumping same conflicts are generated in second branch

with backjumping the second branch of bad decisions is just skipped

particularly useful for unsatisfiable instances

in satisfiable instances good decisions will guide us to the solution

with backjumping many bad decisions increase search space roughly quadratically
instead of exponentially with the number of bad decisions

SAT ReRiSE’14 Winter School Armin Biere



Implication Graph 83

the implication graph maps inputs to the result of resolutions

backward from the empty clause all contributing clauses can be found

the variables in the contributing clauses are contributing to the conflict

important optimization, since we only use unit resolution

generate graph only for resolutions that result in unit clauses

the assignment of a variable is result of a decision or a unit resolution

therefore the graph can be represented by saving the reasons for assignments with
each assigned variable
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General Implication Graph as Hyper-Graph 84

a

a cb

b

c∨∨

reason implied
assignment

original
assignments

(edges of directed hyper graphs may have multiple source and target nodes)
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Optimized Implication Graph for Unit Resolution in DP 85

a

b

a cb ∨∨

c

c

implied
assignment

assignments
original

reason associated to

graph becomes an ordinary (non hyper) directed graph

simplifies implementation:

store a pointer to the reason clause with each assigned variable

decision variables just have a null pointer as reason

decisions are the roots of the graph
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Learning 86

can we learn more from a conflict?

backjumping does not fully avoid the occurrence of the same conflict

the same (partial) assignments may generate the same conflict

generate conflict clauses and add them to CNF

the literals contributing to a conflict form a partial assignment

this partial assignment is just a conjunction of literals

its negation is a clause (implied by the original CNF)

adding this clause avoids this partial assignment to happen again
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Conflict Driven Backtracking/Backjumping 87

[MarquesSilvaSakallah’96: GRASP]

observation: current decision always contributes to conflict

otherwise BCP would have generated conflict one decision level lower

conflict clause has (exactly one) literal assigned on current decision level

instead of backtracking

generate and add conflict clause

undo assignments as long conflict clause is empty or unit clause
(in case conflict clause is the empty clause conclude unsatisfiability)

resulting assignment from unit clause is called conflict driven assignment
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CNF for following Examples 88

-3 1 2 0

3 -1 0

3 -2 0

-4 -1 0

-4 -2 0

-3 4 0

3 -4 0

-3 5 6 0

3 -5 0

3 -6 0

4 5 6 0

We use a version of the DIMACS format.

Variables are represented as positive integers.

Integers represent literals.

Subtraction means negation.

A clause is a zero terminated list of integers.

CNF has a good cut made of variables 3 and 4 (cf Exercise 4 + 5).
(but we are going to apply DP with learning to it)
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DP with Learning Run 1 (3 as 1st decision) 89

= 0l

= 0l

= 1l

= 0l

3

(conflict)

empty clause

(conflict)

empty clause

unit clause −3 is generated as learned clause and we backtrackt to 

3

−1

−2

3 4
−3 1 2

(no unit clause originally, so no implications)

since −3 has a real unit clause as reason, an empty conflict clause is learned

−3

−6

−5

−4

4 5 6

decision

unit

1st conflict clause
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DP with Learning Run 2 Fig. 1 (-1, 3 as decision order) 90

= 0l

= 1l

= 2l

3

−1

(conflict)

empty clause

= 1l

decision

−1

(no unit clause originally, so no implications)

(no implications on this decision level either)

decision

(using the FIRST clause)

23

4

−4 −2

since FIRST clause was used to derive 2, conflict clause is (1 −3)

backtrack to (smallest level for which conflict clause is a unit clause)
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DP with Learning Run 2 Fig. 2 (-1, 3 as decision order) 91

= 0l

= 1l

(conflict)

empty clause

= 0l

decision

−1

(no unit clause originally, so no implications)

1st conflict clause

3

−1

−3

−4

−5

−6

4 5 6

backtrack to decision level 

learned conflict clause is the unit clause 1
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DP with Learning Run 2 Fig. 3 (-1, 3 as decision order) 92

= 0l

(conflict)

empty clause

3

−1

since the learned clause is the empty clause, conclude unsatisfiability

1

unit

2nd conflict clause

−4

−3

−5

−6

4 5 6
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DP with Learning Run 3 Fig. 1 (-6, 3 as decision order) 93

= 0l

= 1l

= 2l

(conflict)

empty clause

= 0l

decision

(no unit clause originally, so no implications)

