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Plan

Mon An invitation to SMT with Z3

Tue Equalities and Theory Combination 

Wed Theories: Arithmetic, Arrays, Data types

Thu Quantifiers and Theories

Fri Programming Z3: Interfacing and Solving



Quiz

Show: A difference logic graph without negative cycles has a 
model. Give a procedure for extracting a model. 

True or false: A formula over difference logic has a model 
over reals iff it has a model over integers?

Give an efficient algorithm to extract models for UTVPI over 
integers.

Encode lambda Calculus into 𝑚𝑎𝑝,𝐾, 𝑟𝑒𝑎𝑑 (without 𝐼).



Plan

• Arithmetic

• Arrays and friends

• Data types [Introduction]



What Theories?

EUF LRA LIA Arrays Bit-Vectors Alg. DTSAT

Overall aim: 

Rich Theories (and logics) with 
Efficient Decision Procedures

Strings Reg. Exprs. NRA NIA Floats f* *

BAPAMultiSets
homomor

phisms

Optimiz

ation
Orders Objects HOL

DLASPQueuesXDucersSequencesMSOLAuth



Be afraid!



Linear Real Arithmetic

• Many approaches

– Graph-based for difference logic:  a – b  3

– Fourier-Motzkin elimination:

– Standard Simplex

– General Form Simplex

– GDPLL [McMillan], 
Unate Resolution [Coton], 
Conflict Resolution [Korovin et.al.]



Difference Logic:   a – b  5

Very useful in practice!

Most arithmetical constraints in software 
verification/analysis are in this fragment.

x := x + 1

x1 = x0 + 1

x1 - x0  1, x0 - x1  -1   



Job shop scheduling



Difference Logic

Chasing negative cycles!

Algorithms based on Bellman-Ford (O(mn)).



Unit Two Variables Per Inequality 

𝑥 + 𝑦 ≤ 5 ∧ −𝑥 + 𝑦 ≤ −4 ∧ 𝑦 + 𝑦 ≥ 1



Unit Two Variables Per Inequality 

𝑥 + 𝑦 ≤ 5 ∧ −𝑥 + 𝑦 ≤ −4 ∧ 2𝑦 ≥ 1

2𝑦 ≤ 1 ∧ 2𝑦 ≥ 1



Unit Two Variables Per Inequality 

𝑥 + 𝑦 ≤ 5 ∧ −𝑥 + 𝑦 ≤ −4 ∧ 2𝑦 ≥ 1

2𝑦 ≤ 1 ∧ 2𝑦 ≥ 1

𝑦 ≤ 0 ∧ 𝑦 ≥ 1



Unit Two Variables Per Inequality: 
UTVPI

Reduce to Difference Logic:

• For every variable 𝑥 introduce fresh variables 
𝑥+, 𝑥−

• Meaning: 2𝑥 ≔ 𝑥+ − 𝑥−

• Rewrite constraints as follows:

• 𝑥 − 𝑦 ≤ 𝑘 ⇒  
𝑥+ − 𝑦+ ≤ 𝑘
𝑦− − 𝑥− ≤ 𝑘

•



UTVPI

• 𝑥 − 𝑦 ≤ 𝑘 ⇒  
𝑥+ − 𝑦+ ≤ 𝑘
𝑦− − 𝑥− ≤ 𝑘

• 𝑥 ≤ 𝑘 ⇒ 𝑥+ − 𝑥− ≤ 2𝑘

• 𝑥 + 𝑦 ≤ 𝑘 ⇒  
𝑥+ − 𝑦− ≤ 𝑘

𝑦+ − 𝑥− ≤ 𝑘

• 𝑥 + 𝑦 ≤ 𝑘 ⇒ chalkboard



UTVPI

𝑥 + 𝑦 ≤ 5 ∧ −𝑥 + 𝑦 ≤ −4 ∧ 2𝑦 ≥ 1

𝑥+ − 𝑦− ≤ 5 ∧ 𝑦+ − 𝑥− ≤ 5 ∧

−𝑥+ + 𝑦+ ≤ −4 ∧ 𝑥− − 𝑦− ≤ −4 ∧

𝑦− − 𝑦+ ≤ 1



UTVPI

• Solve for 𝑥+ and 𝑥−

• 𝑀(𝑥) ≔ (𝑀(𝑥+) − 𝑀(𝑥−))/2

• Nothing can go wrong…
2𝑦 ≤ 1 ∧ 2𝑦 ≥ 1



UTVPI

• 𝑀(𝑥) ≔ (𝑀(𝑥+) − 𝑀(𝑥−))/2

• Nothing can go wrong… as if

• What if: 

