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Abstract. In software modeling, the Object Constraint Language (OCL)
is an important language to specify properties that a model has to
satisfy. The design of OCL reflects the structure of MOF-based modeling
languages like UML and its tight integration results in an intuitive
usability. But OCL allows to express properties only in the context of
a single instance model and not with respect to a sequence of instance
models that capture the execution of the system.
In this paper, we show how OCL can be extended with CTL-based
temporal operators to express properties over the lifetime of an instance
model. We formally introduce syntax and semantics of our OCL extension
cOCL. The properties specified with our OCL extension can be verified
with our explicit state space model checking framework, called MocOCL.
In a case study, we illustrate the expressiveness and usability of our
approach and evaluate the performance of our implementation.

1 Introduction

In software and hardware verification [9,14,18], model checking is currently one
of the most widely used verification techniques to show that a system satisfies its
specification.3 Model checking requires a formal representation of the system and
a specification that often consists of a set of temporal logic formulas formulated
in, e.g., the branching-time logic CTL [6].

In the context of model-based engineering (MBE), software models4 are the
core artifacts to specify and develop a system. In contrast to traditional software
engineering, where models mainly serve as design artifacts during the early
project phases, an MBE project uses models at every stage of the development
process and finally generates executable code and other deliverables therefrom.
? This work is supported by the Vienna Science and Technology Fund (WWTF) under
grant ICT10-018.

3 Usually, a specification consists of a set of properties that the system should satisfy.
We will, however, often use the terms specification and property interchangeably.

4 The term model is heavily overloaded in computer science. We encounter logical
models in the context of model checking and software models in the context of MBE.
In case of ambiguities we use the term software model when referring to the latter.



Hence, the correctness of the models is a prerequisite for the correctness of the
system that is presented to the end-user [25]. Consequently, formal verification
techniques find their way into the MBE processes to help detect and avoid errors
in the models. A popular choice for this task is model checking. Recent works
and tools like Hugo/RT [19], Groove [17], and Proco [15], to name but a few,
show that software models can be verified with model checking. In general, the
verification of software models by model checking abides the following scheme.
Throughout its lifetime a system, which is described by the software model, passes
through many states; each such state is represented by a distinct instance model.
A sequence of states, called a trace, describes the execution of the system from
an initial to some intermediate or final state. The system’s specification describes
the set of allowed, i.e., valid, traces. A model checker then verifies whether the
execution traces of the system starting from a given initial state are a subset of
the valid traces described by the specification. If the model checker determines a
violating trace, it reports the found counterexample trace to the user.

Currently, many approaches use an off-the-shelf model checker and require
the modeler to express the specification in the language of this model checker.
Therefore, the modeler is required to study and understand the translation of
the system’s software model to the model checker’s input format. Moreover, the
specification is often expressed in a language that is different from the languages
available in the modeling environment. To overcome this drawback, we present
a CTL-based temporal extension for the Object Constraint Language (OCL),
called cOCL. While OCL can only express constraints on a single instance model,
cOCL can formulate constraints over sequences of instance models representing
execution traces of the system. For verifying properties expressed in cOCL, we
realized the model checker MocOCL.

The structure of this paper is as follows. We introduce a motivating example
in Section 2 and explain the core ideas behind our approach. In Section 3, we
present the syntax and semantics of our CTL-based OCL extension and introduce
our model checking framework in Section 4 together with numerous examples in
the concrete syntax of our model checker. We then discuss the model checking
algorithm as well as some realization details of our tool. In Section 5, we present
a first evaluation of our approach regarding its usability and performance. Finally,
we review related approaches in Section 6 and conclude with an outlook to future
work. This paper is a substantial revision of the extended abstract [3] presented at
the OCL 2013 workshop. An unabridged version that includes the questionnaire
of the case study (Sec. 5) is also available [4].

2 Motivating Example

To motivate the work presented in this paper we use a variation of the well-known
Pacman game,5 which we use due to its intuitiveness and its easy adaptability to
larger game instances, i.e., increasing board size and number of ghosts, to test
the scalability of our model checking algorithm.
5 http://en.wikipedia.org/wiki/Pac-Man

http://en.wikipedia.org/wiki/Pac-Man


Field
+id:
+treasure:

Integer
Boolean

neighbors

0..4

Pacman

GhostGame

1

1..*

1

1

pacman
fields

ghosts

on

on

0..4

*

(a) Class Diagram of
Pacman’s World

Pacman Field

>
neighb

orsGhost

>
>

«forbid»

on
«create»

on
«delete»

on«forbid»

Field

>

treasure = false

>

(b) “Move Pacman”-
Rule

Ghost Field

>

neighbors

Pacman
>

>«forbid»

on
«create»

on
«delete»

on
«forbid»

Field

>

(c) “Move Ghost”-
Rule

Fig. 2. Implementation of the Pacman game with graph transformations.

Structure and Game Play. The game is played on a board consisting of square
fields, each of which has at most four neighboring fields. Each field has a
unique ID and some fields contain a treasure, indicated by a Boolean flag.

Fig. 1. Pacman’s World.

Pacman plays against one or more ghosts. Each player,
Pacman or the ghosts, is placed on one field of the
board. The static structure of the game’s implementa-
tion is shown in Figure 2a. Figure 1 uses the graphical
syntax and shows a Pacman game instance with four
fields, a treasure on field 4, Pacman on field 1, and a
ghost on field 3. The game is played as follows. The
players move turn-wise in no fixed order. Pacman has
to find one of the treasures, which are placed some-
where on the board. If he finds one, he wins the game.
If, however, Pacman moves onto a field with a ghost
or if a ghost moves onto Pacman’s field, Pacman looses the game.

