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Abstract

Multiview modeling languages like UML are a very powerful tool to deal with the
ever increasing complexity of modern software systems. By splitting the descrip-
tion of a system into different views—the diagrams in the case of UML—system
properties relevant for a certain development activity are highlighted while other
properties are hidden. This multiview approach has many advantages for the
human modeler, but at the same time it is very susceptible to various kinds of
defects that may be introduced during the development process. Besides defects
which relate only to one view, it can also happen that two different views, which
are correct if considered independently, contain inconsistent information when
combined. Such inconsistencies between different views usually indicate a defect
in the model and can be critical if they propagate up to the executable system.

In this paper, we present an approach to formally verify the reachability of
a global state of a set of communicating UML state machines, i.e., we present a
solution for an intradiagram consistency checking problem. We then extend this
approach to solve an interdiagram consistency checking problem. In particular,
we verify whether the message exchange modeled in a UML sequence diagram
conforms to a set of communicating state machines.

For solving both kinds of problems, we proceed as follows. As a first step,
we formalize the semantics of UML state machines and of UML sequence dia-
grams. In the second step, we build upon this formal semantics and encode both
verification tasks as decision problems of propositional logic (SAT) allowing the
use of efficient SAT technology. We integrate both approaches in a graphical
modeling environment, enabling modelers to use formal verification techniques
without any special background knowledge. We experimentally evaluate the

∗Corresponding authors
Email addresses: kaufmann@big.tuwien.ac.at (Petra Kaufmann),

kronegger@dbai.tuwien.ac.at (Martin Kronegger), pfandler@dbai.tuwien.ac.at (Andreas
Pfandler), martina.seidl@jku.at (Martina Seidl), widl@kr.tuwien.ac.at (Magdalena Widl)

Preprint submitted to Elsevier November 27, 2015



scalability of our approach.

Keywords: Multiview Modeling, Unified Modeling Language, Consistency
Checking, SAT Encodings

1. Introduction

A major difference between traditional software engineering and model-
driven engineering (MDE) [5] lies in the nature of the core development artifacts.
These artifacts, which in traditional software engineering comprise mainly tex-
tual code, are represented by (visual) software models in MDE. Often software
models are expressed in multiview modeling languages like the Unified Modeling
Language (UML)[25], where a focused view on specific aspects (e.g., behavioral
or structural aspects) of the system under consideration is given. The goal of
MDE is to leverage the abstraction power offered by software models to deal
with the complexity of modern software systems [3], and to further exploit the
models to automatically generate executable code with little or no intervention
of a human developer [28].

The increasing valorization of software models imposes stronger demands
and expectations on their correctness. In their role as core development arti-
facts, software models are increasingly sensitive to the impact of evolution and
therefore more exposed to the introduction of errors [13]. Especially the ab-
straction power of multiview modeling languages as offered by UML bears the
danger of introducing inconsistencies into the model under development [22].

Inconsistent software models can be the root of severe problems if they are
employed for automatic code generation because inconsistencies can propagate
to the executable system and result in serious errors in the application. Hence,
if the diagrams do not complement each other in a consistent manner, then the
benefits of multiview modeling will decrease or even vanish [28]. Due to the
multiview nature and the size of software models, inconsistencies are often hard
to spot for a human developer. Especially when the models are not directly ex-
ecutable or when no simulation environment is available, testing and debugging
is difficult. Here, formal verification methods can help to ensure that the models
fulfill intradiagram and interdiagram consistency criteria, i.e., the consistency
is ensured within one diagram and between different diagrams, respectively.

In this paper, we first consider the following intradiagram consistency check-
ing problem: For a set of communicating state machines, which describe the
internal behavior of objects, we check if it is consistent to assume that a spe-
cific system configuration, i.e., a (partial) global state, is reachable from the
initial state. If the answer is affirmative, then the respective execution path is
returned. Hence, the (partial) global states are test cases, asserting allowed or
forbidden system configurations.

We then extend this intradiagram consistency checking problem to an inter-
diagram consistency checking problem of state machines and sequence diagrams.
Sequence diagrams focus on interaction scenarios between different instances of
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classes and the respective state machines. These scenarios model either required
or forbidden message exchange. Our approach verifies whether the communica-
tion described by a sequence diagram can be executed by a given set of state
machines in a state reachable from the initial state. If a forbidden sequence of
messages can be executed, then a concrete communication trace is returned. If a
sequence of messages is not possible although according to the sequence diagram
it should be, then a reason for the failure is given. On this basis, inconsistencies
introduced during the evolution of a model cannot only be discovered easily, but
also be corrected immediately. Hence, sequence diagrams are test cases describ-
ing desired or undesired behavior of the state machines. With our approach
the test cases can be evaluated even if no execution environment for the state
machines is available.

A crucial ingredient for an implementation of the above mentioned consis-
tency checks is a well-defined, formal semantics of the diagrams types that are
to be verified. Therefore, we first introduce a formal semantics for UML state
machines and UML sequence diagrams, and then we propose an approach to
solve the consistency problems based on a reduction to the satisfiability problem
of propositional logic (SAT) [4]. For SAT powerful solvers are available, which
can successfully be used out of the box in many applications.

This paper is structured as follows. First, we review related approaches in
Section 2. Then we motivate this work with a concrete example in Section 3
and informally explain the modeling language concepts relevant for this work.
In Section 4 we give a concise formal problem definition. To this end, we for-
mally describe sequence diagrams and state machines along with their interplay.
Further, we introduce the notion of global state reachability and sequence consis-
tency, which are essential for our problem definitions. These problem definitions
allow us to come up with a translation of the consistency checking problems to
propositional formulas, which can be handed to a SAT solver (Section 5). In
Section 6 we discuss the implementation based on the Eclipse Modeling Frame-
work and in Section 7 we present a detailed evaluation on randomly generated
and on crafted models. Finally, we conclude with an outlook on future work.

This paper is an extended and revised version of our SLE 2014 [17] pa-
per. Besides details on the technical realization and further experiments, we
present the complete workflow of our verification framework. This includes en-
hancements of the global state checking approach, which was presented at the
MoDeVVa 2013 Workshop [16].

2. Related Work

We consider two different streams of work related to our approach. On the
one hand, we review literature on reachability checking for state machines and
on the other hand we give an overview on approaches for consistency checking
between state machines and sequence diagrams.

Reachability Checking. Several works have been presented which deal with the
transformation of UML state machines to input languages of model checkers (see
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for example [1, 9, 18, 21, 24]). These languages provide high-level constructs to
model software systems and in many aspects they provide similar constructs as
modeling languages like UML do, in particular UML state machines.

However, one of the major challenges of such approaches is to overcome
semantic heterogeneities. This has already been recognized by Niewiadomski
et al., who propose an encoding to propositional logic for bounded reachability
analysis of state machines, which they show to be more efficient than translations
to standard model checkers [23]. In this paper, we follow the approach of [23] to
encode the reachability problem to SAT, but propose an alternative encoding
where we formulate the reachability analysis problem of UML state machines
inspired by encodings as used for solving planning problems [27]. As a result,
we obtain an intuitive encoding which allows us to directly extract a path from
the initial state to the given global state if it is reachable.

Consistency Checking between State Machines and Sequence Diagrams. In our
previous work [6, 7], we employed Spin to ensure that given traces do not occur
during the execution of a set of state machines. With this encoding we could
not ensure that a given message sequence is possible, and we had to overcome
the semantic differences of UML state machines and Promela constructs.