(no implications on this decision level either)

decision

3

3

−6

−6

4

−1

−2
−3 1 2

learn the unit clause −3 and BACKJUMP to decision level
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DP with Learning Run 3 Fig. 1 (-6, 3 as decision order) 94

= 0l

(conflict)

empty clause

3

−6

−3

−4

−6

−5 4 5 6

finally the empty clause is derived which proves unsatisfiability

unit

1st conflict clause
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Toplevel Loop in DP with Learning 95

int

sat (Solver solver)

{

  Clause conflict;

  for (;;)

    {

      if (bcp_queue_is_empty (solver) && !decide (solver))

        return SATISFIABLE;

      conflict = deduce (solver);

      if (conflict && !backtrack (solver, conflict))

        return UNSATISFIABLE;

    }

}
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Backtracking in DP with Learning 96

int

backtrack (Solver solver, Clause conflict)

{

  Clause learned_clause; Assignment assignment; int new_level;

  if (decision_level(solver) == 0)

    return 0;

  analyze (solver, conflict);

  learned_clause = add (solver);

  assignment = drive (solver, learned_clause);

  enqueue_bcp_queue (solver, assignment);

  new_level = jump (solver, learned_clause);

  undo (solver, new_level);

  return 1;

}
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Learning as Resolution 97

conflict clause: obtained by backward resolving empty clause with reasons

start at clause which has all its literals assigned to false

resolve one of the false literals with its reason

invariant: result still has all its literals assigned to false

continue until user defined size is reached

gives a nice correspondence between resolution and learning in DP

allows to generate a resolution proof from a DP run

implemented in RELSAT solver [BayardoSchrag’97]
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Conflict Clauses as Cuts in the Implication Graph 98

decision conflict

−2nlevel

level

level

n

n

−1

a simple cut always exists: set of roots (decisions) contributing to the conflict
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Unique Implication Points (UIP) 99

d = 1 @ 1 e = 1 @ 1

b = 1 @ 0a = 1 @ 0

= 1 @ 2f g = 1 @ 2 i = 1 @ 2

l = 1 @ 3

= 1 @ 1c

k = 1 @ 3

r = 1 @ 4 s = 1 @ 4

= 1 @ 4x

top−level

decision

decision

decision

unit unit

= 1 @ 4

= 1 @ 4y

z conflictκ

h = 1 @ 2

t = 1 @ 4decision

UIP = articulation point in graph decomposition into biconnected components
(simply a node which, if removed, would disconnect two parts of the graph)
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Detection of UIPs 100

can be found by graph traversal in the order of made assignments

trail respects this order

traverse reasons of variables on trail starting with conflict

count “open paths”
(initially size of clause with only false literals)

if all paths converged at one node, then UIP is found

decision of current decision level is a UIP and thus a sentinel
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Further Options in Using UIPs 101

assume a non decision UIP is found

this UIP is part of a potential cut

graph traversal may stop (everything behind the UIP is ignored)

negation of the UIP literal constitutes the conflict driven assignment

may start new clause generation (UIP replaces conflict)

each conflict may generate multiple learned clauses

however, using only the first UIP encountered seems to work best
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Backjumping and UIPs 102

decision conflict

−2

UIP

nlevel

level

level

n

n

−1

1st UIP learned clause increases chance of backjumping
(“pulls in” as few decision levels as possible)
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More Heuristics for Conflict Clauses Generation 103

intuitively is is important to localize the search (cf cutwidth heuristics)

cuts for learned clauses may only include UIPs of current decision level

on lower decision levels an arbitrary cut can be chosen

multiple alternatives

include all the roots contributing to the conflict

find minimal cut (heuristically)

cut off at first literal of lower decision level (works best)
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Implication Graph 104

d = 1 @ 1 e = 1 @ 1

b = 1 @ 0a = 1 @ 0

= 1 @ 2f g = 1 @ 2 h = 1 @ 2 i = 1 @ 2

l = 1 @ 3

= 1 @ 1c

k = 1 @ 3

r = 1 @ 4 s = 1 @ 4 t = 1 @ 4 y = 1 @ 4

= 1 @ 4x z = 1 @ 4 κ

top−level

decision

decision

decision

unit unit

conflict

decision
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Antecedents / Reasons 105

e = 1 @ 1

b = 1 @ 0a = 1 @ 0

= 1 @ 2f h = 1 @ 2 i = 1 @ 2

= 1 @ 1c

r = 1 @ 4 y = 1 @ 4

= 1 @ 4x z = 1 @ 4 κ

top−level

decision

decision

decision

unit unit

conflict

decision

d

g

s t

= 1 @ 2

= 1 @ 1

= 1 @ 4= 1 @ 4

k = 1 @ 3 = 1 @ 3l

d∧g∧ s → t ≡ (d∨g∨ s∨ t)