Implementation. We use graph transformation rules to implement the behavior of
the game. The first rule, Move Pacman, is depicted in Figure 2(a) and describes
one move of Pacman. The second rule, Move Ghost (Figure 2(b)), describes one
move of a ghost. Pacman and the ghosts are only allowed to move if the game is
not over yet, that is, no one moves if Pacman is on a treasure field or if Pacman
and a ghost meet on the same field. Note, however, that the first restriction is
not enforced by the Move Ghost rule; hence, ghosts may still move if Pacman
already found the treasure. In Section 4.2, we show how to detect this violation of
the rules. Figure 3 exemplarily illustrates two applications of the Move Pacman
graph transformation and the subsequent changes to the current state. First,
Pacman moves from field 1 to field 2 and in the next round Pacman moves from
field 2 to field 4, which contains the treasure. In this scenario, Pacman wins.

Verification Tasks. In the example above, we have seen one specific trace showing
a winning strategy for Pacman. Yet, if we want to verify that the game always
terminates when Pacman found a treasure, it is not enough to consider only some
specific traces but all possible traces have to be explored.



Fig. 3. Example for Transformations.

For expressing and solving these verification tasks, temporal aspects of the
system behavior have to be considered. Such verification questions are difficult
to express in OCL because it neither provides operators to express constraints
that must hold, e.g., always or eventually, nor the semantic notions to describe
execution traces. To this end, we propose to use our OCL extension cOCL.

MocOCL at a Glance. Our tool MocOCL realizes an explicit state model checking
approach. We construct the state space of the Pacman game iteratively. In our
implementation, we use the graph transformation tool Henshin [1] that explores
the state space by recursively applying all matching graph transformation rules
to the user-provided initial model. The full state space resulting from recursively
applying the rules Move Pacman and Move Ghost to the initial model (Fig. 1)
is depicted in Figure 4. The initial state in the bottom-left corner of the figure
is highlighted in green with a bold border and the end states are marked red
with a dashed border. The transitions between the states show possible moves of
Pacman and the ghost. Overall there are 4 ∗ 4 = 16 different states (the ghost
has to be placed on each field and Pacman has to be placed on each field). After
each exploration step MocOCL evaluates the cOCL expression and, if enough
states have been explored to conclude that the expressions either holds or fails,
the verification stops. Finally, MocOCL returns a report that explains the result
of the verification.

3 A Temporal Extension of OCL

In this section, we formally introduce syntax and semantics of cOCL, which
extends OCL with CTL operators. We assume familiarity with model checking
and CTL [2,7]. We integrate cOCL into the formal semantics of OCL and kindly
refer to the work of Richters and Gogolla [24] for the details on the syntax and
semantics of OCL. Due to space constraints and for ease of presentation, we
reproduce only those definitions that are essential to the understanding of the
subsequent explanations.



Fig. 4. State Space of the Pacman Game.

OCL expressions are always defined w.r.t. a model M consisting of classes
which are described by their attributes and operations as well as associations
between classes characterized by multiplicities and roles. Such a model provides
the basis for defining OCL expressions in form of a signature ΣM = (TM , ΩM ,V)
where TM is a set of types, ΩM is a set of operations, and V is additionally a
set of variables. By Vt ⊆ V we denote the set of variables of type t ∈ TM . The
instantiation of such a model is given by objects, links, and attribute values
and is also called snapshot. In the following, we denote a specific snapshot of a
model M by σ(M). Due to space restrictions, we abstain from a complete formal
introduction of the notion of model.

Definition 1 (Syntax of OCL). Let ΣM = (TM , ΩM ,V) be the signature of
model M as described above. Then Exprt is the set of expressions of type t defined
as follows.

i. If v ∈ Vart then v ∈ Exprt.
ii. If v ∈ Vart1 , e1 ∈ Exprt1 , e ∈ Exprt then (let v = e1 in e) ∈ Exprt.
iii. If ω : t1 × . . .× tn → t ∈ ΩM and ei ∈ Exprti then ω(e1, . . . , en) ∈ Exprt.
iv. If e1 ∈ ExprBool and e2, e3 ∈ Exprt then if e1 then e2 else e3 endif ∈ Exprt.
v. If e1 ∈ ExprCollection(t1), v1 ∈ Vart1 , v2 ∈ Vart, and e2, e3 ∈ Exprt then e1

→ iterate(v1; v2 = e2 | e3) ∈ Exprt.

The set of OCL expressions over Σ denoted by OCLM is given by
⋃
t Exprt.

Due to space restrictions, Definition 1 does not contain the definitions related
to type hierarchies and inheritance. Adding these definitions neither changes nor
impacts our approach presented below.



Definition 2 (Syntax of cOCL). Let M be a model with OCL expressions
OCLM . Then cOCL is defined as follows.
i. If e ∈ OCLM , then e ∈ cOCL.
ii. Let ExprBool ⊆ cOCL be the set of boolean expressions in cOCL. If e1, e2 ∈

ExprBool then AXe1, EXe1, Ae1We2, Ee1We2, Ae1Ue2, Ee1Ue2 ∈ ExprBool.