Many other formal approaches have been presented to check the consistency
between different diagrams, but most of the implementations do not seem to
have gone beyond a proof of concept state and are either not updated to UML
2.x or are not available at all. We summarize the approaches most related to our
work in the following. For a detailed discussion we refer the reader to compre-
hensive surveys [14, 22, 32]. Lam and Vitus [19] present an algebraic approach
to express the consistency checking problem in the π-calculus. The practical re-
alizability of the approach is not discussed. Van der Straeten et al. [33] propose
to use description logics to formally describe the consistency between class dia-
grams, sequence diagrams, and state machines. Compared to SAT, description
logics are more expressive in general, but their satisfiability checking problem
is located in higher complexity classes than NP. Bernardi et al. propose to use
Petri nets to check the consistency between different diagrams [2]. Commu-
nication, however, is only considered at the class level and not at the object
level. Engels et al. [11] propose to check consistency by evaluating dedicated
consistency constraints represented in form of collaborations. For this purpose,
an interpreter is provided. Egyed [10] applies instant consistency validation by
rules formulated in OCL which shows to be very efficient on large models. For
capturing the same kind of inconsistency, which we deal with in this paper,
however, a temporal extension of OCL is necessary.

A different approach for consistency checking is presented by Graaf and Van
Deursen [15] who suggest to synthesize a state machine from given sequence
diagrams and then compare the automatically derived state machine to the
state machine implemented by the developers. The comparison step has to
be performed manually because naturally, there are many mismatches between
the automatically generated and the manually developed state machines. Feng
and Vangheluwe propose to use a simulation-based approach for consistency
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Figure 1: Three state machines modeling a PhD student, a coffee machine, and a maintenance
unit.

checking [12].
Besides checking the consistency between state machine diagrams and se-

quence diagrams, a lot of effort has been spent for consistency checking between
other diagrams like class diagrams, collaboration diagrams, activity diagrams,
etc. We refer to [14, 22, 32] for detailed surveys.

3. A Motivating Example

To motivate our work we present an intuitive example before introducing
the formal definitions of the problems and the details of our encodings. Fig. 1
shows three state machines that describe the behaviors of a PhD student, a
coffee machine, and a maintenance unit for the coffee machine. As typical for
UML state machines, rectangles with rounded corners present states which are
connected by transitions. Each transition carries a label consisting of a trigger
on the left side of the “/” and an effect on the right side. The special symbol ε on
the left side of the “/” indicates that no trigger is necessary for the transition to
fire. If ε occurs on the right side of the “/”, this indicates that no effect happens.
The initial state is indicated by an incoming arc from a black dot. Therefore,
in the example, a PhD student starts in state working, a coffee machine starts
in state idle, and a maintenance unit starts also in state idle. For checking the
internal consistency of the state machine diagram, it helps to know whether
certain combinations of states are reachable or not. For example it should never
happen that the PhD student is in state waiting, the coffee machine is in state
maintenance and the maintenance unit is in state idle at the same time. Because
then neither of the state machines can continue.

Instances of state machines communicate with one another by message pass-
ing. They change states according to messages that are sent and received. A
state change is initiated by the receipt of a symbol indicated as trigger in one
of the outgoing transitions of the current state. The transition is fully executed
only if the effect can be sent successfully, i.e., if this effect can also be received
by another instance of a state machine. An outgoing transition carrying the
special symbol ε as trigger can be initiated without receiving any symbol. This
happens if an on-completion-event is triggered. Such an event occurs in UML
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Figure 2: (Left) A sequence diagram depicting a desired scenario that is inconsistent with
the state machines of Fig. 1. The state machines have to be changed in order to allow the
scenario. (Right) A sequence diagram depicting a forbidden scenario that is inconsistent with
the state machines of Fig. 1. No changes are required.

state machines if the internal actions executed in a state have terminated. In
our case, an on-completion-event is immediately triggered.

Fig. 2 shows two sequence diagrams that describe communication scenarios
between instances of the state machines in Fig. 1. A state machine is instantiated
by one or multiple lifelines. Similar as in UML, they are shown as rectangles
with a dashed vertical line underneath. Each lifeline’s name is shown inside the
rectangle before the “:”, followed by the name of the state machine it instantiates
after the “:”. For space reasons, we have abbreviated these names. Along the
lifelines, a sequence of messages is shown. A message is depicted as an arrow
from the sender lifeline to the receiver lifeline labeled with the symbol being
sent. The set of symbols used in the sequence diagrams is the same as the set
of symbols used in the state machines.

In order to be consistent with the state machines, the message sequence of
a sequence diagram must be executable from some global state of the lifelines
which is reachable from the global initial state. A global state is a tuple of states
of the state machines instantiated by the lifelines.

We present two possible application scenarios for checking a set of state ma-
chine diagrams and a sequence diagram for consistency. (1) A desired scenario
is depicted in the sequence diagram. If the sequence diagram is consistent with
the state machines, then we know that the state machines fulfill the scenario.
Otherwise, we can obtain information about the global state of the state ma-
chines where the sequence first fails, which helps to discover erroneous or missing
transitions in the state machines view. (2) An unwanted scenario is depicted
in the sequence diagram. If a sequence diagram is consistent with the state
machines, then we know that there is a bug in the state machines and we can
obtain a counter-trace, namely a sequence of global states which follows from
the application of the message sequence.

In Fig. 2 an example for each scenario is depicted. The left sequence diagram
shows a desired scenario. However, it is inconsistent with the state machines
for the following reason: The PhD student alice changes into state desperate
after receiving the symbol error from the coffee machine. She must remain there
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until the symbol repaired is received. According to the sequence diagram, the
coffee machine does not send this symbol. This also means, that the coffee
machine never returns to state idle and therefore cannot receive the symbol
wantCoffee from PhD student bob. Therefore, the message sequence of the
sequence diagram can only be executed up to and including the fourth message,
done. In this case, our approach returns the sequence of messages up to the
message that cannot be sent or received, i.e., up to and including done from
m:Maintenance to cm:CM. A possible fix for this broken scenario would be to
remove the state desperate from the PhD student and to connect the transition
with trigger error from the state waiting directly to state working. Further,
in the coffee machine the effect of the transition with trigger done from state
maintenance to state idle would have to be replaced by ε.

Similarly to the neg fragment used in UML sequence diagrams, we mark the
negative scenario in the right diagram of Fig. 2 using this notation. It allows
the coffee machine to prepare coffee while being in the error state. This scenario
is not implemented in the state machines, so no bug can be found. If it was
implemented, the tool would return a sequence of global states of the instances
of the state machines representing this message sequence.

4. Problem Definition

In the following, we formally introduce the modeling language concepts used
in the rest of the paper. Based on these definitions we then formulate the
Global State Checking Problem (GSC) and the Multiview Sequence Consistency
Problem (MSC).

The core elements for defining state machines, sequence diagrams, and their
interaction are the symbols of the alphabets ΣA and ΣL where ΣA contains the
special symbol ε. The alphabet ΣA contains symbols which label messages in
a sequence diagram, trigger transitions, and occur as effects in state machines.
The special symbol ε is the “empty symbol” used for transitions triggered by
on-completion-events and for empty events on transitions. The alphabet ΣL
contains names for the instances of the state machines, also called lifelines.
Based on ΣA we define a state machine as follows.