SAT ReRiSE’14 Winter School Armin Biere



Conflicting Clauses 106

d = 1 @ 1 e = 1 @ 1

b = 1 @ 0a = 1 @ 0

= 1 @ 2f g = 1 @ 2 i = 1 @ 2

l = 1 @ 3

= 1 @ 1c

k = 1 @ 3

r = 1 @ 4 s = 1 @ 4

= 1 @ 4x

top−level

decision

decision

decision

unit unit

= 1 @ 4

= 1 @ 4y

z conflictκ

h = 1 @ 2

t = 1 @ 4decision

¬(y∧ z) ≡ (y∨ z)
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Resolving Antecedents 1st Time 107

d = 1 @ 1 e = 1 @ 1

b = 1 @ 0a = 1 @ 0

= 1 @ 2f g = 1 @ 2

l = 1 @ 3

= 1 @ 1c

k = 1 @ 3

r = 1 @ 4 s = 1 @ 4

= 1 @ 4x

top−level

decision

decision

decision

unit unit

= 1 @ 4

= 1 @ 4y

z conflictκ

decision

h i

t

= 1 @ 2 = 1 @ 2

= 1 @ 4

(h∨ i∨ t ∨ y) (y∨ z)
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Resolving Antecedents 1st Time 108

d = 1 @ 1 e = 1 @ 1

b = 1 @ 0a = 1 @ 0

= 1 @ 2f g = 1 @ 2

l = 1 @ 3

= 1 @ 1c

k = 1 @ 3

r = 1 @ 4 s = 1 @ 4

= 1 @ 4x

top−level

decision

decision

decision

unit unit

= 1 @ 4

= 1 @ 4y

z conflictκ

decision

h i

t

= 1 @ 2 = 1 @ 2

= 1 @ 4

(h∨ i∨ t ∨ y) (y∨ z)

(h∨ i∨ t ∨ z)
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Resolvents = Cuts = Potential Learned Clauses 109

d = 1 @ 1 e = 1 @ 1

b = 1 @ 0a = 1 @ 0

= 1 @ 2f g = 1 @ 2

l = 1 @ 3

= 1 @ 1c

k = 1 @ 3

r = 1 @ 4 s = 1 @ 4

= 1 @ 4x

d = 1 @ 1 e = 1 @ 1

b = 1 @ 0a = 1 @ 0

= 1 @ 2f g = 1 @ 2

l = 1 @ 3

= 1 @ 1c

k = 1 @ 3

r = 1 @ 4 s = 1 @ 4

= 1 @ 4x

top−level

decision

decision

decision

unit unit

= 1 @ 4

= 1 @ 4y

z conflictκ

decision

h i

t

= 1 @ 2 = 1 @ 2

= 1 @ 4

top−level

decision

decision

decision

unit unit

= 1 @ 4

= 1 @ 4y

z conflictκ

decision

h i

t

= 1 @ 2 = 1 @ 2

= 1 @ 4

(h∨ i∨ t ∨ y) (y∨ z)

(h∨ i∨ t ∨ z)

SAT ReRiSE’14 Winter School Armin Biere



Potential Learned Clause After 1 Resolution 110

d = 1 @ 1 e = 1 @ 1

b = 1 @ 0a = 1 @ 0

= 1 @ 2f g = 1 @ 2

l = 1 @ 3

= 1 @ 1c

k = 1 @ 3

r = 1 @ 4

= 1 @ 4x

top−level

decision

decision

decision

unit unit

z

decision

h i

t

= 1 @ 2 = 1 @ 2

= 1 @ 4s = 1 @ 4 = 1 @ 4

= 1 @ 4 κ conflict

y

(h∨ i∨ t ∨ z)
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Resolving Antecedents 2nd Time 111

e = 1 @ 1

b = 1 @ 0a = 1 @ 0

= 1 @ 2f

l = 1 @ 3

= 1 @ 1c

k = 1 @ 3

r = 1 @ 4

= 1 @ 4x

top−level

decision

decision

decision

unit unit

z

decision

h i

t

= 1 @ 2 = 1 @ 2

= 1 @ 4 = 1 @ 4

= 1 @ 4 κ conflict

ys

g

d = 1 @ 1

= 1 @ 2

= 1 @ 4

(d∨g∨ s∨ t) (h∨ i∨ t ∨ z)