Our extension introduces three temporal operators, next (X), weak until (W),
and (strong) until (U), which are quantified either existentially (E) or universally
(A). We define two additional operators, eventually (F) and globally (G), by
the following equivalences: EFϕ ≡ E true Uϕ and AFϕ ≡ A true Uϕ, and EGϕ ≡
EϕW false and AGϕ ≡ AϕW false. Note that next, eventually, and globally have
a single subformula as argument, whereas the weak until and until operators
have two subformulas. Before we define the semantics of the temporal operators,
we formally introduce the term transition system which describes all possible
executions of a system.

Definition 3 (Transition System). The transition system T SM associated
with a model M is a hextuple (S, ι, T ,A,B, E) consisting of a set S of states,
an initial state ι ∈ E, a transition relation T ⊆ S × A × S, a set A of actions,
a set B of variable assignments, and the environment relation E ⊆ S × B. An
environment τ ∈ E is a pair (σ, β) with σ ∈ S and β ∈ B.

For each state σ ∈ S the set of possible objects is given by σclass, the set of
possible associations by σassoc, and the set of possible attributes by σattrs. A
variable assignment is a function β : Var t → Valt that, given a variable name,
returns the current value of the associated variable of type t. An action is a
partial function α : σclass → σclass ∪ {⊥} mapping objects from one state to
corresponding objects of another state or to ⊥ if no such object exists.

The concept of an environment τ = (σ, β) has been introduced in [24]. For
specific execution traces, we define the term path as follows.

Definition 4 (Path). Let T SM = (S, ι, T,A,B, E) be the transition system
associated with a model M . A path π is a finite or infinite sequence of environ-
ments (τ0τ1τ2 . . .) with τi ∈ E and (τi, τi+1) ∈ {((σi, βi), (σi+1, βi+1)) | βi+1 =
mapvar(βi, α), (σi, α, σi+1) ∈ T} for all 0 ≤ i. For a path π = (τ0τ1τ2 . . .), we de-
fine the projection function π(i) = τi. The length of a path |π| = n for finite paths
π = (τ0 . . . τn), and |π| =∞ for infinite paths π = (τ0τ1τ2 . . .). By pth(T SM ) we
denote the set of all possible paths of T SM .

The function mapvar : B ×A → B takes a variable assignment βs of source
state σs and an action α ∈ A and updates βs with respect to α resulting in a
variable assignment βt for the successor state σt. We are now able to define the
semantics of cOCL as follows.

Definition 5 (Semantics). Let T SM = (S, ι, T,A,B, E) be the transition sys-
tem associated with model M as defined above. The semantics of a cOCL ex-
pression w.r.t. a context τ ∈ B with τ = (σ, β) is defined by the rules i.–vi.
originating from Definition 2 of [24] and the additional rules vii.–xi. for the
temporal extension.



i. IJvK(τ) := β(v)
ii. IJlet v = e1 in e2K(τ) := IJe2K((σ, β[v/IJe1K(τ)]))
iii. IJω(e1, . . . , en)K(τ) := I(ω)(τ)(IJe1K(τ), . . . , IJenK(τ))

iv. IJ if e1 then e2 else e3 endifK(τ) =


IJe2K(τ) ifIJe1K(τ) := true
IJe3K(τ) ifIJe1K(τ) := false
⊥ otherwise

v. IJe1 → iterate(v1; v2 = e2|e3)K(τ) := IJe1 → iterate′(v1|e3)K(τ ′) where
τ ′ = (σ, β′) and τ ′′ = (σ, β′′) are environments with modified variable assign-
ments: β′ := β[v2/IJe2K(τ)], β′′ := β′[v2/IJe3K(σ, β′[v1/x1])]

vi. IJA e1 U e2K(τ) := {π | π ∈ pth(T SM ), π(0) = τ,@n ∈ N, n ≤ |π| :
(IJe2K(π(n)) = true ∧ ∀ 0 ≤ i < n : IJe1K(π(i)) = true)} = ∅

vii. IJE e1 U e2K(τ) := {π | π ∈ pth(T SM ), π(0) = τ,∃n ∈ N, n ≤ |π| :
(IJe2K(π(n)) = true ∧ ∀ 0 ≤ i < n : IJe1K(π(i)) = true)} 6= ∅

viii. IJA e1 W e2K(τ) := {π | π ∈ pth(T SM ), π(0) = τ, 6 ∀n ∈ N, n ≤ |π| :
(IJe1K(π(n)) = false→ ∃i ∈ N, i ≤ n : IJe2K(π(i)) = true)} = ∅

ix. IJEφWψK(τ) := {π | π ∈ pth(T SM ), π(0) = τ,∃n ∈ N, n ≤ |π| :
(IJe1K(π(n)) = false→ ∃i ∈ N, i ≤ n : IJe2K(π(i)) = true)} 6= ∅

x. IJE X eK(τ) :={π | π ∈ pth(T SM ), π(0) = τ∧|π| ≥ 1∧IJeK(π(1)) = true} 6= ∅
xi. IJA X eK(τ) :={π | π ∈ pth(T SM ), π(0) = τ∧|π| ≥ 1∧IJeK(π(1)) 6= true} = ∅

The semantics of the eventually and globally operators follow directly from the
above definitions. The only free variable allowed in cOCL expressions is self,
corresponding to the root object of the state, called root(σ) in the following, the
cOCL expression is evaluated in. We define satisfiability of cOCL expressions as
follows.
Definition 6 (Satisfiability). A cOCL expression φ is satisfiable w.r.t. a tran-
sition system T SM with initial state ι iff IJφK(ι) = true.