Definition 1 (State Machine). Given an alphabet ΣA, a state machine M
is a quadruple (S, ι, A, T ), where

• S is a finite set of states,

• ι ∈ S is a designated initial state,

• A ⊆ ΣA with ε ∈ A is the alphabet of M , and

• T ⊆ S×A×A×S is a transition relation such that there is no transition
(s, ε, ε, s′) ∈ T for any s, s′ ∈ S.
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A state machine consists of a set of states, a designated initial state, an al-
phabet, and a transition relation which connects the states. The rightmost state
machine, Maintenance, shown in Fig. 1 contains the set S = {idle, repairing} of
states, the initial state ι = idle, and the alphabet A = {ε, repair, done}. For a
transition t ∈ T with t = (s, tr , eff , s′), s is the source state of the transition, s′

is the target state, tr is a symbol (trigger) which upon receipt triggers the exe-
cution of transition t, and eff is a symbol (effect) that is sent. The state machine
Maintenance in Fig. 1 has two transitions: T = {(idle, repair, ε, repairing), (repairing, ε, done, idle)}.

For a transition to be executed in a state machine M , the trigger symbol of
the transition must be received by M from a state machine different from M and
the effect symbol must be received by a state machine different from M . Either
trigger or effect can be the special symbol ε which stands for an empty trigger
or an empty effect. A transition containing ε as trigger is triggered without
receiving any symbol, e.g., by an on-completion-event, and the execution of a
transition containing ε as effect can be finished without sending any symbol. We
assume that no transition of a state machine contains ε as both trigger and effect.
Such transitions can be eliminated by contracting the connected states. For the
ease of presentation, we restrict the maximal number of effects on a transition
to one. Both, definitions of state machines and the encoding presented in the
next section can be easily extended to transitions with an arbitrary number of
effects.

In order to give a precise semantics to the interaction between state ma-
chines, we introduce the notion of an extended state machine.

Definition 2 (Extended State Machine). Given a state machine M , the
extended state machine M∗ of M = (S, ι, A, T ) is a quadruple (S ∪ S∗, ι, A, T ∗)
where

• S∗ = {s∗t | t ∈ T}, and

• T ∗ = {(s, tr , ε, s∗t ), (s∗t , ε, eff , s′) | (s, tr , eff , s′) ∈ T}.

An extended state machine introduces an intermediate state s∗t for each
transition t. An intermediate state has exactly one incoming transition, which
is triggered by the trigger of t and contains the effect ε, i.e., has no effect. It
also has exactly one outgoing transition, which leads to the target state of t
with ε as trigger and the effect of t. We call S the original states and S∗ the
intermediate states. An intermediate state can be identified by combining the
source state, the trigger, the effect, and the target state of the transition it refers
to. Any state machine can be translated to exactly one extended state machine
and vice versa.

This way, an extended state machine helps to distinguish between the event
of having received the trigger and the event of being able to send the effect.
Other than a non-extended state machine, it can contain transitions which have
ε as both trigger and effect. These transitions connect intermediate states to
original states when the corresponding transition of the non-extended state ma-
chine has ε as effect. We call such intermediate states the environment of the
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respective original state. If an extended state machine is inside the environment
of some state s, then it can be treated as if it were in s.

Definition 3 (Environment). Given a state machine M = (S, ι, A, T ), its
extended state machine M∗ = (S ∪S∗, ι, A, T ∗), and a state s ∈ S, the environ-
ment of s is given by the function environ : S → P(S∗) such that environ(s) :=
{s∗ | (s∗, ε, ε, s) ∈ T ∗}.

Fig. 3 depicts the extended state machine of the state machine PhD Stu-
dent. The intermediate states are represented by black diamonds with rounded
corners. The intermediate state between the states desperate and working can be
identified by its source state, trigger, effect, and target state as<desperate/repaired/ε/working>.
The environment of the state working is {<desperate/repaired/ε/working>,<waiting/coffeeDone/ε/working>},
i.e., the two intermediate states on its incoming transitions that contain ε as
effect.

working waiting

desperate

ε/ε
ε/wantCoffee

coffeeDone/εε/ε

er
ro

r/
ε

ε/ε
repaired/ε

ε/ε

PhD Student Extended

Figure 3: Extended state machine corresponding to the state machine PhD student.

Next, we formally define sequence diagrams, starting with their two compo-
nents, lifelines and messages.

Definition 4 (Lifeline). Given a set M of extended state machines and the
alphabet ΣL, a lifeline is a pair L = (l ,M∗) where l ∈ ΣL is the name of the
lifeline and M∗ ∈M is an extended state machine associated with the lifeline.

A lifeline is an instance of an extended state machine. The name l of a lifeline
is used to distinguish different instances of the same extended state machine and
M∗ is the extended state machine the lifeline refers to. In the sequel, we refer to
M∗ of a lifeline L by sm(L). The communication between lifelines takes place
through messages, which are defined as follows.

Definition 5 (Message). Given an alphabet ΣA and a set L of lifelines such
that each lifeline’s extended state machine is defined over ΣA, a message is a
triple (σ, a, ρ) where

• σ ∈ L ∪ {ε} is the sender lifeline,

• a ∈ ΣA is the message symbol, and
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• ρ ∈ L \ {σ} is the receiver lifeline

such that σ = ε if and only if a = ε.

For a message (σ, a, ρ), the sender lifeline σ either refers to an extended state
machine or is the empty sender ε when the empty symbol ε is received. Note
that for better readability, we do not show empty messages on figures depicting
sequence diagrams. The receiver lifeline ρ refers to an extended state machine.

Based on the definitions of a lifeline and of a message, we can now formally
define a sequence diagram.

Definition 6 (Sequence Diagram). Given the alphabets ΣA and ΣL, and a
set M of extended state machines over ΣA, a sequence diagram is a pair (L, µ)
where

• L is a set of lifelines over M and ΣL,

• the names of the lifelines are pairwise distinct, and

• µ = [m1, . . . ,mn] is a sequence of messages such that for each (σ, a, ρ) ∈ µ
it holds that σ, ρ ∈ L and a ∈ ΣA.

The right-hand sequence diagram of Fig. 2 contains the set L = {(alice,PhD),
(cm,CM), (bob,PhD)} of lifelines and the sequence µ = [((alice,PhD),wantCoffee,
(cm,CM)), . . . , ((cm,CM), coffeeDone, (bob,PhD))] of messages.

To describe the interaction between lifelines via messages we define a global
state which captures a configuration of a collection of (extended) state machines
instantiated by the lifelines. We base this definition on a collection rather than
on a set of (extended) state machines since a state machine can be instantiated
by more than one lifeline.

Definition 7 (Global State). Given a collection M = {M1, . . . ,Ml} of (ex-
tended) state machines, a global state ŝ is a tuple (s1, . . . , sl) ∈ S1 × · · · × Sl
where Si is the set of states of Mi for 1 ≤ i ≤ l.

A global state is a tuple of states containing exactly one state per instantia-
tion of an (extended) state machine.

For instances of extended versions of the three state machines in Fig. 1, an
example for a global state is (desperate, <maintenance/done/repaired/idle>, idle)
where the second state refers to the intermediate state on the transition from
maintenance to idle in state machine CM.

In order to allow that states of some state machines remain unspecified, i.e.,
it is not important which state is reached in these state machines when the other
state machines are in certain states, we introduce the notion of partial global
state.
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Definition 8 (Partial Global State). Given a collectionM = {M1, . . . ,Ml}
of (extended) state machines with Mi = (Si, ιi, Ai, Ti) for 1 ≤ i ≤ l, a partial
global state is an l-tuple ŝp ∈ S1 ∪ {?}× · · · ×Sl ∪ {?}, where ? is a new symbol
not contained in any Si.