(d∨g∨ s∨h∨ i∨ z)
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Resolving Antecedents 3rd Time 112

e = 1 @ 1

b = 1 @ 0a = 1 @ 0

= 1 @ 2f

l = 1 @ 3

= 1 @ 1c

k = 1 @ 3

r = 1 @ 4

top−level

decision

decision

decision

unit unit

z

decision

h i= 1 @ 2 = 1 @ 2

= 1 @ 4

= 1 @ 4 κ conflict

y= 1 @ 4t= 1 @ 4

= 1 @ 2

= 1 @ 1d

g

s

= 1 @ 4x

(x∨ z) (d∨g∨ s∨h∨ i∨ z)

(x∨d∨g∨ s∨h∨ i)
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Resolving Antecedents 4th Time 113

e = 1 @ 1

b = 1 @ 0a = 1 @ 0

= 1 @ 2f

l = 1 @ 3

= 1 @ 1c

k = 1 @ 3

r = 1 @ 4

top−level

decision

decision

decision

unit unit

decision

h i= 1 @ 2 = 1 @ 2

= 1 @ 4

κ conflict

ys

g

d

= 1 @ 4

= 1 @ 2

= 1 @ 1

x = 1 @ 4

= 1 @ 4

= 1 @ 4

t

z

(s∨ x) (x∨d∨g∨ s∨h∨ i)

(d∨g∨ s∨h∨ i)
self subsuming resolution
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1st UIP Clause after 4 Resolutions 114

e = 1 @ 1

b = 1 @ 0a = 1 @ 0

= 1 @ 2f

l = 1 @ 3

= 1 @ 1c

k = 1 @ 3

r = 1 @ 4

top−level

decision

decision

decision

unit unit

decision

h i= 1 @ 2 = 1 @ 2

= 1 @ 4

κ conflict

ys

g

d

= 1 @ 4

= 1 @ 2

= 1 @ 1

t

z= 1 @ 4x

= 1 @ 4

= 1 @ 4

1st UIP

backjump level

(d∨g∨ s∨h∨ i)
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Resolving Antecedents 5th Time 115

e = 1 @ 1

b = 1 @ 0a = 1 @ 0

= 1 @ 2f

= 1 @ 1c

k = 1 @ 3

top−level

decision

decision

decision

unit unit

decision

h i= 1 @ 2 = 1 @ 2

= 1 @ 4

κ conflict

ys

g

d

= 1 @ 4

= 1 @ 2

= 1 @ 1

t

z= 1 @ 4x

= 1 @ 4

= 1 @ 4

l = 1 @ 3

= 1 @ 4r

(l∨ r∨ s) (d∨g∨ s∨h∨ i)

(l∨ r∨d∨g∨h∨ i)
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Decision Learned Clause 116

e = 1 @ 1

b = 1 @ 0a = 1 @ 0

= 1 @ 2f

= 1 @ 1c

top−level

decision

decision

decision

unit unit

decision

h i= 1 @ 2 = 1 @ 2

= 1 @ 4

κ conflict

y

g

d

= 1 @ 2

= 1 @ 1

t

z= 1 @ 4x

= 1 @ 4

= 1 @ 4

r = 1 @ 4 = 1 @ 4s

l = 1 @ 3= 1 @ 3k
backtrack

level

last UIP

(d∨g∨ l∨ r∨h∨ i)
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1st UIP Clause after 4 Resolutions 117

e = 1 @ 1

b = 1 @ 0a = 1 @ 0

= 1 @ 2f

l = 1 @ 3

= 1 @ 1c

k = 1 @ 3

r = 1 @ 4

top−level

decision

decision

decision

unit unit

decision

h i= 1 @ 2 = 1 @ 2

= 1 @ 4

κ conflict

ys

g

d

= 1 @ 4

= 1 @ 2

= 1 @ 1

t

z= 1 @ 4x

= 1 @ 4

= 1 @ 4

(d∨g∨ s∨h∨ i)
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Locally Minimizing 1st UIP Clause 118

e = 1 @ 1

b = 1 @ 0a = 1 @ 0

= 1 @ 2f

l = 1 @ 3

= 1 @ 1c

k = 1 @ 3

r = 1 @ 4

top−level

decision

decision

decision

unit unit

decision

i = 1 @ 2

= 1 @ 4

κ conflict

ys

g

d

= 1 @ 4

= 1 @ 2

= 1 @ 1

t

z= 1 @ 4x

= 1 @ 4

= 1 @ 4

h = 1 @ 2

(h∨ i) (d∨g∨ s∨h∨ i)