In the remainder of this paper, we discuss how the model checker MocOCL
verifies cOCL specifications, discuss its implementation, and evaluate its perfor-
mance and usability. In Table 1 we list examples of cOCL expressions, which
illustrate typical application scenarios of cOCL in the context of the Game class
(Fig. 2a) of the previously introduced Pacman game. The cOCL expressions are
phrased in the concrete syntax of MocOCL that we introduce in the next section.

4 The Model Checker MocOCL

The implementation of MocOCL consists of two parts, a backend that realizes an
explicit state model checker and a graphical user interface.

4.1 Backend

The backend consists of a parser for the textual concrete syntax of cOCL and
the model checker MocOCL that verifies cOCL specifications.



Table 1. Examples of cOCL expressions in the concrete syntax of MocOCL.

natural language cOCL expression
Initially, there is a field con-
taining a treasure.

self.fields->exists(field | field.treasure)

The game is over/not over. Always Next false/Exists Next true

The game will surely be over
sometimes.

Always Eventually (Always Next false)

Pacman will find the treasure
in all cases.

Always Eventually self.pacman.on.treasure

If the treasure is next to Pac-
man, he can always find it in
the next turn.

Always Globally
self.pacman.on.neighbor->exists(field.treasure)
implies (Exists Next self.pacman.on.treasure)

As long as not all fields next
to Pacman are occupied by
ghosts, there is a possibility
that the game is not over af-
ter the next turn.

Always Globally
self.pacman.on.neighbor->exists(field |
self.ghosts->forAll(g | field <> g.on) implies
(Exists Next (Exists Next true)))

As long as the game is not
over, every ghost may move
to at least two different posi-
tions.

Always self.ghosts->
forAll(g | g.on.neighbor->select(field |
Exists Next g.on = field)->size() >= 2)

Unless (Always Next false)

The concrete syntax enhances the readability of cOCL expressions. It allows
us to write the temporal operators in their familiar long forms, i.e., Xϕ, Fϕ,
Gϕ, ϕWψ, and ϕUψ become Nextϕ, Eventuallyϕ, Globallyϕ, ϕUnlessψ,
and ϕUntilψ. The universal and existential path quantifiers preceding the
temporal operators become Always and Exists or, alternatively, Sometimes.
Table 1 shows examples of MocOCL expressions in the concrete syntax. In our
implementation, we extended the concrete syntax of OCL given by an Xtext
grammar6 resulting in an editor with syntax highlighting for cOCL expressions
and a Java API.

The prototypical, EMF-based7 implementation of the MocOCL model checker
performs the actual verification task as follows. Given an Ecore-conformant
model, an instance model that represents the system’s initial state, a set of model
transformations, and a cOCL specification, MocOCL generates the state space

6 http://www.eclipse.org/Xtext/
7 http://www.eclipse.org/modeling/emf/

http://www.eclipse.org/Xtext/
http://www.eclipse.org/modeling/emf/


iteratively and, at every step, it verifies the cOCL specification on-the-fly. Finally,
it reports to the modeler information on the reason of the verification result.

In MocOCL, the state space consists of a set of graphs. Each graph corresponds
to an instance of the system and thus represents a system’s state at a discrete
point in time. Given a graph transformation system G = (R, ι) with graph rewrite
rules R and an initial state ι, the function stepR: S → P (S ×M)8 handles the
step-wise exploration of the state space where S denotes the set of all states
andM the set of all partial mappings between states σ1, σ2 ∈ S. It expects as
input a state σs and returns a set of pairs (σt,m) where σt denotes the successor
state of σs and m ∈ M defines a morphism m : σClass → σClass ∪ {⊥} that
maps objects in σs to corresponding objects in σt or to ⊥ if no such object
exists. The successor state σt is obtained from σs by applying a rewrite rule
r ∈ R to the graph represented by σs. We write σs

r,m⇒ σt to denote that σs
is rewritten to σt by rule r ∈ R at match m [11]. The state space exploration
function is then defined as stepR(σs) =

⋃
r∈R{(σt,m)|σs

r,m⇒ σt}. The helper
function succ: E → P (E) returns all environments reachable by a transition
from the source environment τs = (σs, βs) and is defined by succ((σs, βs)) :=
{(σt, βt)|(σt,m) ∈ stepR(σs), βt = mapvar(βs,m)} with mapvar as defined in
the previous section.

This implementation gives us a transition system T SM = (S, ι, T,A,B, E)
with initial state ι ∈ {(σ, βι[self/root(σ)])|σ ∈ G}, βι = ∅, T = {(σs,m, σt)|σs

r,m⇒
σt, r ∈ R, σs, σt ∈ S}, A being the setM of partial state mappings, E being the
transitive closure of the succ function applied to the initial environment ι, and
S and B being all states and variable assignments occurring in an environment.

