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Abstract. We present the framework [q]bfGen which allows the declar-
ative specification of random models for generating SAT and QSAT
formulas not necessarily in (prenex) conjunctive normal form. To this
end, [q]bfGen realizes a generic formula generator which creates formula
instances by interpreting the random model specification expressed in
XML. Consequently, the implementation of specific random formula gen-
erators becomes obsolete, because our framework subsumes their func-
tionality.

1 Motivation

Over the last years, tools for solving the satisfiability problem of propositional
logic (SAT) showed to be powerful backend engines for various hardware and
software verification problems [14]. The same hope is pined on extensions like
QSAT, where quantifiers are introduced over the propositional variables allowing
more succinct encodings of verification problems [2]. So far, QBF solvers have
not reached the same maturity as SAT solvers in terms of efficiency and stability.
Techniques which showed to be useful in SAT can often not directly be trans-
ferred to QBF. Whereas in SAT conjunctive normal form is the canonical input
format, the pendant for QSAT, the prenex conjunctive normal form (PCNF), is
not the commonly accepted representation format. In fact, the transformation
to PCNF might negatively influence the behavior of a solver [6]. Consequently,
QSAT solvers have been developed which process non-PCNF formulas, i.e., for-
mulas of less restricted structure [7, 10, 11].

In SAT as well as in QSAT, random formulas find their raison d’être justi-
fied in two different use cases. From a theoretical point of view, random formulas
provide the basis for investigations on properties like the phase transition phe-
nomenon [9, 8, 4, 5]. From a practical point of view, they are an important tool
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Fig. 1. The basic architecture of [q]bfGen.

for testing and evaluating solvers. In particular, random formulas are used for
fuzz testing which supports the automatic detection of various kinds of defects
in solvers [3] by random inputs.

Random models provide control mechanisms for randomly generating for-
mulas of a certain structure and size. The regularity of the formula structure
allows for a characterization by statistical and combinatorial means, which in
turn allows for a prediction of properties such as satisfiability and computa-
tional difficulty. Since most state-of-the-art solvers process formulas in (prenex)
conjunctive normal form only, also most random models describe and generate
formulas in PCNF. This restricted structure allows only a small set of parame-
ters like number and distribution of variables, clause sizes, and the probability
that a variable occurrence is negated to vary in the random model.

With the advent of non-PCNF solvers, also random models are required
which generate formula instances of less restricted structure and which, conse-
quently, introduce additional degrees of variability like the nesting depth of the
formula tree. To support the specification of such random models, we introduce
the framework [q]bfGen which provides a dedicated language for the description
of random models as well as a generic formula generator which creates random
formula instances according to such descriptions. By using [q]bfGen, the function-
ality of specific random formula generators like [13, 9, 4] can be realized by giving
simple declarative descriptions of the according random model. For demonstra-
tion purposes, we extend the shape model of Navarro and Voronkov [13] for
quantified Boolean formulas (QBF).

2 The Architecture of [q]bfGen

Our framework [q]bfGen allows the description of SAT and QSAT random models
in XML from which formula instances are directly created. The current prototype
uses the Boole format5 for the the representation, in future implementations we
consider to support also other output formats. As illustrated in Fig. 1, [q]bfGen
consists of two main components: (i) the language specification L and (ii) the
formula generator G. Within [q]bfGen a random model must be expressed in
conformance to L. The resulting random model description M is then passed

5 http://www.qbflib.org/boole.html



to G, which generates random formula instances according to M. Finally, these
formula instances are provided to a SAT/QBF solver and evaluated. In the
following, both L and G are presented in detail.

The Language Specification L. In our implementation, L is realized as XML
Schema. For ease of presentation, we use the notation of the UML Class Diagram
to visualize a selection of concepts provided by L. In Fig. 2, we show a simplified
Class Diagram of the language specification L. Each random model has one
single element Root, which contains an arbitrary number of parameters and the
actual formula. A Parameter element has a unique name within a random model
and is characterized by a minimum value attribute, a maximum value attribute,
and a step width attribute. With parameters it is possible to specify iterations
for generating multiple formula instances with different settings. A Formula is
either a Quantified Formula or a Connective Formula. A Quantified Formula has a
unique name and introduces a new quantifier scope of a specified size which is
either of existential, of universal, or of random type. In the case of random type,
the quantifier is randomly selected for each instance. The size is either a fixed
number or it may be assigned by a parameter. For example, a QBF of the form
∀x1x2x3 φ may be described by a Quantified Formula where the name of the scope
is x, the size is 3, the type is universal, and φ is a Formula. A Connective Formula
is translated to a conjunction or a disjunction. These connectives are of arbitrary
arity. For example (¬x∧y∧φ) could be an instantiation of a conjunction where x
and y are variables and φ may be a complex formula. The variables occurring in a
Connective Formula are specified by a VarSet element which states the probability
for a variable being negated as well as from which quantifier block how many
variables shall be selected. When a random formula instance is created, it can be
assumed that within all instantiations of a VarSet, each variable occurs at most
once. To specify that the variables shall occur in all branches of the subformula
where the VarSet is defined, the position attribute must be set to a positive
integer (the relative distance from the current position in the formula tree). In
this way, it is possible to ensure that a variable is only instantiated once within
the subformula. An example for this feature follows in the next section. The
Formula element contains an attribute duplicates. For example, if a conjunction
shall contain three clauses of a certain size, then the clause is specified only once
and the duplication attribute is set to 3.

