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Plan

Mon An invitation to SMT with Z3

Tue Equalities and Theory Combination

Wed Theories: Arithmetic, Arrays, Data types
Thu Quantifiers and Theories

Fri Programming Z3: Interfacing and Solving



Quiz

Show: A difference logic graph without negative cycles has a
model. Give a procedure for extracting a model.

True or false: A formula over difference logic has a model
over reals iff it has a model over integers?

Give an efficient algorithm to extract models for UTVPI over
integers.

Encode lambda Calculus into map, K, read (without I).



Plan

e Arithmetic

* Arrays and friends



What Theories?

Overall aim:

Rich Theories (and logics) with
Efficient Decision Procedures
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Be afraid!

ow.epfl.ch/~piskac/softwa 0 ~ B & X

-

= MUNCH - Automated Reas... * -

The MUNCH Tool: automated reasoner for collections

This is the web page for the MUNCH tool.
Currently the following is available for download:

m

o paper describing the
tool

 implementation

« some examples and
their output

Examples are written in the separate file
(examples.itxt). The tool then parses this input
into a language corresponding to the grammar
described in the paper and in the file
ASTMultisets.scala. MUNCH invokes z3 .

Playing with the MUNCH tool

The MUNCH tool is written in Scala
and for testing MUNCH you need to
have Scala installed. To run MUNCH,
on your machine, first download the




Linear Real Arithmetic

* Many approaches
— Graph-based for difference logic: a—b <3
— Fourier-Motzkin elimination:
ty <ax, bxr <ty = bt; < ats
— Standard Simplex
— General Form Simplex

— GDPLL [McMillan],
Unate Resolution [Coton],
Conflict Resolution [Korovin et.al.]



Difference Logic: a—b <5

Very useful in practice!

Most arithmetical constraints in software
verification/analysis are in this fragment.



Job shop scheduling

d; ; | Machine 1 Machine 2
Job 1 2 1
Job 2 3 1
Job 3 2 3
mar = 8
Solution
t11=05, =7, ta1 =2,

t22 = 06,

t31 =0, t32 =3

Encoding
tin > 0)A(tie >t +2)A
t21 > 0) A (t2.2 > t21 +3) A
ts,1 > 0) A (ta2 > t31 +2) A
(t1 > to1 +3)V (t21 > t11 +2)) A
(tin >t31+2)V (t31 > t11 +2))

(t21 > 131 +2) V (tag > t21 4+ 3)) A
(ti2 > tao+ 1)V (tao > tio+ 1)) A
(tio > t32+3)V(tso > tio+ 1)) A
(t22 2 ta2 +3) V (ta2 > ta2 + 1))
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(t12+1<8)A
(t22+1<8) A
(tz2+3 < 8) A



3,2
t3,1
t2.1
t1,1

Difference Logic

Chasing negative cycles!
Algorithms based on Bellman-Ford (O(mn)).
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Unit Two Variables Per Inequality

X+y<5A—x+y<—-4Ay+y=>1



Unit Two Variables Per Inequality

X+y<5SA—x+y<-—-4A2y=>1

2y <1A2y =1



Unit Two Variables Per Inequality

X+y<5SA—x+y<-—-4A2y=>1
2y <1A2y =1

y<0Ay=1



Unit Two Variables Per Inequality:
UTVPI

Reduce to Difference Logic:

* For every variable x introduce fresh variables
xt, x~

* Meaning: 2x = xt — x~

* Rewrite constraints as follows:

* x —y< k =;




x+ y< k = chalkboard



UTVPI

X+y<5SA—x+y<-—-4A2y=>1

xT —y" <5AyT—x" <5A



UTVPI

 Solve for x™ and x~
* M(x) = M(x")—M(x7))/2

* Nothing can go wrong...
2y <1A2y =1



UTVPI

M(x) = M(x") —M(x7))/2
Nothing can go wrong... as if
What if:

— X IS an integer
— M(x™) is odd and
— M(x™) is even

Thm: Parity can be fixed iff there is no tight
loop forcing the wrong parity



UTVPI
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General Form

General Form: Az = 0 and Zj S XS U
Example:

x>0, (r+y<2Vae+2y>6),(r+y=2Var+22y>4)
>

S1 =T+ Y,S9 = x+ 21,

r>0,(81 <2V >06),(5g =2V sy >4)
Only bounds (e.g., s; < 2) are asserted during the search.

Unconstrained variables can be eliminated before the beginning of

the search.