A partial global state and a global state match if the global state and the
partial global state agree on all components where the respective component
of the partial state is different from ?. If the partial global state refers to a
state machine and the global state to an extended state machine, then the
environment (cf. Definition 3) has to be taken into account.

Definition 9 (Matching). Let M∗ = {M∗1 , . . . ,M∗l } be a set of extended
state machines with M∗i = (Si ∪ S∗, ιi, Ai, Ti) for 1 ≤ i ≤ l, ŝ = (s1, . . . , sl) be
a global state with si ∈ Si ∪ S∗i for 1 ≤ i ≤ l, and ŝp = (p1, . . . , pl) be a partial
state with pi ∈ Si for 1 ≤ i ≤ l. Then ŝ matches ŝp if for all 1 ≤ i ≤ l with
pi 6= ? it holds that if si ∈ S then si = pi and if si ∈ S∗ then si ∈ environ(pi).

In each global state, there exists a (possibly empty) set of messages that can
be sent and a set of messages that can be received. After sending or receiving
a message out of these sets, a different global state is reached. This semantics
is described in the following definition.

Definition 10 (Admissibility and Application of a Message). Given the
alphabet ΣA, a set L = {L1, . . . , Ll} of lifelines with an extended state machine
sm(Li) = (Si, ιi, Ai, Ti) for 1 ≤ i ≤ l, and a global state ŝ = (s1, . . . , sl) ∈
S1 × · · · × Sl, the message m = (Ls, a, Lr) with Ls ∈ L∪ {ε}, Lr ∈ L, Ls 6= Lr,
and a ∈ ΣA is admissible in ŝ if the following holds:

• If Ls 6= ε, i. e., Ls ∈ L, and r, s ∈ {1, . . . , l}, then

(1) (ss, ε, a, s
′
s) ∈ Ts, and

(2) (sr, a, ε, s
′
r) ∈ Tr.

• If Ls = ε, i. e., m = (ε, ε, Lr), and 1 ≤ r ≤ l, then (sr, ε, ε, s
′
r) ∈ Tr.

By applying the admissible message m in the global state ŝ, a global successor
state ŝ′ ∈ S1× · · ·×Sl is reached. If Ls 6= ε then ŝ′ = (s1, . . . , s

′
s, . . . , s

′
r, . . . , sl)

(w.l.o.g. assume that s < r). Otherwise, if Ls = ε, then ŝ′ = (s1, . . . , s
′
r, . . . , sl).

A message is admissible in some global state if for Ls 6= ε (1) the state of
the sender lifeline is an intermediate state whose outgoing transition has the
message symbol a as effect and (2) the state of the receiver lifeline is an original
state which has at least one outgoing transition with the message symbol a as
trigger. For Ls = ε, the receiver can also be in an intermediate state.

In the global state s = (desperate, <maintenance/done/repaired/idle>, idle) of
the lifelines (alice,PhD), (cm,CM), (m,Maintenance) the set of admissible mes-
sages contains only one message, namely {m = ((cm,CM), repaired, (alice,PhD))}.
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Note that lifelines refer to extended state machines, which means that a
transition cannot carry a trigger symbol other than ε together with an effect
other than ε. Therefore, it can never happen that a receiver lifeline sends any
effect while executing a transition triggered by a symbol other than ε.

The global successor state ŝ′ is reached by applying a message. Then, ŝ′

differs from ŝ in the states of the sender lifeline, unless it is ε, and the receiver
lifeline. The sender’s state changes from an intermediate state to its only suc-
cessor state, and the receiver’s state changes accordingly to the received symbol
into an intermediate state. Applying the above message m to the global state ŝ
reaches the global successor state (<desperate/repaired/ε/working>, idle, idle).

The set of admissible messages in a global state can contain a subset of
messages that are independent, i.e., that have no sender or receiver in common.
The messages in such a set can be executed simultaneously. We call a set of
independent messages a transaction which is defined as follows.

Definition 11 (Transaction). Given a set L = {L1, . . . , Ll} of lifelines, a
transaction is a nonempty set m = {m1, . . . ,mt} of messages such that for
distinct i, j ∈ {1, . . . , t}, mi = (σi, ai, ρi), and mj = (σj , aj , ρj) it holds that all
σi, σj , ρi, and ρj are pairwise distinct.

A transaction is admissible if all its messages are admissible. The global
state reached by applying a transaction is the global state reached by applying
each of the transaction’s messages. Along a path we can step through the global
states of a set of state machines.

Definition 12 (Path). A path µ from a global state ŝ0 to a global state ŝk is
a sequence µ = [m1, . . . ,mk] of transactions such that there exists a sequence
[ŝ0, . . . , ŝk] of global states where for all 1 ≤ i ≤ k, mi is admissible in state
ŝi−1 and ŝi is the global successor state of ŝi−1 after applying mi.

A path is a sequence of transactions connecting global states. The length of
a path is the number of its transactions.

Definition 13 (Reachability). A global state ŝ′ is reachable from a global
state ŝ if there is a path from ŝ to ŝ′.

The k-Global State Checking problem (k-GSC) asks whether for a given
global state of a set of state machines a certain (partial) global state is reachable
by a path of length at most k.

k-Global State Checking (k-GSC)

Instance: A set M of state machines, a global state ŝ over M, and a
partial global state ŝp.

Question: Is there a path of length at most k from ŝ to a global state
ŝ′ that matches ŝp?
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We also refer to the global state ŝ as global initial state and to the partial
global state ŝp as goal. The global initial state typically contains each state
machine’s initial state.

The k-Multiview Sequence Consistency problem (k-MSC) deals with the
question whether from some global state that is reachable from the global initial
state (i.e., ŝι = (ι1, . . . , ιl) for the initial states of the state machines of l lifelines)
in k steps, there is a path representing the sequence of messages described in
the sequence diagram. Note that a sequence of messages can also be seen as
a sequence of transactions that are singletons, i.e., each transaction contains a
single message. A sequence of messages, such as depicted in a sequence diagram,
can therefore be seen as a sequence of singleton transactions.

Definition 14 (k-Multiview Sequence Consistency). Given a set M of
extended state machines, the alphabets ΣA and ΣL, and a sequence diagram
SD = (L, µ) over M, ΣA, and ΣL with L = {L1, . . . , Ll} and sm(Li) =
(Si, ιi, Ai, Ti) for 1 ≤ i ≤ l, SD and M are k-consistent if there exists a path
of length at most k starting at ŝ = (ι1, . . . , ιl) and leading to a global state ŝ′

such that a global state ŝ′′ is reachable from ŝ′ by applying the sequence µ of
messages.

The k-Multiview Sequence Consistency problem is then defined as follows.

k-Multiview Sequence Consistency (k-MSC)

Instance: A sequence diagram SD = (L, µ) over a set M of state
machines and the alphabets ΣA and ΣL.

Question: Are SD and M k-consistent?