(d∨g∨ s∨h)
self subsuming resolution

SAT ReRiSE’14 Winter School Armin Biere



Locally Minimized Learned Clause 119

e = 1 @ 1

b = 1 @ 0a = 1 @ 0

= 1 @ 2f

l = 1 @ 3

= 1 @ 1c

k = 1 @ 3

r = 1 @ 4

top−level

decision

decision

decision

unit unit

decision = 1 @ 4

κ conflict

ys

g

d

= 1 @ 4

= 1 @ 2

= 1 @ 1

t

z= 1 @ 4x

= 1 @ 4

= 1 @ 4

= 1 @ 2i= 1 @ 2h

(d∨g∨ s∨h)
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Local Minimization Algorithm 120

Two step algorithm:

1. mark all variables in 1st UIP clause

2. remove literals with all antecedent literals also marked

Correctness:

removal of literals in step 2 are self subsuming resolution steps.

implication graph is acyclic.

Confluence: produces a unique result.
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Minimizing Locally Minimized Learned Clause Further? 121

e = 1 @ 1

b = 1 @ 0a = 1 @ 0

= 1 @ 2f

l = 1 @ 3

= 1 @ 1c

k = 1 @ 3

r = 1 @ 4

top−level

decision

decision

decision

unit unit

decision = 1 @ 4

κ conflict

ys

g

d

= 1 @ 4

= 1 @ 2

= 1 @ 1

t

z= 1 @ 4x

= 1 @ 4

= 1 @ 4

= 1 @ 2i

Remove ?

h = 1 @ 2

(d∨g∨ s∨6 h)
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Recursively Minimizing Learned Clause 122

a = 1 @ 0

= 1 @ 2f

l = 1 @ 3

= 1 @ 1c

k = 1 @ 3

r = 1 @ 4

top−level

decision

decision

decision

unit

decision = 1 @ 4

κ conflict

ys

g

d

= 1 @ 4

= 1 @ 2

= 1 @ 1

t

z= 1 @ 4x

= 1 @ 4

= 1 @ 4

= 1 @ 2i= 1 @ 2h

unit b

e

= 1 @ 0

= 1 @ 1

(b)
(d∨b∨ e)

(e∨g∨h) (d∨g∨ s∨h)
(e∨d∨g∨ s)

(b∨d∨g∨ s)

(d∨g∨ s)
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Recursively Minimized Learned Clause 123

a = 1 @ 0

= 1 @ 2f

l = 1 @ 3

= 1 @ 1c

k = 1 @ 3

r = 1 @ 4

top−level

decision

decision

decision

unit

decision = 1 @ 4

κ conflict

ys

g

d

= 1 @ 4

= 1 @ 2

= 1 @ 1

t

z= 1 @ 4x

= 1 @ 4

= 1 @ 4

= 1 @ 2i

unit

= 1 @ 2

= 1 @ 1

= 1 @ 0

h

e

b

(d∨g∨ s)
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Recursive Minimization Algorithm 124

[MiniSAT 1.13]

Four step algorithm:

1. mark all variables in 1st UIP clause

2. for each candidate literal: search implication graph

3. start at antecedents of candidate literals

4. if search always terminates at marked literals remove candidate

Correctness and Confluence as in local version!!!

Optimization: terminate early with failure if new decision level is “pulled in”
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Experiments on 100 SAT’08 Race Instances 125

solved time space out of deleted
instances in hours in GB memory literals

MINISAT recur 788 9% 170 11% 198 49% 11 89% 33%
with local 774 7% 177 8% 298 24% 72 30% 16%

preprocessing none 726 192 392 103
MINISAT recur 705 13% 222 8% 232 59% 11 94% 37%
without local 642 3% 237 2% 429 24% 145 26% 15%

preprocessing none 623 242 565 196
PICOSAT recur 767 10% 182 13% 144 45% 10 60% 31%

with local 745 6% 190 9% 188 29% 10 60% 15%
preprocessing none 700 209 263 25

PICOSAT recur 690 6% 221 8% 105 63% 10 68% 33%
without local 679 5% 230 5% 194 31% 10 68% 14%

preprocessing none 649 241 281 31
recur 2950 9% 795 10% 679 55% 42 88% 34%

altogether local 2840 5% 834 6% 1109 26% 237 33% 15%
none 2698 884 1501 355

10 runs for each configuration with 10 seeds for random number generator
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Large Variance for Different Seeds 126