The algorithm for evaluating cOCL expressions of the form (A|E)φ (U|W)ψ is
shown in Figure 5. To ease the presentation we drop intermediate checks allowing
the algorithm to abort early in some cases, i.e. if a cycle was found during the
evaluation or an element is added to a set required to be empty if the property
holds. The algorithm proceeds as follows. First, it constructs the sets Φ and Ψ that
contain all states where ϕ or ψ hold, respectively, and a third set η that contains
all states reachable from a ϕ-state but where neither ϕ nor ψ hold. The worklist
ω contains all nodes that need to be processed. The algorithm sets the worklist
to the initial environment τι and uses the succ function to iteratively expand
the set of reachable environments. It evaluates ϕ and ψ in each environment τ
and assigns τ to the corresponding sets Φ and Ψ , or to η if neither ϕ or ψ hold.
Once every reachable environment is assigned to either Φ, Ψ , or η, the algorithm
constructs the set ∆, which contains all environments from Φ that do not lie on an
infinite path that does not leave Φ. That is, all environments in Φ that are part of
a circular path are not in ∆. Finally, the algorithm builds the set Z that contains
all deadlocked environment in Φ, i.e., environments that have no successor. Then,
IJAφUψK(τ) holds if η is empty, and Φ contains neither cycle nor deadlock;
IJEφUψK(τ) holds if Ψ is not empty; IJAφWψK(τ) holds if η is empty; and
IJEφWψK(τ) holds if Ψ is not empty or Φ contains a cycle. Expressions (A|E) Xφ

8 P (X) is the set of all finite subsets of X.



/*Evaluates the given cOCL expression.
τι: start environment; POp: Path operator, Always or Exists;
TOp: Temporal operator, Until or Unless; returns: true iff the expression holds*/
function evaluate(τι, (POp φ TOp ψ)) : Bool
1 ω := {τι}; /*worklist */
2 Φ := ∅; /*fulfilling φ, but not ψ */
3 Ψ := ∅; /*fulfilling ψ */
4 η := ∅; /*fulfilling neither φ nor ψ */
5 while ω 6= ∅
6 pick τ = (σ, β) ∈ ω;
7 ω := ω \ {τ};
8 if IJφK(τ) or IJψK(τ) then
9 if IJψK(τ) then

10 Ψ := Ψ ∪ {τ};
11 else
12 Φ := Φ ∪ {τ};
13 ω := ω ∪ succ(τ) \ (Φ ∪ Ψ ∪ η);
14 end if
15 else
16 η := η ∪ {τ}
17 end if
18 end while

19 ∆ := ∅;
20 ∆l := ∅;
21 repeat
22 ∆l := ∆;
23 ∆ := {τ ∈ Φ | succ(τ) ∩ (Φ\∆l) = ∅};
24 until ∆ = ∆l

25 Z := {τ ∈ Φ | succ(τ) = ∅};
26

27 switch (POp, TOp)
28 case (Always, Until):
29 return Φ = ∆ and Z = ∅ and η = ∅;
30 case (Always, Unless):
31 return η = ∅
32 case (Exists, Until):
33 return Φ 6= ∅;
34 case (Exists, Unless):
35 return Φ 6= ∅ or Z 6= ∅ or Φ 6= ∆;
36 end switch

Fig. 5. Until/Unless Algorithm Pseudo Code.

are implemented as IJ(A|E) XφK((σ, β)) := (∀|∃)n ∈ succ(σ, β) : IJφK(n) = true,
where we check if all (at least one) successor of the current state satisfies ϕ.

The evaluation of a cOCL expression yields a report that, besides returning
the result of the evaluation, contains a cause or explanation for the result. A
cause is associated with a cOCL expression. It stores the result of the evaluation
of the associated expression and, for each relevant sub-expression, a sub-cause. A
sub-expression is relevant if it influences the result of its super-expression. For
example, if the sub-expression ϕ in ϕorψ evaluates to true then no sub-cause is
generated for ψ as the evaluation of ϕ uniquely determines the result of ϕorψ.
If, however, both ϕ and ψ evaluate to false, then a sub-cause for each of the
two sub-expressions is generated and stored in the cause of ϕorψ. Note that the
cause generation is not necessarily deterministic, as is the case, for example, if
both ϕ and ψ evaluate to true in ϕorψ.

4.2 Frontend

The MocOCL implementation, which is based on the Eclipse OCL project,9
works in two phases, (i) step-wise exploration of the state space and evaluation
of the provided cOCL expression on the thus far generated state space and
9 http://www.eclipse.org/projects/project_summary.php?projectid=modeling.

mdt.ocl

http://www.eclipse.org/projects/project_summary.php?projectid=modeling.mdt.ocl
http://www.eclipse.org/projects/project_summary.php?projectid=modeling.mdt.ocl
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Fig. 6. Visualization of a cause in the MocOCL tool

(ii) visualization and report generation that provide useful information for the
modeler on the reason of a specific result. The realization of the first phase is
discussed above; in the following, we present the user interface and the report
generation of our tool.

Figure 6 depicts a screenshot of MocOCL that displays the verification re-
sult for the initial 2 × 2 board (Fig. 1), the graph transformation rules Move
Pacman and Move Ghost (Fig. 2), and the cOCL expression Always Globally
(self.pacman.on.treasure) implies (Always Next false). This cOCL ex-
pression states that whenever Pacman finds the treasure, no further states can
be reached, i.e., the game ends. The MocOCL user interface consists of the fol-
lowing parts: (1) an input field for the cOCL specification, (2) the result of the
verification, i.e., whether the cOCL specification is satisfied or not, (3) the cause
that textually describes (4) the trace of the evaluation, which is embedded in
(5) the partial state space. Further, upon clicking on a state or transition from



(3) the cause, (4) the trace, or (5) the partial state space, the selected state or
transition is visualized in (6) the object diagram pane. The changes caused by a
transition are highlighted in red and green indicating the deletion and creation
of an association, respectively.