5. Encoding

To solve the k-GSC and k-MSC problems we propose to encode them into
the satisfiability problem of propositional logic (SAT). We assume the reader
to be familiar with the basics of propositional logic and with SAT solvers (for
details we refer to [4, 26]). To this end, we build a propositional formula rep-
resenting an instance of the k-GSC problem or the k-MSC problem and hand
it to a SAT solver. If the (partial) global state in an instance of k-GSC is
reachable, the solver returns SAT together with an assignment to the variables
that represents the path leading to the given (partial) global state. Similarly,
if the sequence diagram of an instance of the k-MSC problem can be executed
after at most k transactions between the lifelines, the solver returns SAT and an
assignment representing such a path. In both cases a logical model, i.e., a satis-
fying truth assignment, can easily be translated back into a concrete sequence of
transactions between lifelines and to the state transitions triggered by the mes-
sages exchange. The solver returns UNSAT if the (partial) global state cannot be
reached or if the sequence diagram cannot be executed by the lifelines after at
most k message exchanges. In the latter case, we remove trailing messages one
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after another from the sequence diagram and call the solver again until the first
failing message is found.

We encode instances of the k-GSC problem and of the k-MSC problem
as a propositional formula over a set of variables representing original states,
intermediate states, transitions, and alphabet symbols. We denote this formula
by ϕgsc for k-GSC and by ϕmsc for k-MSC.

The set of variables and a large part of the encoding are very similar for
both problems. We first introduce the set of variables both encodings are based
on, then present the subformulas the two problems have in common, and finally
complete the encodings with two individual formulas for each problem.

The set of variables is created for both problems as follows. Let M be a
set of extended state machines over the alphabet ΣA, let SD = (L, µ) be a
sequence diagram over M with L = {L1, . . . , Ll} and µ = [m1, . . . ,mn], let
T :=

⋃
1≤i≤l Ti be the set of all transitions in all extended state machines, let

S :=
⋃

1≤i≤l Si be the set of all original states of all extended state machines,
let S∗ :=

⋃
1≤i≤l S

∗
i be the set of all intermediate states of all extended state

machines, and let A := ΣA \ {ε}. In the case of k-MSC, state machines are
duplicated when instantiated more than once. We index the state variables
with the name of the lifeline instantiating the (extended) state machine in order
to make them unique. This way also the variables representing transitions are
pairwise distinct for each instantiation.

The integer k plays a slightly different role in both problems. It defines the
maximum length to reach a certain goal state in k-GSC. In contrast, for k-MSC,
it defines the maximum length of the path leading to a global state from which
the message sequence specified in the sequence diagram can be executed. For k-
MSC, let k′ := k+4n be the maximum path length needed to apply n messages
after an “initial” path of a maximum length of k. The factor 4 is necessary
because moving forward on a transition with the empty symbol ε as trigger or
effect requires additional steps. In the following, we use κ in the definition of
the sets of variables and the common subformulas of the two problems to denote
k for k-GSC and to denote k′ for k-MSC, respectively.

The set of variables occurring in the encoding is given by the union of the
following sets representing message symbols, transitions, original states, and
intermediate states at different positions of a path. We refer to these positions
as timesteps.

• {ai | a ∈ A, 0 ≤ i ≤ κ} is a set of variables that encode whether a
message symbol is available to be consumed by another machine at a
certain timestep. A variable ai is set to true if at timestep i some extended
state machine M tries to send a, i.e., a transition in M has received a
trigger and is waiting for a to be consumed by a different extended state
machine in order to complete the transition. If ai is set to true, this
indicates that the symbol is available to be consumed at a timestep j > i.
When the symbol is consumed at timestep j, then the respective variable
is set to false.

• {ti | t ∈ T , 0 ≤ i ≤ κ} is a set of variables that encode transitions executed
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at a timestep due to a message placed at that timestep. A transition
variable ti is set to true if the transition t is being executed at timestep i.

• {si | s ∈ S, 0 ≤ i ≤ κ} is a set of variables that encode states at timesteps.
A state variable si is set to true if the extended state machine to which s
belongs is in state s at timestep i.

• {sxi | sx ∈ S∗, 0 ≤ i ≤ κ} is a set of variables that encode intermediate
states at timesteps. If a state variable sxi set to true, the extended state
machine to which sx belongs is in state sx at timestep i.

We further use the following functions to simplify the presentation of the
formula. Let L = (S, ι, A, T ) be a lifeline, (s, tr , ε, s∗t ) and (s∗t , ε, eff , s′) be
transitions of the extended state machine sm(L) corresponding to a transition
t = (s, tr , eff , s′) of the corresponding non-extended state machine, and let m =
(σ, a, ρ) be a message. Then, trans(L) := T , src(t) := s, int(t) := s∗t , trg(t) := tr ,
eff(t) := eff , tgt(t) := s′, snd(m) := σ, rec(m) := ρ, and symb(m) := a.

The formulas ϕgsc and ϕmsc are given by the conjunction of the subformulas
ϕ1 to ϕ8 together with the two additional problem-specific formulas, ϕgsc

init and
ϕgoal, and ϕmsc

init and ϕseq, respectively.
We now discuss the subformulas and their intuition. We start with subfor-

mula ϕ1, which ensures that whenever a transition is executed at some timestep
i, then the extended state machine changes from the transition’s source state at
timestep i to its target state at timestep i+ 1, the trigger symbol is set to false,
and the effect symbol is set to true.

ϕ1 :=

κ−1∧
i=0

∧
t∈T

[
ti →

(
src(t)i ∧ int(t)i+1∧

(
trg(t)i 6= ε→

(
trg(t)i ∧ trg(t)

i+1
))
∧(

eff(t)i 6= ε→
(

eff(t)
i
∧ eff(t)i+1

)))]
The next two formulas, ϕ2 and ϕ3, restrict the truth values of the effect

symbols. ϕ2 ensures that if an extended state machine does not leave its inter-
mediate state, then the effect symbol remains true and ϕ3 ensures that if the
machine leaves its intermediate state, then the effect symbol is set to false at
the following timestep.

ϕ2 :=

κ−1∧
i=0

∧
t∈T ,

eff(t)6=ε

[
int(t)i ∧ int(t)i+1 → eff(t)i+1

]

ϕ3 :=

κ−1∧
i=0

∧
t∈T ,

eff(t)6=ε

[
int(t)i ∧ int(t)

i+1
→ eff(t)

i+1
]
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The state following an intermediate state is always the target state of the
respective transition in the non-extended state machine. The subformula ϕ4

ensures that if the machine is in an intermediate state at timestep i and the
effect has been consumed at timestep i+ 1, then at timestep i+ 1 the extended
state machine leaves the intermediate state and changes into the target state of
the transition.

ϕ4 :=

κ−1∧
i=0

∧
t∈T

[(
int(t)i∧

(
eff(t)i+1 6= ε→ eff(t)

i+1
))
→
(

int(t)
i+1
∧tgt(t)i+1

)]
The three subformulas ϕ5 to ϕ7 are called framing axioms. They ensure that

there always is a transition that is “responsible” for changes of symbols (ϕ5 and
ϕ6) or changes of states (ϕ7). They also ensure that instances of state machines
not participating in a transaction do not change their states.

ϕ5 :=

κ−1∧
i=0

∧
trg∈A

[
trg i∧trg

i+1 →
(( ∨

t∈T ,trg=trg(t)

ti
)
∧

∧
t1,t2∈T ,

trg(t1)=trg(t2)=trg

(
t1
i∨t2

i
))]

ϕ6 :=

κ−1∧
i=0

∧
eff∈A

[
eff

i∧eff i+1 →
(( ∨

t∈T ,eff =eff(t)

ti
)
∧

∧
t1,t2∈T ,

eff(t1)=eff(t2)=eff

(
t1
i∨t2

i
))]

ϕ7 :=

κ−1∧
i=0

∧
s∈S

[
si ∧ si+1 →

( ∨
t∈T ,

s=src(t)

ti
)]

ϕ8 expresses that each machine is in exactly one state at each timestep.