From Definitions to a Tableau

S;=X+Y, S,=X+2y



From Definitions to a Tableau

S;=X+Y, S,=X+2y

L

S, =X+Y,
S, =X+ 2y



From Definitions to a Tableau

S;=X+Y, S, =X+2y

L

S, =X+Y,
S, =X+ 2y

U

s,-xXx-y =0
S, -X-2y=0



From Definitions to a Tableau

S;=X+Y, S, =X+2y

L

S, =X+Y,
S, =X+ 2y

U

s,-Xx-y =0 s, s, are basic (dependent)
s,-x-2y=0 XYy are non-basic



Pivoting

A way to swap a basic with a non-basic variable!
It is just equational reasoning.

Key invariant: a basic variable occurs in only one equation.
Example: swap s, and y

s;-X-y =0

S,-X-2y=0



Pivoting

A way to swap a basic with a non-basic variable!
It is just equational reasoning.

Key invariant: a basic variable occurs in only one equation.
Example: swap s, and y

s;-X-y =0

S,-X-2y=0

s, +x+y =0
S,-X-2y=0



Pivoting

A way to swap a basic with a non-basic variable!
It is just equational reasoning.

Key invariant: a basic variable occurs in only one equation.
Example: swap s, and y

s;-X-y =0
S,-X-2y=0

s, +x+y =0
S,-X-2y=0
s, +x+y =0
S,-25;+x=0



Pivoting

A way to swap a basic with a non-basic variable!
It is just equational reasoning.

Key invariant: a basic variable occurs in only one equation.
Example: swap s, and y

s;-X-y =0

It is just substituting
S,-X-2y=0

equals by equals.
s, +x+y =0
S,-X-2y=0
s, +x+y =0
S,-25;+x=0



Definition:

An assignment (model) is a mapping from
variables to values

A way to swap a basic with a non-basic variable!

It is just equational reasoning.

Key invariant: a basic variable occurs in only one equation.

Example: swap s, and y
s;-X-y =0
S,-X-2y=0

It is just substituting
equals by equals.

s, +x+y =0

S,-X-2y=0 <« Key Property:
@ If an assignment satisfies the
equations before a pivoting
step, then it will also satisfy
them after!

s, +x+y =0
S,-25;+x=0




Definition:

An assignment (model) is a mapping from
variables to values

A way to swap a basic with a non-basic variable!
It is just equational reasoning.

Key invariant: a basic variable occurs in only one equation.
Example: swap s, and y

Example:
M(x) =1
M(y) =1
M(s,) =2
M(s,) =3

7

s;-X-y =0
S,-X-2y=0

s, +x+y =0

It is just substituting
equals by equals.

S, -X-2y=0 <——

o

s, +x+y =0

Key Property:

If an assignment satisfies the
equations before a pivoting
step, then it will also satisfy
them after!




Equations + Bounds +
Assignment

An assignment (model) is a mapping from variables to values.
We maintain an assignment that satisfies all equations and bounds.

The assignment of non dependent variables implies the

assignment of dependent variables.
Equations + Bounds can be used to derive new bounds.
Example: 2 =y — 2, y <2, 223 ~x < —1.

The new bound may be inconsistent with the already known
bounds.

Example: ©+ < —1, x > 0.



“Repairing Models”

If the assignment of a non-basic variable does not satisfy a
bound, then fix it and propagate the change to all
dependent variables.

a=c—d a=c—d
b=c+d b=c+d
M(a) =0 j> M(a) =1
M(b) =0 M(b) = 1
M(c) =0 M(c) = 1
M(d) =0 M(d)=0



“Repairing Models”

If the assignment of a non-basic variable does not satisfy a
bound, then fix it and propagate the change to all
dependent variables. Of course, we may introduce new
“problems”.

a=c—d a=c—d
b=c+d b=c+d
M(a) =0 :> M(a) = 1
M(b) =0 M(b) = 1
M(c)=0 M(c) = 1
M(d) =0 M(d)=0
1<c 1<c



“Repairing Models”

If the assignment of a basic variable does not satisfy a
bound, then pivot it, fix it, and propagate the change to its
new dependent variables.

a=c—d c=a+d c=a+d
b=c+d b=a+2d b=a+2d
M(a)=0 M(a)=0 M(a)=1
M(b) =0 M(b)=0 M(b)=1
M(c)=0 M(c)=0 M(c)=1

M(d) =0 M(d) =0 M(d) =0
1<a 1<a 1<a



“Repairing Models”

Sometimes, a model cannot be repaired. It is pointless to
pivot.

a=b-c
a<0,1<b,c<0
M(a)=1

M(b) =1
M(c)=0



“Repairing Models”

Extracting proof from failed repair attempts is easy.
s;,=a+d,s,=c+d

a=s;,—S,+C

a<0,1<s,s5,<0,0<c

M(a) =1
M(s,) =1
M(s,) =0

M(c)=0



“Repairing Models”

Extracting proof from failed repair attempts is easy.
s;=a+d,s,=c+d
a=s;,—S,+C
a<0,1<s,s5,<0,0<c
M(a)=1
M(s,) =1
M(s,) =0
M(c)=0

{a<0,1<s,5,<0,0<c}isinconsistent



“Repairing Models”

Extracting proof from failed repair attempts is easy.
s;,=a+d,s,=c+d
a=s,—S,+C
a<0,1<s,5,<0,0<c
M(a)=1
M(s,) =1
M(s,) =0
M(c)=0

{a<0,1<s,5,<0,0<c}isinconsistent

{a<0, 1<a+d, c+d<0, 0<c}isinconsistent
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What are arrays?