The Formula Generator G. With the language specification L formulated in
XML Schema, specifications of random models are expressed in XML. For the
creation of formula instances out of random model specifications, we provide the
formula generator G, which is implemented as a command line tool in Java using
Apache XMLBeans. When G is started it requires arguments like the random
model, a set name for the formulas, and the number of formula instances to
be generated. First G parses the provided random model and checks if it is
conformant to L and if no constraints are violated. Such constraints assert that
no parameter name is used which has not been specified, that no minimum
value is greater than a maximum value, etc. When the random model passed



Fig. 2. Language specification.

these tests, the formula instances are generated. Each formula instance is stored
in an individual file. In the current version of G, the output format is Boole, a
standard format for QBF. If the -p flag is set, then no quantifiers are printed,
i.e., the generated formulas are propositional formulas.

3 Tool Demo: The Fixed-Shape Model for QBF

In this section, we first present an extension of the fixed-shape model by Navarro
and Voronkov [13] to QBF and then show how it is specified within our frame-
work. For pedagogical reasons we focus on the specific 〈2, 2, 3〉-shape. The method
can then easily be extended to any balanced shape as defined in [13].

The Fixed-Shape Model for SAT and QBF. A 〈2, 2, 3〉-shape is an alternating-
{∨,∧}-formula tree where the root node is a disjunction having two conjunctions
as subformulas. Each of these conjunctions contains two clauses of size three. A
〈2, 2, 3〉-constraint over the set of variables X is any instantiation of the above
tree obtained by replacing the variables in the tree by possibly negated distinct
variables from X. A 〈2, 2, 3〉-formula is a conjunction of 〈2, 2, 3〉-constraints.
Observe that such formulas are in negation normal form

We are interested in creating random QBF instances of the form ∀X∃Y φ,
where X and Y are sets of variables and φ is a 〈2, 2, 3〉-formula. This extension of
the fixed-shape random model introduced in [13] to quantified formulas requires
the following additional parameters:

– The first parameter is the pair (m,n) specifying the number of variables in
each quantifier block (size of X, size of Y ).

– The second parameter is a pair (u, e), which fixes the number u of universal
variables and the number e of existential variables that occur in each deepest,



non-leaf subtree of every 〈2, 2, 3〉-constraint of φ. Thus, u + e = 3. Here we
fix u = 1 and e = 2.

– The third parameter L is the number of 〈2, 2, 3〉-constraints in φ.

Thus, we obtain a random (m,n)-(1, 2)-L-〈2, 2, 3〉-formula in choosing uniformly,
independently and with replacement L constraints among all the possible ones
that fulfill the above requirements. Note that the random model we propose is
inspired by [8] and [4] for QBF in PCNF.

Realization in [q]bfGen. For the specification of the random model described
above, the following steps are necessary:

1. To vary the ranges of X and Y , we specify two parameters m and n.
2. As we are interested in the probability that a formula instance is satisfi-

able when the ratio number of existential variables to number of constraints
increases, we range our experiments over L = rn where r is a real value.
Therefore we introduce another parameter called width.

3. In the next step, we introduce a Quantified Formula element of universal
type for X of size m which itself contains a Quantified Formula element of
existential type for Y of size n.

4. Then we specify the outmost conjunction by a Connective Element which
contains a description of the 〈2, 2, 3〉-constraints. Note that it suffices to
specify such a constraint only once, as the duplication may be achieved by
the duplicates attribute which is set to the value of the parameter width.

5. The 〈2, 2, 3〉-formula starts with a disjunction. Here we also specify a VarSet
consisting of one variable selected from X and two variables selected from Y .
The position attribute of this VarSet is set to two, stating that the variables
are not inserted immediately, but in the clauses occurring two levels below
in the formula tree. So we can insure, that these clauses do not share any
variables.

6. Finally, we specify a conjunction containing a disjunction which are both
duplicated twice realizing the two “2” in 〈2, 2, x〉. The last disjunction is of
arity three due to the literals obtained from the VarSet specified above.

We kindly refer to our project site [1] where we discuss the random model
in detail and where we also show first experiments. Further (P)CNF random
models from literature like [4, 5, 8, 12] can also easily be handled.

4 Conclusion and Future Work

We introduced the framework [q]bfGen which provides a language for specify-
ing SAT and QSAT random models and a formula generator which interprets
such specifications and which creates formula instances accordingly. [q]bfGen is
not only valuable in the context of empirical investigations of the properties of
randomly generated formulas, but it is also a valuable tool within the solver
development process. The randomly generated formulas may then serve as input



data for fuzz testing [3], which is a powerful testing technique for such complex
tools as solvers. So conceptual as well as programming bugs can be tracked down
automatically and the robustness of the solvers increases. When used as backend
engine for verification tasks, buggy solvers are worthless. Thus, [q]bfGen might
become very helpful for the development of stable software.

We demonstrated our approach by describing a shape model for prenex QBF.
The XML Schema, the prototypical implementation of the formula generator,
and the detailed specification of the random model presented above are available
at our project site [1].

In future work and driven by practical needs, we will include additional
language elements like XOR and realize more advanced duplication and iteration
mechanisms as provided at the moment.
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