ϕ8 :=

κ−1∧
i=0

l∧
j=1

[( ∨
s∈(Sj∪S∗

j )

si
)
∧

∧
s1,s2∈(Sj∪S∗

j ),

s1 6=s2

(
s1
i ∨ s2i

)]

The subformula ϕgsc
init initializes the path by setting the variables representing

states contained in the global state ŝ = (x1, . . . , xl), at timestep 0 to true,
and all other variables representing states or symbols at timestep 0 to false.
Similarly, ϕmsc

init sets the variables representing the initial states of the extended
state machines at timestep 0 to true and all other variables at timestep 0 to
false. This means that at timestep 0, all extended state machines are in their
state as specified by ŝ for k-GSC or in their initial states for k-MSC, and no
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symbol is ready to be consumed.

ϕgsc
init :=

l∧
i=1

( ∧
s∈Si,s=xi

s0 ∧
∧

s∈(Si∪S∗
i ),s6=xi

s0
)
∧
∧
a∈A

a0

ϕmsc
init :=

l∧
i=1

(
ι0i ∧

∧
s∈(Si∪S∗

i ),s 6=ιi

s0
)
∧
∧
a∈A

a0

To ϕgsc we add the subformula ϕgoal encoding the (partial) global state
ŝp = (g1, . . . , gl) at timestep k. It sets the states contained in the goal state
together with their environments (cf. Definition 3).

ϕgoal :=

l∧
i=1,gi 6=?

(
gki ∨

∨
s∈environ(gi)

sk
)

To ϕmsc we add the subformula ϕseq encoding the sequence of messages to
be executed after k steps. It first sets the symbol of each message first to true
and in the subsequent timestep to false, then it ensures the state changes of
intermediate states, and finally, it ensures that no other messages are received
during the execution of the sequence diagram. Note that the changes of the
transition variables are being taken care of by the framing axioms.

ϕseq :=
∧

i∈{1,...,n},
j=k+4i

[
symb(mi)

j ∧ symb(mi)
j+1
∧

( ∨
t∈trans(snd(mi)),
eff(t)=symb(mi)

(
int(t)j ∧ int(t)

j+1
))
∧

∧
a∈A,

a 6=symb(mi)

( (
aj → aj+1

)
∧
(
aj+1 → aj+2

)
∧
(
aj+2 → aj+3

) )]

During the transformation phase, the expressions trg(t)i 6= ε and eff(t)i 6= ε
occurring in the formulas are replaced by the corresponding logical constants >
and ⊥. Furthermore, the formulas are converted to conjunctive normal form,
the input format of most SAT solvers. To this end, we apply the Tseitin trans-
formation [31] where necessary.

Note that the encoding allows that nothing happens, i. e., no transaction
takes place at a timestep. It is ensured by the framing axioms that in this case,
the global state remains the same. This relaxation implicitly encodes the “at
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most k” steps condition of both problems. If at x timesteps nothing happens
and the execution of the message sequence starts at index k, it means that the
length of the transaction sequence executed before timestep k is of length k−x.

In summary, the following formula encodes k-GSC:

ϕgsc := ϕgsc
init ∧

8∧
i=1

ϕi ∧ ϕgoal

and the following formula encodes k-MSC:

ϕmsc := ϕmsc
init ∧

8∧
i=1

ϕi ∧ ϕseq

Here we see that the two different problems are very closely related, which
also indicates that various other consistency checking problem can be encoded
in a similar manner.

For k-MSC, a solution returned by the SAT solver consists of a satisfying
assignment that sets the variables to true or false. By extracting the variables
set to true which represent states and transitions (variable sets S, S∗, and
T ), we obtain the path of at most k steps leading to the execution of the
sequence diagram and the state changes of the state machine instances during
the execution of the sequence diagram. If the length of the path is less than
k, then for some consecutive timesteps the state variables represent identical
states. If a transformed instance of k-GSC is handed over to the SAT solver,
the information provided by the SAT solver is similar.

In order to simplify the encoding, we assume that after applying a transac-
tion each symbol can be consumable only once at a timestep. Allowing a symbol
to be consumable multiple times requires the integration of counters, which can
be realized, e.g., by building upon ideas presented in [29].

6. Implementation

We implemented a tool to solve both k-GSC instances and k-MSC instances
based on the SAT encodings presented above as plugin for the Eclipse frame-
work1. It can be downloaded from:

http://modelevolution.org/updatesite/

6.1. Backend

To define the input language of our tool, i.e., the language of state machines
and sequence diagrams, we formulated a metamodel in Ecore, the modeling lan-
guage of the Eclipse modeling framework (EMF)2. This metamodel (cf. Fig. 4)

1http://www.eclipse.org/
2http://www.eclipse.org/emf/
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Figure 4: Metamodel in Ecore of our modeling language.
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Figure 5: Screenshot of the graphical user interface.

contains all language concepts discussed in this paper as well as language con-
cepts for future extensions.

The input models provided by the user of our tool are automatically trans-
lated to propositional logic using the encodings described above. Notice that
some benchmarks require multiple effects per transition, which is also supported
by our implementation, but not described in the sections above. After the encod-
ing phase, the obtained formula is passed to the solver Sat4j [20], a Java-based
SAT solver, integrated in our tool.

If the SAT solver returns SAT, then the considered partial global state is
reachable by a path of length at most k (k-GSC) or at least one execution
path of the state machines exists which conforms to the message sequence in
the sequence diagram after an “initial” path of length at most k (k-MSC). If
the SAT solver returns UNSAT then for the given path length k, the considered
partial global state is not reachable or the state machines and the sequence
diagram are inconsistent.

6.2. Frontend

Our tool provides a graphical editor for modeling state machines and se-
quence diagrams according to the metamodel shown in Fig. 4. In order to solve
an instance of k-GSC, the user selects the states belonging to the (un)desired
partial global state directly in the diagram and starts the checking process via
a menu item. The user also provides the maximum bound (k) for the number
of transactions to be considered. If not specified otherwise, the search starts
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from the global initial state, i.e., the global state where each state machine is in
its initial state. If the selected partial global state is reachable from the global
initial state, a message sequence is returned showing the path from the global
initial state to the respective partial global state. At the moment, this sequence
is shown in form of a list, but principally it could also be visualized in the form
of a sequence diagram.

The solving process of an instance of k-MSC can be initiated as soon as the
necessary models are entered. Again, selecting a menu item starts the checking
process.

In both cases, the solution returned by the SAT solver is mapped back to the
model elements and visualized in the graphical user interface as shown in Fig. 5.
Our user interface allows the user to step through a whole trace by coloring the
current messages, transitions, and states. This visualization is very useful to
understand the interplay and the behavior of the different state machines and
provides valuable debugging assistance.

To sum up, our tool provides a graphical modeling environment, in which
both verification approaches are fully integrated. Hence, the modelers neither
have to deal with low-level SAT encodings nor with any other formal concept.