– 𝑥 is an integer 

–𝑀(𝑥+) is odd and 

–𝑀(𝑥−) is even

• Thm: Parity can be fixed iff there is no tight 
loop forcing the wrong parity 



𝑥− − 𝑦+ ≤ 5

𝑦+ − 𝑧− ≤ −6

𝑧− − 𝑥+ ≤ −2
𝑥+ − 𝑣+ ≤ 3
𝑣+ − 𝑥− ≤ 0

UTVPI

⇒ 𝑥− − 𝑥+ ≤ −3
𝑥+ − 𝑥− ≤ 3



General Form



From Definitions to a Tableau

s1  x + y,    s2  x + 2y
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From Definitions to a Tableau

s1  x + y,    s2  x + 2y

s1 = x + y,    

s2 = x + 2y

s1 - x - y   = 0    

s2 - x - 2y = 0



From Definitions to a Tableau

s1  x + y,    s2  x + 2y

s1 = x + y,    

s2 = x + 2y

s1 - x - y   = 0    

s2 - x - 2y = 0

s1, s2  are basic (dependent) 

x,y are non-basic



Pivoting

A way to swap a basic with a non-basic variable!

It is just equational reasoning.

Key invariant: a basic variable occurs in only one equation.

Example: swap s1 and y 

s1 - x - y   = 0    

s2 - x - 2y = 0



Pivoting

A way to swap a basic with a non-basic variable!

It is just equational reasoning.

Key invariant: a basic variable occurs in only one equation.

Example: swap s1 and y 

s1 - x - y   = 0    

s2 - x - 2y = 0

-s1 + x + y   = 0    

s2 - x - 2y = 0



Pivoting

A way to swap a basic with a non-basic variable!

It is just equational reasoning.

Key invariant: a basic variable occurs in only one equation.

Example: swap s1 and y 

s1 - x - y   = 0    

s2 - x - 2y = 0

-s1 + x + y   = 0    

s2 - x - 2y = 0

-s1 + x + y = 0    

s2 - 2s1 + x = 0



Pivoting

A way to swap a basic with a non-basic variable!

It is just equational reasoning.

Key invariant: a basic variable occurs in only one equation.

Example: swap s1 and y 

s1 - x - y   = 0    

s2 - x - 2y = 0

-s1 + x + y   = 0    

s2 - x - 2y = 0

-s1 + x + y = 0    

s2 - 2s1 + x = 0

It is just substituting 
equals by equals.



Pivoting

A way to swap a basic with a non-basic variable!

It is just equational reasoning.

Key invariant: a basic variable occurs in only one equation.

Example: swap s1 and y 

s1 - x - y   = 0    

s2 - x - 2y = 0

-s1 + x + y   = 0    

s2 - x - 2y = 0

-s1 + x + y = 0    

s2 - 2s1 + x = 0

It is just substituting 
equals by equals.

Definition:

An assignment (model) is a mapping from 
variables to values

Key Property:
If an assignment satisfies the 
equations before a pivoting 
step, then it will also satisfy 
them after!



Pivoting

A way to swap a basic with a non-basic variable!

It is just equational reasoning.

Key invariant: a basic variable occurs in only one equation.

Example: swap s2 and y 

s1 - x - y   = 0    

s2 - x - 2y = 0

-s1 + x + y   = 0    

s2 - x - 2y = 0

-s1 + x + y = 0    

s2 - 2s1 + x = 0

It is just substituting 
equals by equals.

Definition:

An assignment (model) is a mapping from 
variables to values

Key Property:
If an assignment satisfies the 
equations before a pivoting 
step, then it will also satisfy 
them after!

Example:
M(x) = 1
M(y) = 1
M(s1) = 2
M(s2) = 3



Equations + Bounds + 
Assignment



“Repairing Models”

If the assignment of a non-basic variable does not satisfy a 
bound, then fix it and propagate the change to all 
dependent variables.

a = c – d

b = c + d

M(a) = 0

M(b) = 0

M(c) = 0

M(d) = 0

1  c 

a = c – d

b = c + d

M(a) = 1

M(b) = 1

M(c) = 1

M(d) = 0

1  c 



“Repairing Models”

If the assignment of a non-basic variable does not satisfy a 
bound, then fix it and propagate the change to all 
dependent variables. Of course, we may introduce new 
“problems”.

a = c – d

b = c + d

M(a) = 0

M(b) = 0

M(c) = 0

M(d) = 0

1  c 

a  0

a = c – d

b = c + d

M(a) = 1

M(b) = 1

M(c) = 1

M(d) = 0

1  c

a  0



“Repairing Models”