MINISAT
with preprocessing

seed solved time space mo del

1. recur 8 82 16 19 1 33%
2. recur 6 81 17 20 1 33%
3. local 0 81 16 29 7 16%
4. local 7 80 17 29 8 15%
5. recur 4 80 17 20 1 33%
6. recur 1 79 17 20 1 33%
7. recur 9 79 17 20 1 34%
8. local 5 78 18 29 7 16%
9. local 1 78 17 29 6 16%

10. recur 0 78 17 20 1 34%
11. recur 5 78 17 19 1 33%
12. local 3 77 18 31 7 16%
13. local 8 77 18 30 8 16%
14. recur 7 77 17 20 1 34%
15. recur 3 77 17 20 1 34%
16. recur 2 77 17 20 2 33%
17. none 7 76 19 39 9 0%

... ... ... ... ... ... ... ...
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Second Order Dynamic Decision Heuristics: VSIDS 127

[MoskewiczMadiganZhaoZhangMalik-DAC’01: CHAFF]

“second order” because it involves statistics about the search

Variable State Independent Decaying Sum (VSIDS) decision heuristic
(implemented in Chaff, Limmat, MiniSAT, PicoSAT, and many more)

VSIDS just counts the occurrences of a literals in conflict clauses

literal/variable with maximal count (score) is chosen
(from a priority queue ordered by score)

score is multiple by a factor f < 1 after a certain number of conflicts occurred
(this is the “decaying” part and also called rescoring)

emphasizes (negation of) literals contributing recently to conflicts (localization)
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Normalized VSIDS: NVSIDS 128

[Biere-SAT’08]

VSIDS score can be normalized to the interval [0,1] as follows:

pick a decay factor f per conflict: typically f = 0.95

each variable is punished by this decay factor at every conflict

if a variable is involved in conflict, add 1− f to score

s, f ≤ 1, then s′ ≤ s
decay in any case︷︸︸︷

· f +1− f︸ ︷︷ ︸
increment if involved

≤ f +1− f = 1

with s old score before conflict, s′ new score after conflict

recomputing score of all variables at each conflict is costly

linear in the number of variables, e.g. millions

particularly, because number of involved variabels << number of variables
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Exponential VSIDS: EVSIDS 129

Chaff: precision of score traded for faster decay

increment score of involved variables by 1

decay score of all variables every 256 conflicts by halfing the score

sort priority queue after decay and not at every conflict

MiniSAT uses Exponential VSIDS

also just update score of involved variables

dynamically adjust increment: δ′ = δ · 1f (typically increment δ by 5%)

use floating point representation of score

“rescore” to avoid overflow in regular intervals

EVSIDS linearly related to NVSIDS

SAT ReRiSE’14 Winter School Armin Biere



Relating EVSIDS and NVSIDS 130

consider again only one variable with score sequence sn resp. Sn

δk =

{
1 if involved in k-th conflict

0 otherwise

ik = (1− f ) ·δk

sn = (. . .(i1 · f + i2) · f + i3) · f · · ·) · f + in =
n

∑
k=1

ik · f n−k = (1− f ) ·
n

∑
k=1

δk · f n−k (NVSIDS)

Sn =
f−n

(1− f )
· sn =

f−n

(1− f )
· (1− f ) ·

n

∑
k=1

δk · f n−k =
n

∑
k=1

δk · f−k (EVSIDS)
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BERKMIN’s Dynamic Second Order Heuristics 131

[GoldbergNovikov-DATE’02]

observation:

recently added conflict clauses contain all the good variables of VSIDS

the order of those clauses is not used in VSIDS

basic idea:

simply try to satisfy recently learned clauses first

use VSIDS to chose the decision variable for one clause

if all learned clauses are satisfied use other heuristics

intuitively obtains another order of localization (no proofs yet)

results are mixed (by some authors considered to be more robust than just VSIDS)
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Other Variable Scoring Variants 132

variable move to front strategy (VMTF)

Siege SAT Solver [Ryan’04]

easy and cheap to implement with doubly linked list

need pointer to last picked variable in queue

reset during back-tracking

rather aggressive

clause move to front strategy (CMTF)