* Applicative stores:
write(a,1,Vv)[i] =V

| = | = write(a,1,v)[j]=a]]]

* Or, special combinator:

write(a,i,v) = A j.ite(i = j,v,a[j])



What are arrays?

e Special combinator:

write(a,i,v) = Aj.ite(i = j,v,a[j])

* Existential fragment is decidable by reduction
to congruence closure using finite set of
Instances.

 Models for arrays are finite maps with default
values.



What else are arrays?

e Special combinators:

write(a,i,v) = A j.ite(i = j,v,a[j])
K(v)=4].v

map, (a,b) =4].1(a[]].b[]])
* Result: Existential fragment is decidable and in NP by
reduction to congruence closure using finite set of

instances.



What else are arrays++?

e Extra special combinators:
write(a,I,v) = A j.te(i = J,v,a[]])

K(v)=A4)Vv
map, (a,b) =4 ].1(a[]].b[]])
| =1].]

* Easy to encode lambda calculus



What else are arrays++?

* Encoding lambda terms into CAL+:

[[AXM]]=tr(x,[[M]]D tr(x, x) =1
[[X]]=x tr(x,y) = K(y)
[[(MN)]] =map,q ([([MILIIN]D) | tr(x, T (M, N)) =map, (tr(x, M), tr(x, N))

* Where
M,N :=Xx|AXM | (MN)

Exercise: encode lambda calculus without |
NB. Our procedure is going to assume that function passed to map is not from read.



Example translation

[[AX.((Ay.(yx))x)]]

=tr(x,[[((Ay.(yx))x)]])

=tr(x,map,., ([[4y.(y)]LI[x]]))
=tr(x,map,, ([[4y.(yx)]]. X))

=tr(x,map,.q (tr (y.[[(yx)]]), X))

= tr(X, map ;4 (tr(y, map,..q (¥, X)), X))
=tr(x,map,,, (Map,,, (tr(y,y),tr(y,x))),x))

= tr (X, Map g (Map,, _ (1,K (X)), X))
=map,,, . (tr(x;map,,, (1,K()),tr(xx)
=map,,,_ (Map,,,_ (tr(x,,tr(x,K(x),1)
=map,,,_ (Map,,, _ (K(.tr(x,K(x)).1)

= map,,,,_ (Map,,, _ (K(I),map, (tr(xx)). 1)
=map,,,  (Map,,,, (K(1),map, (1)), 1)



... But there are arrays

* Restricted theory using /.
K(v)=A41)Vv

map.(a,b,c) = 4 J.ite(al]],b[J].c[ 1])
map_(a,b) = 4).(alJ]=b[J])
l=4).)

e Then: write(a,1,v) =map., (map_(K (i), 1), K(v),a)
* Theory of arrays# is decidable.



Last combinator for the road...
* Can | access a default array value?

o(a)—default

o(K(v))=v
o(map; (a,b)) = F(5(a),5(b))

o(write(a,I,v)) =0o(a) Only sound for infinite domains



Let’s use CAL:

* Simple set and bag operations:

% i K ( false) D g | K(0)
{a} 1 write(, a,true) {a} 1 write(,a,l)
aeA [ Ala] mult(a,A) U Ala]
AuB [ map,, (A, B) ADB J map, (A B)
AnB L map, (A, B) AIIB J map_. (A,B)
finite(A) O (J0(A)= false) | finiteg,,(A) U  (6(A)=0)

* But not cardinality [A/, power-set 24, ...



CAL: Arrays as Combinators

° Mcca rthy ArrayS: select(store(a,i,v),i) = v
i # ] = select(store(a,i,v),j) = select(a,j)

store/select

store(a,i,v) := Aj.if i = j then v else select(a,j)
¢ Array const(v) = M. v
com b | nators: mapg(a,b) = AL f(select(a,i), select(b,1))

* Takeaway: A common procedure for Array
Combinators



A reduction-based approach

Sat(T . AP)7?

Use saturation rules to reduce arrays
to the theory of un-interpreted functions

Sat(T AClosure,, . (@) Ap)?