If the assignment of a basic variable does not satisfy a 
bound, then pivot it, fix it, and propagate the change to its 
new dependent variables. 

a = c – d

b = c + d

M(a) = 0

M(b) = 0

M(c) = 0

M(d) = 0

1  a 

c = a + d

b = a + 2d

M(a) = 0

M(b) = 0

M(c) = 0

M(d) = 0

1  a 

c = a + d

b = a + 2d

M(a) = 1

M(b) = 1

M(c) = 1

M(d) = 0

1  a 



“Repairing Models”

Sometimes, a model cannot be repaired. It is pointless to 
pivot.

a = b – c

a  0, 1  b, c  0

M(a) = 1

M(b) = 1

M(c) = 0

The value of M(a) is too big. We can 
reduce it by:
- reducing M(b) 

not possible b is at lower bound
- increasing M(c)

not possible c is at upper bound



“Repairing Models”

s1  a + d, s2  c + d

a = s1 – s2 + c

a  0, 1  s1, s2  0, 0  c

M(a) = 1

M(s1) = 1

M(s2) = 0

M(c) = 0

Extracting proof from failed repair attempts is easy.



“Repairing Models”

s1  a + d, s2  c + d

a = s1 – s2 + c

a  0, 1  s1, s2  0, 0  c

M(a) = 1

M(s1) = 1

M(s2) = 0

M(c) = 0

Extracting proof from failed repair attempts is easy.

{ a  0, 1  s1, s2  0, 0  c } is inconsistent



“Repairing Models”

s1  a + d, s2  c + d

a = s1 – s2 + c

a  0, 1  s1, s2  0, 0  c

M(a) = 1

M(s1) = 1

M(s2) = 0

M(c) = 0

Extracting proof from failed repair attempts is easy.

{ a  0, 1  s1, s2  0, 0  c } is inconsistent

{ a  0,  1  a + d,  c + d  0,  0  c } is inconsistent





What are arrays?

• Applicative stores:

• Or, special combinator:

( , , )[ ]

( , , )[ ] [ ]

write a i v i v

i j write a i v j a j



  

( , , ) . ( , , [ ])write a i v j ite i j v a j 



What are arrays?

• Special combinator:

• Existential fragment is decidable by reduction 
to congruence closure using finite set of 
instances.

• Models for arrays are finite maps with default 
values.

( , , ) . ( , , [ ])write a i v j ite i j v a j 



What else are arrays?

• Special combinators:

• Result: Existential fragment is decidable and in NP by 
reduction to congruence closure using finite set of 

instances.

( , , ) . ( , , [ ])

( ) .

( , ) . ( [ ], [ ])
f

write a i v j ite i j v a j

K v j v

map a b j f a j b j







 







What else are arrays++?

• Extra special combinators:

• Easy to encode lambda calculus

( , , ) . ( , , [ ])

( ) .

( , ) . ( [ ], [ ])

.

f

write a i v j ite i j v a j

K v j v

map a b j f a j b j

I j j









 









What else are arrays++?

• Encoding lambda terms into CAL+:

• Where

[[ . ]] ( ,[[ ]]) ( , )

[[ ]] ( , ) ( )

[[( )]] ([[ ]],[[ ]]) ( , ( , )) ( ( , ), ( , ))
read f

x M tr x M tr x x I

x x tr x y K y

MN map M N tr x f M N map tr x M tr x N

  

 

 

, :: | . | ( )M N x x M MN

Exercise: encode lambda calculus without I

NB. Our procedure is going to assume that function passed to map is not from read.



Example translation

[[ .(( .( )) )]]

( ,[[(( .( )) )]])

( , ([[ .( )]],[[ ]]))

( , ([[ .( )]], ))

( , ( ( ,[[( )]]), ))

( , ( ( , ( , )), ))

( , ( ( (
read

read

read

read

read read

read map

x y yx x

tr x y yx x

tr x map y yx x

tr x map y yx x

tr x map tr y yx x

tr x map tr y map y x x

tr x map map tr

 



















( , ( ( , ( )), ))

( ( , ( , ( ))), ( , ))

( ( ( , ), ( , ( )))), )

( ( ( ), ( , ( )))), )

, ), ( , ))), ))

read

read read

read mapread

read mapread

read map

map map

map map

map map

ma

tr x map map I K x x

map tr x map I K x tr x x

map map tr x I tr x K x I

map map K I tr x K x I

map

y y tr y x x









 ( ( ( ), ( ( , ))), )

( ( ( ), ( )), )

read mapread

read mapread

p map K

map map K

map K I map tr x x I

map map K I map I I



… But there are arrays#:

• Restricted theory using I.