7. Evaluation

In order to test correctness and scalability of our tool we considered randomly
generated instances and crafted instances. In the following, we describe both
approaches. All benchmark instances are available on our project web site:

http://modelevolution.org/prototypes/gsc

7.1. Testing with random instances

We thoroughly tested our tool using a grammar-based white-box fuzzing
approach [34]. This method generates random input models based on a grammar
derived from the EMF metamodel shown in Fig. 4. We employed a random input
model generator based on the tool presented in [34], which we adopted for the
two problems presented in this paper. Other than taking into account only
the receive events of a message sequence as in [34], we consider both the send
and the receive events in the experiments presented below. The tool consists
of two components, a generator to build syntactically correct diagrams, and
a simulator to ensure that a message sequence can indeed be executed after a
certain number of steps and that a given partial global state is indeed reachable.

We applied white-box fuzzing for debugging and performance evaluation
purposes of our SAT encoding of k-GSC and k-MSC. In the following, we
shortly describe the random generation of instances.

For instances of both problems, first, a set of state machines is built based
on the following parameters.

• nrStateMachines: Number of state machines to be created.
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• minNrStates and maxNrStates: Bounds on the number of states per state
machine.

• minNrTrans and maxNrTrans: Bounds on the number of transitions per
state machine.

• nrSymbols: The size of the alphabet the state machines are defined over.

• probTrigger: The probability of a transition to contain a trigger symbol.

• probEff: The probability of a transition to contain an effect symbol.

For each state machine, the algorithm uniformly at random chooses a number
of states and transitions in between the bounds minNrStates, maxNrStates and
minNrTrans, maxNrTrans, and connects the states with transitions randomly in
a way such that no state is isolated. To at least one outgoing transition from the
initial state, the trigger ε is added. To all other transitions, a trigger different
to ε is added with probability probTrigger. To each transition containing ε as
trigger an effect is added, and to all other transitions an effect other than ε is
added with probability probEff. Each time a trigger or an effect is added, a fresh
symbol is created and added to the alphabet until the alphabet has reached size
nrSymbols. After that, the trigger and effect symbols are chosen uniformly at
random out of the alphabet.

7.1.1. Random instance generation for k-GSC

We build random instances of the k-GSC problem by generating sets of state
machines as described above and then randomly choosing a partial global state.
The additional parameter relPartial defines the size of the partial global state
(goal state) relative to the number of state machines. All instances use the
global initial state (initial states over all state machines) as global state (state
from where the path starts).

7.1.2. Random instance generation for k-MSC

We build random instances of the k-MSC problem by adding a sequence
diagram to a previously generated set of state machines. Here the following
parameters are additionally considered.

• nrLifelines: The number of lifelines to be contained in the sequence dia-
gram.

• nrMessages: The number of messages to be contained in the sequence
diagram.

For each lifeline, a state machine is chosen uniformly at random from the
state machine view. If nrLifelines > nrStateMachines then it is ensured that each
state machine is instantiated at least once. In order to ensure consistency, the
simulator keeps track of the visited global states of the lifelines’ state machines.
The main data structure in the simulator represents possible global states as
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a hashmap with lifelines as keys and a set of states of the state machine in-
stantiated by the lifeline as value. For each lifeline, the hashmap is initialized
with all initial states of the respective state machine All admissible messages
from these states are calculated according to the current global state stored in
the simulator. One message is chosen uniformly at random, appended to the
message sequence, and the simulator is updated according to all possible suc-
cessor states with respect to the application of the chosen message. To obtain
unsatisfiable instances, we generate one more message than required and remove
one message uniformly at random among all messages except the first one. This
procedure, however, still can result in a satisfiable instance because there can
be a different path than the one followed by the simulator. Further, note that
if the considered bound for the generation of the diagrams is higher than the
bound set in the encoding, the SAT solver may return UNSAT even though the
message sequence is executable.

Note that the state machines are non-deterministic, and therefore the num-
ber of possible states and admissible messages can become very large.

The parameter values influence each other to a great extent, and it can
easily happen that no or only a small message sequence can be generated for
the sequence diagram. For example, a high value for probTrigger along with a
high value for nrSymbols results in transitions containing different triggers and
effects, which makes the generation of a consistent sequence diagram difficult.

7.2. Testing with crafted instances

We designed three different benchmark sets to test our implementations of
both problems on more natural and intuitive examples. In particular, we consid-
ered a coffee machine instance, which is similar to our running example above.
We further designed a variant of the well-known dining philosophers problem
and a simplified variant of the SMTP protocol (used in email transmission). For
each instance we created a correct and an erroneous version. For all test cases,
the starting state of the path was set to the global initial state, i.e., the global
state where each state machine is in its initial state.

In the case of k-GSC, for instances “coffee” and “mail”, we considered each
possible combination of states for each state machine, and for the instance
“philosophers” a meaningful selection of reachable and unreachable combina-
tions of states was considered. In the case of k-MSC, we considered a consistent
sequence diagram and an inconsistent sequence diagram for each benchmark set.

7.3. Results for the k-GSC problem

In the following, we report on the results of our evaluation based on ran-
domly generated instances and the crafted set of instances regarding our imple-
mentation for solving the k-GSC problem. All experiments were executed on a
computer with an Intel Core i5-540M CPU with 2.53GHz and 8GB of RAM.
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7.3.1. Random instances

We group the randomly generated instances into three different sets accord-
ing to their size. The following parameters are set to the same values for all
instances. The value of nrSymbols is set to minNrStates, probTrigger and probEff
are set to 0.9, and k is set to maxNrStates. Table 4 shows the values of the
remaining parameters for each group. Parameters minNrTrans and maxNrTrans
depend on the parameters minNrStates and maxNrStates, respectively, in that
their value is multiplied by 3 for the sets ”small” and ”medium” and multi-
plied by 4 in the set ”large”. For parameter relPartial we test the three values
.25, .5, and 1 for each category. It describes the size of the goal state relative
to nrStateMachines. The size of the goal state is determined by the product
relPartial · nrStateMachines.

small medium large

minNrStates 2 4 6
maxNrStates 3 6 9
minNrTrans 6 12 24
maxNrTrans 9 18 36
nrStateMachines 8 15 30

Table 1: Parameter settings for the random instances of k-GSC.

Table 2 describes the results of our experiments over 1,000 randomly gener-
ated instances in each category except for “large” with only 100 instances due
to time constraints, and for each value for relPartial.

small medium large

relPartial .25 .5 1 .25 .5 1 .25 .5 1
Enc. time SAT (ms) 7 7 5 97 93 n/a 1,543 1,589 n/a
Enc. time UNSAT (ms) 6 6 5 100 100 102 1,579 1,595 1,517
Solv. time SAT (ms) 1 2 3 32 46 n/a 17,569 9,570 n/a
Solv. time UNSAT (ms) <1 <1 <1 11 8 4 4,378 2,740 1,142
Nr. of clauses 1,821 1,831 1,816 56,884 57,235 56,955 846,798 866,320 843,238
Nr. of variables 375 376 375 3,490 3,497 3,498 19,427 19,507 19,429
Nr. of instances SAT 336 80 4 93 7 0 17 1 0
Nr. of instances UNSAT 664 920 996 907 993 100 83 99 821

Table 2: Average results over 1,000 runs for each category (100 runs for “large”) for the
random instances of k-GSC.

We distinguish encoding and solving times by UNSAT and SAT instances. It
can be seen that the solving time for UNSAT instances is considerably lower
than for SAT instances. Also, the solving time scales worse than the encoding
time for SAT instances, which is an expected behavior given the complexity of
the problem. However, this is not the case for UNSAT instances. One possible
explanation for this is that UNSAT instances are likely to contain a contradiction
that is easy to find for the SAT solver Sat4j, which we are employing.