HaifaSAT [GershanStrichman’08] variant keeps clauses in a queue

queue can also be used to find less important clauses to throw away

refined version in PrecoSAT [Biere’09] (multiple queues per glucose level
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How to Compute the Score? 133

SAT solver picks unassigned variable with largest score as next decision

consider only change of the score si of one variable v during i-th conflict

let βi = 1 if v is bumped in the i-th conflict otherwise 0

some possible variable score update functions:

static si+1 = si initialize score statically and do not change it

inc si+1 = si+βi this is in essence DLIS from Grasp

vmtf si+1 = i

sum si+1 = si+ i ·βi emphasis on recent conflicts unpublished

vsids si+1 = d · si+βi decay d ∈ [0,1) e.g. d = 0.95

evsids si+1 = si+gi ·βi, gi+1 = e ·gi factor e ∈ [1,2) e.g. e = 1.05

avg si+1 = si+βi · (i− si)/2 another filter function unpublished

last four share the idea of “low-pass filtering” of the involvement of variables

for this interpretation see our SAT’08 paper and the video

important practical issue: number of bumped variables is usually small
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Reduction Strategies 135

should not keep all learned clauses forever

some of them become useless

for instance subsumed or satisfied under learned units

were but are not anymore relevant to current search focus

memory consumption / BCP speed

throw unimportant learned clauses away (reduce)

in regular intervals (controlled by geometric, Luby, arithmetic scheme)

size heuristics: discard long clauses

least recently used (LRU): as in HW cache (see also CMTF)

clause scores with bumping scheme as for VSDIS (BerkMin)

glucose level: number decision levels in learned clause
called also LBD in original paper [AudemardLaurentSimon’09]
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Classical Other Types of Learning / Preprocessing / Inprocessing 136

similar to look-ahead heuristics: polynomially bounded search

may be recursively applied (however, is often too expensive)

Stålmarck’s Method

works on triplets (intermediate form of the Tseitin transformation):

x = (a∧b), y = (c∨d), z = (e⊕ f ) etc.

generalization of BCP to (in)equalities between variables

test rule splits on the two values of a variable

Recursive Learning (Kunz & Pradhan)

(originally) works on circuit structure (derives implications)

splits on different ways to justify a certain variable value
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Stålmarck’s Method 137

1. BCP over (in)equalities: x = y z = (x⊕ y)
z = 0

x = 0 z = (x∨ y)
z = y

etc.

2. structural rules: x = (a∨b) y = (a∨b)
x = y

etc.

3. test rule:

{x = 0}∪E
⇓

E0∪E

{x = 1}∪E
⇓

E1∪E
(E0∩E1)∪E

Assume x = 0, BCP and derive (in)equalities E0, then assume x = 1, BCP and derive
(in)equalities E1. The intersection of E0 and E1 contains the (in)equalities valid in any
case.
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Stålmarck’s Method Recursively 138

x = 0

⇓

x = 1

⇓

y = 0 y = 1 y = 0 y = 1

E00 E01 E10 E11

E0 E1

⇓⇓⇓⇓

E

(we do not show the (in)equalities that do not change)
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Stålmarck’s Method Summary 139

recursive application

depth of recursion bounded by number of variables

complete procedures (determines satisfiability or unsatisfiability)

for a fixed (constant) recursion depth k polynomial!

k-saturation:

apply split rule on recursively up to depth k on all variables

0-saturation: apply all rules accept test rule (just BCP: linear)

1-saturation: apply test rule (not recursively) for all variables
(until no new (in)equalities can be derived)
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Recursive Learning 140

circuits
0

0
output 0 implies middle input 0 indirectly

CNF

for each clause c in the CNF

for each literal l in the clause c

· assume l and propagate

· collect set of all implied literals (direct/indirect “implications” of l)

intersect these sets of implied literals over all l in c

literals in the intersection are implied without any assumption
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Variable Elimination 141

[DavisPutnam60][Biere SAT’04] [SubbarayanPradhan SAT’04] [EénBiere SAT’05]

use DP to existentially quantify out variables as in [DavisPutnam60]

only remove a variable if this does not add (too many) clauses

do not count tautological resolvents

detect units on-the-fly

schedule removal attempts with a priority queue [Biere SAT’04] [EénBiere SAT’05]

variables ordered by the number of occurrences

strenthen and remove subsumed clauses (on-the-fly)
(SATeLite [EénBiere SAT’05] and Quantor [Biere SAT’04])
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Fast (Self) Subsumption 142

for each (new or strengthened) clause

traverse list of clauses of the least occuring literal in the clause

check whether traversed clauses are subsumed or

strengthen traversed clauses by self-subsumption [EénBiere SAT’05]

use Bloom Filters (as in “bit-state hashing”), aka signatures

checking new clauses against existing clauses: backward (self) subsumption

new clause (self) subsumes existing clause

new clause smaller or equal in size

check clause being subsumed by existing clauses forward (self) subsumption

can be made more efficient by one-watcher scheme [Zhang-SAT’05]
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Variable Instantiation 143