• Then:

• Theory of arrays# is decidable.

( ) .

( , , ) . ( [ ], [ ], [ ])

( , ) .( [ ] [ ])

.

ite

K v j v

map a b c j ite a j b j c j

map a b j a j b j

I j j















 



( , , ) ( ( ( ), ), ( ), )
ite

write a i v map map K i I K v a






Last combinator for the road…

• Can I access a default array value?

( )

( ( ))

( ( , )) ( ( ), ( ))

( ( , , )) ( )

f

a default

K v v

map a b f a b

write a i v a





  

 







 Only sound for infinite domains



Let’s use CAL:

• Simple set and bag operations:

• But not cardinality |A|, power-set 2A, …

min

(0)( )

{ } ( , ,1){ } ( , , )

( , ) [ ][ ]

( , )( , )

( , )( , )

( ) ( ( ) 0)( ) ( ( ) )

Bag

Bag

KK false

a write aa write a true

mult a A A aa A A a

A B map A BA B map A B

A B map A BA B map A B

finite A Afinite A A false 



















CAL: Arrays as Combinators

• McCarthy Arrays:

store/select

• Array 
combinators:

• Takeaway: A common procedure for Array 
Combinators

𝑠𝑒𝑙𝑒𝑐𝑡(𝑠𝑡𝑜𝑟𝑒 𝑎, 𝑖, 𝑣 , 𝑖) = 𝑣
𝑖 ≠ 𝑗 ⇒ 𝑠𝑒𝑙𝑒𝑐𝑡(𝑠𝑡𝑜𝑟𝑒 𝑎, 𝑖, 𝑣 , 𝑗) = 𝑠𝑒𝑙𝑒𝑐𝑡(𝑎, 𝑗)

𝑠𝑡𝑜𝑟𝑒 𝑎, 𝑖, 𝑣 ∶= 𝜆𝑗. 𝒊𝒇 𝑖 = 𝑗 𝒕𝒉𝒆𝒏 𝑣 𝒆𝒍𝒔𝒆 𝑠𝑒𝑙𝑒𝑐𝑡(𝑎, 𝑗)
𝑐𝑜𝑛𝑠𝑡 𝑣 ≔ 𝜆𝑖. 𝑣
𝑚𝑎𝑝𝑓 𝑎, 𝑏 ≔ 𝜆𝑖. 𝑓(𝑠𝑒𝑙𝑒𝑐𝑡 𝑎, 𝑖 , 𝑠𝑒𝑙𝑒𝑐𝑡 𝑏, 𝑖 )



A reduction-based approach

( )?
Array

Sat T 

( ( ) )?
Equality Array

Sat T Closure   

Use saturation rules to reduce arrays 

to the theory of un-interpreted functions

Extract models for arrays as finite graphs



Deciding store

For every sub-term 𝑠𝑡𝑜𝑟𝑒(𝑎, 𝑖, 𝑣), every index 𝑗 in 𝜑, add 
equation to 𝜑:

𝑠𝑒𝑙𝑒𝑐𝑡 𝑠𝑡𝑜𝑟𝑒 𝑎, 𝑖, 𝑣 , 𝑗 = 𝒊𝒇 𝑖 = 𝑗 𝒕𝒉𝒆𝒏 𝑣 𝒆𝒍𝒔𝒆 𝑠𝑒𝑙𝑒𝑐𝑡 𝑎, 𝑗

EUF model of 𝜑 => Array Model:

For each array a define 
𝑀𝑎𝑟𝑟𝑎𝑦 𝑎 ∶= { 𝑀(𝑖) → 𝑀(𝑠𝑒𝑙𝑒𝑐𝑡(𝑎, 𝑖)), 𝑒𝑙𝑠𝑒 → 𝑴𝒂 }

where select(a,i) occurs in 𝜑.



Deciding store

For each array a in 𝜑 define 
𝑀𝑎𝑟𝑟𝑎𝑦 𝑎 ∶= { 𝑀(𝑖) → 𝑀(𝑠𝑒𝑙𝑒𝑐𝑡(𝑎, 𝑖)), 𝑒𝑙𝑠𝑒 → 𝑴𝒂 }

Does M satisfy axioms for store?