In the example displayed in Figure 6, the specification is not satisfied, i.e., the
game does not end if Pacman finds a treasure. The cause shows a scenario where
Pacman finds the treasure in two moves starting from the initial state (state 2)
and moving first to state 4 and then to state 7. However, there is a transition
moveGhost leading from state 7 to state 12. This transition is selected in (4) the
trace and is highlighted in blue. The changes associated with the transition are
displayed in (6) the object diagram pane. The deletion and creation of the on
relation between the ghost and two adjacent fields describes the ghost’s move.
Consequently, the ghost may perform moves after Pacman already resides on the
treasure field. Thus, the implementation does not satisfy the specification of the
game and needs to be fixed by introducing an additional Negative Application
Condition for the Move Ghost rule such that a ghost may no longer move once
Pacman found the treasure.

A demo version of MocOCL is available as a browser version at

http://www.modelevolution.org/mococl/

and can be used without any installation efforts. In the demo version the initial
model is fixed to the 2 × 2 board shown in Fig. 1 due to memory limitations
on the server. A browser-based version for custom installations, which is not
restricted to the Pacman model, is available for download at

http://www.modelevolution.org/prototypes/mococl.

5 A First Experimental Case Study

We performed an evaluation of cOCL’s and MocOCL’s usability and performance.
In both cases we used the Pacman game described above because (i) its game
play is simple and (ii) its complexity can be increased easily by raising the number
of fields on the game board or the number of ghosts.

5.1 Usability

Experimental Setup. Concerning the evaluation of the usability of our verification
framework, we are interested in (i) the intuitiveness of the cOCL language, i.e.,
the combination of OCL expressions and temporal operators, and (ii) the usability
of MocOCL’s user interface, most notably the presentation of the cause. Thus, we
conducted a series of qualitative, semi-structured interviews with 11 researchers
with expertise in MBE or in formal verification, and some in both. Each test
person was interviewed separately for one to two hours. The interviews were
structured as follows.

The interview started with an introduction to model checking in the context
of MBE. The Pacman game discussed in Section 2 served as the running example.

http://www.modelevolution.org/mococl/
http://www.modelevolution.org/prototypes/mococl


Table 2. Evaluation results based on self–estimated proficiency

Prior Knowledge Exercises Subjective Evaluation
Low Medium High Low Medium High

Structural Models 12 8 10.5 8 7.5 7
Behavioral Models 8 10.1 11 7 7.7 6
OCL 12 9.6 11.5 8 6.9 8
Graph transform. 10 9.4 11.7 7.3 6.8 7.7
Standard Logics 9.5 10.3 10.4 5 7.4 8
Temporal Logics 10.4 9.9 — 6.8 8.3 —
Model checkers 10 – 10.4 6.5 – 8.0

Depending on the expertise of the test persons, background on either structural
and behavioral modeling or model checking was given to ensure a common level
of understanding. Next, the cOCL language was presented with several examples
similar to those in Table 1. Then, the test persons had to solve exercises and
were encouraged to use MocOCL’s web interface to find the solutions. These
exercises were grouped into three blocks, each block raising the level of difficulty
gently. First, the test persons were required to match a set of cOCL expressions
to their corresponding natural language explanations. Next, the test persons were
asked to explain the meaning of several cOCL expressions in natural language.
Finally, the test persons had to formulate cOCL expressions on their own. The
last question of the exercises the test person to assert required whether the game
is over after Pacman finds the treasure. The task setup was identical to the
scenario depicted in Figure 6. In the final part of the interview the test persons
were asked to provide feedback on whether it was “Easy”, “Medium”, “Hard”,
or “Infeasible” to (i) read cOCL expressions, (ii) write cOCL expressions, and
(iii) use MocOCL’s interface.

The questionnaire used during the interview, including the exercises and the
subjective evaluation, is shown in the extended technical report.

Results. All participants successfully revealed the defect in the graph transfor-
mation rule Move Ghost (Fig. 2) with the help of MocOCL. Even in this small
example, however, only few of the test persons were able to detect the defect
without the tool. Thus, we may conclude that MocOCL is supportive when model
checking is performed in the context of MBE. The interviews also showed that
some background on CTL is indispensable to apply the temporal operators and
path quantifiers correctly. While most participants reported that reading the
cOCL expressions is intuitive, test persons without any prior exposition to formal
verification and model checking in particular expressed difficulties phrasing such
expressions on their own. In particular, the existential path quantifier which
wo originally called “sometimes” caused confusion among the test persons and
many suggested to use the more intuitive term “exists”. To avoid the name clash
and ambiguities with OCL’s exists operator we revised cOCL’s concrete syntax
such that (i) all cOCL keywords are capitalized and (ii) the keyword Exists was
introduced as an additional existential path quantifier. Further feedback resulted



in slight visualization improvements; in particular, we now color start and end
nodes of the evaluation trace.

Table 2 summarizes the overall evaluation results. Initially each participant
was asked to provide a self-assessment of his/her expertise in various domains that
we considered relevant for using MocOCL. Each participant was then assigned to
his/her matching expertise group (“Low”, “Medium” or “High”) in each domain.

The table contains the average number of points given by persons of a specific
expertise group in a certain domain. In total, a person could score a maximum
number of twelve points in the exercise part and award up to nine points during
the subjective evaluation. Each task was awarded either zero points for a wrong
or missing answer, one point for a partially correct answer, i.e. the use of →
instead of the OCL implies, and two points for a completely correct answer. The
first block, was considered an single task while the three cOCL expressions which
had to be interpreted and the two cOCL expressions which had to be written
were considered as individual tasks each. A test person that solves the matching
task and provide the correct meaning of two cOCL expressions and only a single,
partially correct, solution for writing a cOCL expression scores seven points.