[AnderssonBjesseCookHanna DAC’02] also in Oepir SAT solver, this is our reformulation

for all iterals l

for all clauses c in which l occurs (with this particular phase)

assume the negation of all the other literals in c, assume l

if BCP does not lead to a conflict continue with next literal in outer loop

if all clauses produced a conflict permanently assign ¬l

Correctness: Let c = l∨d, assume ¬d∧ l.

If this leads to a conflict d∨¬l could be learned (but is not added to the CNF).

Self subsuming resolution with c results in d and c is removed.

If all such cases lead to a conflict, ¬l becomes a pure literal.
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Autarkies 144

Generalization of pure literals.

Given a partial assignment σ.

A clause of a CNF is “touched” by σ if it contains a literal assigned by σ.

A clause of a CNF is “satisfied” by σ if it contains a literal assigned to true by σ.

If all touched clauses are satisfied then σ is an “autarky”.

All clauses touched by an autarky can be removed.

Example: (−1 2)(−1 3)(1 −2 −3)(2 5) · · · (more clauses without 1 and 3).

Then σ = {−1,−3} is an autarky.
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Blocked Clauses 145

[Kullman’99]

fix a CNF F

blocked clause C ∈ F all clauses in F with l̄

(l̄∨ ā∨ c)

(a∨b∨ l)

(l̄∨ b̄∨d)

since all resolvents of C on l are tautological C can be removed

Proof

assignment σ satisfying F\C but not C

can be extended to a satisfying assignment of F by flipping value of l
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Blocked Clauses and Encoding / Preprocessing Techniques 146

[JärvisaloBiereHeule-TACAS’10]

COI Cone-of-Influence reduction

MIR Monontone-Input-Reduction

NSI Non-Shared Inputs reduction

PG Plaisted-Greenbaum polarity based encoding

TST standard Tseitin encoding

VE Variable-Elimination as in DP / Quantor / SATeLite

BCE Blocked-Clause-Elimination
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Plaisted−Greenbaum encoding
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Inprocessing: Interleaving Preprocessing and Search 148

PrecoSAT [Biere’09], Lingeling [Biere’10], also in CryptoMiniSAT (Mate Soos)

preprocessing can be extremely beneficial

most SAT competition solvers use variable elimination (VE)
[EénBiere SAT’05]

equivalence / XOR reasoning

probing / failed literal preprocessing / hyper binary resolution

however, even though polynomial, can not be run until completion

simple idea to benefit from full preprocessing without penalty

“preempt” preprocessors after some time

resume preprocessing between restarts

limit preprocessing time in relation to search time
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Benefits of Inprocessing 149

special case incremental preprocessing:

preprocessing during incremental SAT solving

allows to use costly preprocessors

without increasing run-time “much” in the worst-case

still useful for benchmarks where these costly techniques help

good examples: probing and distillation even VE can be costly

additional benefit:

makes units / equivalences learned in search available to preprocessing

particularly interesting if preprocessing simulates encoding optimizations

danger of hiding “bad” implementation though . . .

. . . and hard(er) to debug and get right [JävisaloHeuleBiere’12]
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ZChaff Occurrence Stacks 150
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Average Number Clauses Visited Per Propagation 151
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Average Learned Clause Length 152
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Percentage Visited Clauses With Other Watched Literal True 153
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Limmat / FunEx Occurrence Stacks 154
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CompSAT / MiniSAT Occurrence Stacks 155
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invariant: first two literals are watched
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Average Number Literals Traversed Per Visited Clause 156
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MChaff / PicoSAT Occurrence Lists 157
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Occurrence Stacks for Binary Clauses 158
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Caching Potential Satisfied Literals (Blocking Literals) 159
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observation: often the other watched literal satisfies the clause

so cache this literals in watch list to avoid pointer dereference

for binary clause no need to store clause at all

can easily be adjusted for ternary clauses (with full occurrence lists)

LINGELING uses more compact pointer-less variant