𝑀(𝑠𝑡𝑜𝑟𝑒(𝑎, 𝑖, 𝑣)) = 𝜆 𝑗. 𝒊𝒇 𝑀(𝑖) = 𝑗 𝒕𝒉𝒆𝒏 𝑀(𝑣) 𝒆𝒍𝒔𝒆 𝑀(𝑠𝑒𝑙𝑒𝑐𝑡(𝑎, 𝑗))

Recall, we added 

𝑠𝑒𝑙𝑒𝑐𝑡 𝑠𝑡𝑜𝑟𝑒 𝑎, 𝑖, 𝑣 , 𝑗 = 𝒊𝒇 𝑖 = 𝑗 𝒕𝒉𝒆𝒏 𝑣 𝒆𝒍𝒔𝒆 𝑠𝑒𝑙𝑒𝑐𝑡 𝑎, 𝑗

Thus, 𝑀(𝑠𝑒𝑙𝑒𝑐𝑡 𝑠𝑡𝑜𝑟𝑒 𝑎, 𝑖, 𝑣 , 𝑗 )

= 𝑀 𝒊𝒇 𝑖 = 𝑗 𝒕𝒉𝒆𝒏 𝑣 𝒆𝒍𝒔𝒆 𝑠𝑒𝑙𝑒𝑐𝑡 𝑎, 𝑗

= 𝒊𝒇 𝑀(𝑖) = 𝑀(𝑗) 𝒕𝒉𝒆𝒏 𝑀(𝑣) 𝒆𝒍𝒔𝒆 𝑀(𝑠𝑒𝑙𝑒𝑐𝑡(𝑎, 𝑗))



Extesionality

∀𝑎, 𝑏 ∀𝑖 . 𝑠𝑒𝑙𝑒𝑐𝑡 𝑎, 𝑖 = 𝑠𝑒𝑙𝑒𝑐𝑡 𝑏, 𝑖 ⇒ 𝑎 = 𝑏

Not automatically satisfied by basic decision 
procedure.

Skolemized: 
∀𝑎, 𝑏 𝑠𝑒𝑙𝑒𝑐𝑡 𝑎, 𝛿(𝑎, 𝑏) = 𝑠𝑒𝑙𝑒𝑐𝑡 𝑏, 𝛿(𝑎, 𝑏) ⇒ 𝑎 = 𝑏

Add instance for every pair a, b.



More Efficiently Deciding store

• a~b – a and b are equal in current context

• a≡t – a is a name for the term t



What makes it more Efficient?

• Axioms for store are only added 
by the model induced by EUF



Bottlenecks

• Extensionality axiom 
is instantiated on 
every pair of array 
variables.

• Upwards propagation 
distributes index over 
all modifications of 
same array.



Bottlenecks and 

Bottleneck: 
Extensionality axiom is 
instantiated on every 
pair of array variables.

Optimization: Restrict to 
variables asserted 
different, or shared.



Bottlenecks and 

• Bottleneck: Upwards 
propagation distributes 
index over all 
modifications of same 
array.

• Optimization: Only use 
 for updates where 
ancestor has multiple 
children. Formulas from 
programs are well-
behaved.



Saturating K, map, 



Algebraic Data types



Scalars, Tuples and Composites

Fruit = Apple | Orange | Banana

Person = { name : String, age : Int, sex : M | F }

IntOption = Some of { ofSome : Int } | None



Recursive and Mutual Recursive 
types

List = Nil | Cons of { head : Int, tail : List }

Ping = DropP | WinP | Pi of { pong : Pong }

Pong = WinP | DropP | Po of { ping : Pong } 



ADTs: Algebraic Data-types

• Constructors are injective:

– head(cons(x,xs)) = x

– tail(cons(x,xs)) = xs

• Terms are well-founded:

– 𝑥𝑠 ≠ 𝑐𝑜𝑛𝑠 𝑥, 𝑥𝑠

– 𝑥𝑠 ≠ 𝑐𝑜𝑛𝑠(𝑥, 𝑐𝑜𝑛𝑠 𝑦, 𝑥𝑠 )

– 𝑥𝑠 ≠ 𝑐𝑜𝑛𝑠(𝑥, 𝑐𝑜𝑛𝑠 𝑦, 𝑐𝑜𝑛𝑠(𝑧, 𝑥𝑠 ))

– 𝑥𝑠 ≠ 𝑐𝑜𝑛𝑠(𝑥, 𝑐𝑜𝑛𝑠 𝑦, 𝑐𝑜𝑛𝑠(𝑧, 𝑐𝑜𝑛𝑠(𝑢, 𝑥𝑠 )))



ADTs

• Outline of a decision Procedure:

– Force injectivity:

• For cons(t1,t2) add lemmas: 
– head(cons(t1,t2)) = t1

– tail(cons(t1,t2)) = t2

– Build pre-model for constants of data-type sort.

• x = Nil  y = Nil z = Nil

– Perform occurs check in each equivalence class.

• Q: can there be two constructors in an equivalence 
class?