For the subjective evaluation, each person had to decide how hard “Reading
cOCL”, “Writing cOCL” and “Tool use” were. The answer “Easy” yielded three
points, “Medium” two points, “Hard” one point and “Infeasible” zero points. The
total value is the sum of values for answers for the individual domains. A test
person that experienced reading cOCL was easy, writing cOCL was hard, and
using the tool was medium awards six out of nine points.

Discussion. The evaluation provided valuable insights on the usability of our
tool. However, to obtain statistically relevant results we have to increase the
number and the diversification of our test persons. We plan to contribute such
an extensive user study in the course of our Model Engineering class, a master
course offered during the winter term providing a test-bed of up to 100 students.

Overall, we could observe a trend that the knowledge of behavioral models and
logics increases the odds of successfully applying MocOCL to verification tasks,
while expertise in graph transformations, OCL, and standard modeling does not.
In contrast, persons knowing model checking and logics, but not knowing graph
transformations gave lower ratings in the subjective evaluation.

We concluded that MocOCL should provide other facilities to specify dynamic
behavior, for example, state machines or a subset of the Java programming
language. In future evaluations, we will also have to consider direct comparisons
to other tools like Groove.

Additional feedback that we received is hard to capture by facts in tables.
This includes the way some people were interested in using the tool by playing
around with various features. This encouraging observation seems to confirm
the chosen approach of how to realize MocOCL. In contrast, the language itself
seems to be too hard for immediate use since no one tried out custom expressions
beyond those required for the tasks. Finally, even though the interviews were
scheduled for a duration of up to two hours, we felt that the time required for an
in–depth evaluation with a single person should be even higher. As this seems



(a) Small board. (b) Medium board. (c) Large board.

Fig. 7. Different configurations of the Pacman game used for the evaluation.

to expect too much from a volunteering test person we plan to restructure the
exercise part such that the tasks can be solved before the actual interview.

5.2 Performance

Experimental Setup. In order to asses the performance of our implementation,
we measured runtimes required for different board sizes and different numbers of
ghosts. Along these parameters we are able to scale the size of the state space
and observe the behavior of our tool with increasing state space sizes. An upper
bound for the state space size is n(g+1) with n being the number of fields and
g being the number of ghosts. The initial configurations of the used boards are
shown in Fig. 7. We ran our performance tests with three different configurations,
(i) a 2× 2 board with one ghost (Fig. 7(a)), (ii) a 3× 3 board with two ghosts
(Fig. 7(b)), and (iii) a maze of 34 fields with zero, one, and two ghosts (Fig. 7(c)).

On each game configuration, we evaluated the following three queries:

– Always Globally true
– Exists Eventually pacman.on.treasure
– Exists Eventually pacman.on.treasure and

ghosts->forAll(g | g.on <> pacman.on)

Although the first expression is trivially true, MocOCL traverses the entire state
space to assert its correctness because it does not implement any simplification
rules for the input query yet. Thus, we use this first expression to analyze
MocOCL’s runtime behavior when traversing state spaces of different sizes. The
second expression queries whether Pacman eventually finds a treasure. The last
query contains a more complicated OCL sub-expression in order to validate if
Pacman can always win the game. The experiments were performed on an Intel
i5-2410M Machine with 2.30 GHz and 8 GB RAM.



Table 3. Runtimes of MocOCL (times are given in ms).

Field Gh. St. gentime evaltime total
avg std avg std avg std

St
at
e
sp
ac
e

ge
ne

ra
tio

n

small 1 16 25 6.1 20 5.9 46 7
medium 2 405 1051 623.3 114 42.6 1165 657.6
large 0 34 128 63.8 20 5.1 148 68.9
large 1 1156 7712 381.4 258 68.6 7970 437.4
large 2 20230 213k 16.3k 5164 432.6 218k 16.4k

Pa
cm

an
on

tr
ea
su
re

small 1 10 19 21.3 29 2.4 48 22.4
medium 2 120 124 18.3 63 19.9 188 36.2
large 0 34 85 9.9 28 0.4 113 10
large 1 631 1932 57.8 114 28.9 2046 38.9
large 2 6920 30685 167.9 1819 34.5 32504 187.3

Pa
cm

an
w
in
s

small 1 10 15 19.7 65 9.7 80 19
medium 2 176 128 115.4 266 94.8 393 128.3
large 0 34 88 18.1 45 7.4 133 18.9
large 1 631 2095 223.5 316 66.3 2411 224.6
large 2 6920 22878 557.8 10772 16.2 33650 566.1

Results. The runtimes of our experiments are summarized in Table 3. The first
query is called state space generation, the second query is called Pacman on
treasure, and the third query is called Pacman wins. The column Gh. contains
the number of ghosts and the column St. contains the number of generated states.
Further, the table shows the overall runtime of our tool (column total), which
we split into the time necessary to generate the state space (column gentime)
and the time required to evaluate the cOCL expressions (column evaltime) by
caching the state space. We repeated each run five times and report the average
runtime as well as the standard deviation. Overall all queries could be answered
within less than five minutes. But if we add a third ghost to the large field, the 8
GB of memory are insufficient to answer the given queries.