As expected, the number of SAT instances decreases with increasing values
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Bound 3 15 100 500
Time enc. sol. total enc. sol. total enc. sol. total enc. sol. total

mail 8 1 9 5 15 20 34 1,173 1,207 201 63,043 63,244
coffee 13 3 16 12 24 36 28 2,165 2,193 143 39,291 39,434
philosophers 18 3 21 21 44 65 43 21,192 21,235 - - -

Table 3: Average runtimes in ms over different goal states on crafted instances of the k-GSC.

for relPartial since it becomes harder to find a global state that is fully specified
than one that is only partially specified. Also, the solving times decrease with
increasing values for relPartial, possibly due to the additional constraints given
to the SAT solver. The number of clauses and the number of variables increase
considerably, however, up to the instances in the “large” set, this can still be
handled reasonably by the SAT solver.

We conclude that that the overall runtimes on our randomly generated in-
stance set are good even if executed on standard hardware.

7.3.2. Crafted instances

We executed the crafted instances of k-GSC with the value of k set to 3,
15, 100, and 500. Details on the outcomes of the test cases are presented in
Table 3. The results of all test cases are as expected. All bugs in the erroneous
versions were found. The approach performs well up to a bound of k = 500.
As can be expected, the bottleneck for higher bounds is the task of solving the
SAT instance.

7.4. Results for the k-MSC problem

In the following, we report on the results of our evaluation based on ran-
domly generated instances and the crafted set of instances regarding our imple-
mentation for solving the k-MSC problem. Same as for the k-GSC problem,
all experiments were executed on a computer with an Intel Core i5-540M CPU
with 2.53GHz and 8GB of RAM.

7.4.1. Random instances

Same as for the k-GSC problem, we group the randomly generated instances
according to different parameter sets into three different groups depending on
their size. Except for nrStateMachines, all parameter settings are the same as for
k-GSC. The value of nrStateMachines is set to 3 for all instances because the size
of the instance is regulated by the nrLifelines, i.e., the number of instantiations
of the state machines. Table 4 shows the values of the parameters whose values
differ between the groups.

Table 5 describes the results of our experiments over 1,000 randomly gener-
ated instances in each category.

Same as for the k-GSC problem, we distinguish both encoding and solving
time by UNSAT and SAT instances. The time required to determine the failing
message in an UNSAT instance is significantly longer than the time required
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small medium large

minNrStates 2 4 7
maxNrStates 3 6 10
minNrTrans 4 8 21
maxNrTrans 6 12 30
nrLifelines 3 5 8
nrMessages 4 10 20

Table 4: Parameter settings for the random instances of the k-MSC problem.

small medium large

Encoding time SAT (ms) 11 180 2,543
Solving time SAT (ms) 4 201 9,476
Encoding time UNSAT (ms) 34 970 27,848
Solving time UNSAT (ms) 8 727 179,914
Nr variables 1,802 12,746 88,560
Nr clauses 9,652 118,245 1,700,101
Nr instances SAT 837 750 803
Nr instances UNSAT 163 250 197

Table 5: Average results over 1,000 runs for the random instances of the k-MSC.

to determine satisfiability and to return a model. This is the case because
unsatisfiable instances are modified by removing the last message and are sent
back to the SAT solver until the failing message is found. The numbers of
clauses and numbers of variables refer to the initial encoding of each instance,
not taking into account the modified instances after unsatisfiability is detected,
as the re-encoding results in less variables and clauses than the initial encoding.
As can be expected, the solving time scales worse than the encoding time.

The difference in numbers of SAT instances and UNSAT instances can be
explained by the way instances are created. In order to generate a sequence
diagram at random without too much overhead, the state machines need many
transitions with few symbols. However, in this case, when a valid sequence is
found and a message removed, chances are high, that this “cropped” sequence
can still be found by a path other than of the one followed by the simulator
because of the previous requirement to have many transitions and few symbols.

Same as for the k-GSC problem, even though the number of variables and
the number of clauses increase considerably from the small to the large instances,
the SAT solver still manages to solve the instances with acceptable runtimes.

We conclude that the overall runtimes for our randomly created instances
are good even if executed on standard hardware. The overall runtime for UNSAT
instances can probably be improved by implementing a binary search to find the
failing message instead of removing trailing messages one after another. This
way, the SAT solver has to be called less often.

26



Bound 3 15 100 500
Time enc. sol. total enc. sol. total enc. sol. total enc. sol. total

mail SAT 488 129 618 465 232 697 1,314 1,161 2,475 2,722 2,862 5,584
coffee SAT 229 45 274 296 125 421 600 661 1,261 1,419 2,585 4,004
philosophers SAT 230 46 276 289 61 350 569 413 983 1,639 849 2,489
mail UNSAT 151 113 264 189 236 426 584 1,145 1,693 896 2,436 3,332
coffee UNSAT 28 89 117 53 218 272 114 577 691 243 2,519 2,863
philosophers UNSAT 198 32 230 308 75 383 692 460 1,153 2,681 1,304 3,923

Table 6: Runtimes for instances of k-MSC on SAT and UNSAT crafted instances.

7.4.2. Crafted instances

Same as for the k-GSC problem, we also tested our implementation on
crafted instances of k-MSC with k set to 3, 15, 100, and 500. Details on the
outcomes of the test cases are presented in Table 6. The results of all test
cases are as expected. All bugs in the erroneous versions were found. Same
as for the randomly generated instances of this problem, if the SAT solver
returns UNSAT, we remove the last message of the sequence diagram repeatedly
until SAT is returned. The approach performs well up to a bound of k = 500.
Interestingly, other than for the crafted instances for k-GSC, the bottleneck
for higher bounds is the task of encoding the SAT instance. It seems that the
presence of the clauses encoding the sequence diagram allows the SAT solver to
work very efficiently on these instances.

8. Conclusion and Future Work

We presented a novel SAT-based approach to solve an intradiagram con-
sistency checking problem of state machines and an interdiagram consistency
checking problem between state machines and sequence diagrams. To this end,
we concisely formulated the formal semantics of the considered modeling lan-
guage concepts. On this basis we were able to obtain an exact formal description
of the consistency checking problems. This description allowed us to develop
a transformation to SAT, the satisfiability problem of propositional logic. The
SAT encodings reuse ideas and techniques well established for formulating plan-
ning problems.

We showed that few modifications enable us to apply the encoding orig-
inally designed for solving an intradiagram consistency checking problem to
solve an interdiagram consistency checking problem. In a similar manner, the
encoding can be applied for other consistency checking problems as well. Our
encodings are flexible with respect to the semantics of the modeling language
and efficiently processable. Furthermore, the information necessary to map the
solutions obtained from the SAT solver back to the modeling environment is
preserved allowing the realization of a verification approach which is tightly
integrated with the modeling environment.

In future work, we plan to consider additional modeling language concepts
like hierarchical states in the state machines or combined fragments and invari-
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ants in the sequence diagrams. For example, the evaluation of guards controlling
the execution of branches or loops may require to use stronger formalisms than
SAT like SMT, which has successfully been used for the verification of dynamic
properties of class diagrams [30]. In addition, it is possible to apply ideas from
this encoding to other diagram types like the UML activity diagram. Further,
we plan to extend our approach to automatic repair. In particular, the encod-
ing can be modified such that missing messages in the sequence diagram can
be determined. This scenario can occur in automated merging environments
as, for instance, in model versioning systems [8]. Another important task is the
optimization of the SAT encoding to further improve the performance.
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