Equality
Extract models for arrays as finite graphs

partitions:
A —> true
—» false
{a2y —» {=4 > »5; =7 -3 #12; else —> =133
faly —> (=7 —>» #12; else —> =133

4 {il>x —> 1
vl —> 2
b {adr —» {xd —> =L *7} -3 =8 else —> =13>
1i2 jr —-» 3
w2y —» 7
{adry —» (=4 —» =5; *} -5 =8; =10 - =11; else —> =137




Deciding store

For every sub-term store(a, i, v), every index j in ¢, add
equation to ¢:

select(store(a,i,v),j) = if i = j then v else select(a,j)
EUF model of ¢ => Array Model:

For each array a define
Marray(a) := {M(i) - M(select(a,i)), else > ...}

where select(a,i) occurs in @.



Deciding store

For each array a in @ define
Marray(a) := {M(i) - M(select(a,i)), else > &,,}

Does M satisfy axioms for store?
M(store(a,i,v)) = Aj. if M(i) = jthen M(v) else M(select(a,j))
Recall, we added
select(store(a,i,v),j) = if i = j then v else select(a,j)

Thus, M (select(store(a,i, v),j))
— M(ifi = jthenv else Select(a,j))
=if M(i) = M(j) then M(v) else M(select(a,j))



Extesionality

Va,b ((Vi .select(a,i) = select(b, i)) =>a= b)

Not automatically satisfied by basic decision
procedure.

Skolemized:
Va,b ((select(a, §(a, b)) = select(b,5(a, b)) = a = b)

Add instance for every pair a, b.



More Efficiently Deciding store

* a~b—a and b are equal in current context

e g=t —ais aname fortheterm t

a = store(b,i,v)

idx

-!4:!'] ~
a = store(b,i,v), w=a'lj], a~da
i j Valj] = blj]
a = store(b,i,v), w=b[j], b~V
i ~ 7V alj] = blj]
a:(o=T1), bilo=T1)

a=bvalksp #blkas

fr

ext



What makes it more Efficient?

* Axioms for store are only added
by the model induced by EUF



Bottlenecks

* Extensionality axiom
is instantiated on

a: (o=71), b{o=T1) .
X = bV alkas] Z blkas) every pair of array
variables.
o a=storelbiv), w=Vj], b * Upwards propagation
i = j Valj] =b[j] distributes index over

all modifications of
same array.



Bottlenecks 2

S Bottleneck:
a: (o=71), b{o=T1) . . . .
Y Sy A P Extensionality axiom is
instantiated on every
pair of array variables.
ext p=ax=b, TI'(p)="false
a>~bValkap| #

blka,b Optimization: Restrict tc
a:(o=7). bi(o=7). {a.b}Cforeign variables asserted
a~bValkepl 2 blkap] d|ﬂ:erent, or Shared

ext,




Bottlenecks

* Bottleneck: Upwards
propagation distributes
index over all
modifications of same
array.

a = store(b,i,v), w=bj], b~¥

i ~ jValj] = blj]

* Optimization: Only use
a = store(b,i,v), w="V[j], b~b', be& non-linear ﬂ for Updates where

i~ jValj] = b[j ancestor has multiple
children. Formulas from

programs are well-
behaved.



Saturating K, map, o

a=Kw), w=dljl, a~d

K =
aljl
" a=map(by,.... bn), w=dlj], a~d
map _ .
alj] = f(b1[j],- .-, bnjl)
a=maps(by..... bn), w=0bL[jl,
b ~ b}, for some ke {l,.... n}
map :
alj| >~ f(bilj],.... bnljl)
v=ali]l, i:0, 11isnot e, Ca(o=T1)
€ €

; 0
€a X1 aleq] == 0q



Algebraic Data types



Scalars, Tuples and Composites

Fruit = Apple | Orange | Banana
Person = { name : String, age : Int, sex: M | F }

IntOption = Some of { ofSome : Int } | None



Recursive and Mutual Recursive
types

List = Nil | Cons of { head : Int, tail : List }

Ping = DropP | WinP | Pi of { pong : Pong }
Pong = WinP | DropP | Po of { ping : Pong }



ADTs: Algebraic Data-types

* Constructors are injective:
— head(cons(x,xs)) = x
— tail(cons(x,xs)) = xs
* Terms are well-founded:
— xs # cons(x, xs)
— xs # cons(x,cons(y, xs))
— xs # cons(x, cons(y, cons(z,xs)))
— xs # cons(x, cons(y, cons(z, cons(u, xs))))



ADTs

e Qutline of a decision Procedure:
— Force injectivity:
e For cons(t1,t2) add lemmas:

— head(cons(t1,t2)) = t1
— tail(cons(t1,t2)) =t2

— Build pre-model for constants of data-type sort.
* x=Nil y=Nil z=Nil

— Perform occurs check in each equivalence class.

* Q: can there be two constructors in an equivalence
class?