Discussion. In its current state, we observe that our tool is not competitive in
terms of performance, even without a direct comparison to other tools. For the
moment, however, we clearly focus on the tight integration of OCL and model
checking-based verification, not so much on the performance. This is directly
reflected in the performance results of the current implementation shown in
Table 3, which we discuss in the following. We observe a high standard deviation
for all expressions when run on the more complicated 3 × 3–field. We suspect
this to be due to the various online JVM optimizations. These optimizations are
also likely the cause for the generation time of the “Pacman wins”–expression
being significantly lower then the generation time of the “Pacman on treasure”–
expression even though the same number of states are generated. The excessive
increase in evaluation time for the “Pacman wins”–expression for more ghosts
originates from the forAll–expression covering a different number of ghosts. In
the case of no ghosts, the expression just needs to ensure that there are no ghosts



in each state which is fast. In the case of one or more ghosts, the expression has
to check that the position of each ghost is different to the position of Pacman.

Our approach scales approximately as well as comparable solutions like
Groove. Our benchmarks show that our implementation spends significant
amounts of time on both the state space generation and the evaluation of the
cOCL expression; thus, it is sensible to look into improvements in both areas.
A more efficient cOCL evaluation might also reduce the state space generation
time if fewer states need to be generated.

6 Related Work

We discuss related works focusing on temporal extensions for OCL first, followed
by reviews of model checkers that verify whether a system, whose structure and
behavior is described by (graphical) models, satisfies its specification. For an
in-depth discussion on verification approaches in the context of MBE we refer
the interested reader to [13].

Temporal Extensions. Distefano et al. [8] propose a CTL-based logic, called
BOTL, to specify static and dynamic properties of object-oriented systems. But
instead of extending OCL, they map OCL onto BOTL; hence, they provide
formal semantics for a large part of OCL based on BOTL. Ziemann et al. [29]
suggest an extension based on linear time logic, which is similar in nature to
our CTL-based solution. Soden and Eichler [26] also present a linear time-based
extension for OCL and define the operational semantics of MOF-conforming
models with the Model Execution Framework for Eclipse (MXF) [27]. This allows
them to describe a finite execution trace through a sequence of changes. Flake
and Mueller [12] use state charts to describe the behavior of associated class
diagrams and time-based traces to capture the execution of the system. They
propose a UML Profile to specify state-oriented, real-time invariants, whose
semantics are defined by a mapping to clocked CTL formulas. Bradfield et al. [5]
embed OCL into the observational µ-calculus. They suggest the use of predefined
templates with intuitive semantics, from which the underlying µ-calculus formula
is automatically generated. Likwise, Kanso and Taha [16] introduce a temporal
extension based on Dwyer et al.’s patterns for the specification of properties
for finite state systems [10]. They define a scenario-based semantics for their
extension, where each scenario is a finite sequence of events.

Verification Engines. Mullins and Oarga [22] present EOCL, an extension inspired
by BOTL, that augments OCL with CTL operators. The operational semantics
of EOCL are defined over object-oriented transition systems. They announce and
describe SOCLe, a tool that translates class, state chart, and object diagrams
into an abstract state machine and checks on-the-fly if the system satisfies a
given EOCL specification.The Groove framework [17] verifies object-oriented
systems modeled as attributed, type graphs with inheritance relations. It is
similar to MocOCL in that it represents system states as graphs and the system’s



behavior by graph transformations. But, in contrast, it uses standard CTL and
LTL to formulate the system’s specification. Recently, abstraction techniques
have been implemented to handle infinite state spaces by over-approximating
system behaviors [23]. Al-Lail et al. [20] describe systems with class diagrams
and the operations’ contracts, given by OCL pre- and postconditions, capture the
behavior of the system. They use TOCL [29] to specify reachability and safety
properties. Their model checker builds a Snapshot Transition Model that consists
of snapshots, which represent a state of the system, and transitions, which run
from source states that satisfy an operation’s precondition to target states that
satisfy the postcondition. With the USE Model Validator [28] they perform a
depth-bounded search for sequences of snapshots that violate the specification
and, if one is found, visualizes the violating sequence as a UML sequence diagram.
Dingel et al. [21,30] verify UML–RT state machines symbolically using a CTL–
extension without transforming to another model checker, but representing their
models as Functional Finite State Machines. In contrast to MocOCL, OCL is not
part of their language.

To the best of our knowledge, MocOCL is currently the only framework
that (i) integrates its CTL-extension seamlessly into the formal semantics of
OCL, (ii) implements the evaluation of CTL operators directly within the OCL
evaluation engine, and thus (iii) performs the verification and result reporting
directly at the modeling layer.

7 Conclusion and Future Work

In this paper, we present syntax and semantics of cOCL, our OCL extension with
CTL-based temporal operators. Further, we describe the implementation and
technical feasibility of our MocOCL model checker that verifies cOCL specifica-
tions of software systems, whose static structure is described by Ecore-conformant
models and whose behavior is defined by a set of graph transformations. We con-
ducted a first user study, where we invited colleagues to solve a set of verification
tasks with our tool. The results of this user study are already incorporated into
MocOCL and they improved, among others, the concrete syntax of cOCL.

A performance evaluation shows that our approach is able to verify models of
various sizes. With increasing state space sizes, memory consumption becomes a
major issue. This is, however, an inherent problem of model checking in general,
which suffers from the state explosion problem and, for practical application,
several tuning techniques can be applied. In our current prototype, we do not
use such techniques yet. Thus, in future work, we plan to employ symbolic
model checking and abstraction techniques to improve runtimes and memory
consumption.

Besides technical issues we are also interested in improving the usability of
our tool. The aim is (i) to further explore the intuitiveness of the combination
of temporal operators and OCL expressions and (ii) the presentation of the
evaluation result, in particular, with respect to the reconstructability of the cause.
A larger user study is planned to improve future versions of the tool.
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