
A Survey on Applications of
Quantified Boolean Formulas

(Invited Paper)

Ankit Shukla, Armin Biere, Martina Seidl
Institute for Formal Models and Verification

Johannes Kepler University Linz, Austria
Email: {ankit.shukla, biere, martina.seidl}@jku.at

Luca Pulina
Intelligent system DEsign and Applications

University of Sassari, Italy
Email: lpulina@uniss.it

Abstract—The decision problem of quantified Boolean formu-
las (QBFs) is the archetypical problem for the complexity class
PSPACE that contains many reasoning problems of practical
relevance. Because of the availability of a rich solving infrastruc-
ture aspects QBFs provide an attractive framework for encoding
and solving such reasoning problems ranging from symbolic
reasoning in artificial intelligence to the formal verification
and synthesis of computing systems. In this paper, we survey
the different application areas that exploit QBF technology for
solving their specific problems.

I. INTRODUCTION

The last two decades have seen the rise of a rich infrastruc-
ture for solving quantified Boolean formulas (QBFs) [1], [2].
Many sophisticated solving paradigms were developed based
on different proof systems of orthogonal strength and they
were implemented in powerful solvers. Novel preprocessing
techniques for simplifying formulas were invented as well as
efficient approaches for result validation and winning strategy
extraction, to name just a few examples. The progress is
witnessed by the annual QBF competition called QBFEval
(see for example [3] for the competition reports of 2016 and
2017). All these efforts are motivated by the success story of
SAT solvers, i.e., tools for deciding the satisfiability problem
of propositional logic (SAT) [4]. By being NP-complete, SAT
is “evidently a killer app, because it is key to the solution of
so many other problems” [5].

For problems whose complexity is beyond NP, more pow-
erful formalisms are needed in order to play a similar dis-
ruptive role as SAT plays for solving problems in NP. One
very promising direction is to use QBFs, which extend SAT
with existential and universal quantifiers over propositional
variables. The decision problem of QBFs is the prototypical
PSPACE-problem [6]. Further, there is a strong relationship
between the formulation of (closed) QBFs and the polynomial-
time hierarchy. Indeed, given a closed QBF having a quantifier
prefix composed of n quantifier blocks, its decision problem
is at the n-th level of the polynomial hierarchy. More pre-
cisely, the decision problem is Σpn -complete if the outermost
quantifier is existential and Πp

n -complete if the outermost
quantifier is universal. Hence, any problem in PSPACE can be
polynomially reduced to a QBF, allowing for an exponentially
more succinct encoding than possible with SAT.

QBF
Applications

Compression

Planning

Model
Checking

Logic

Non-
Monotonic
Reasoning

Dependencies

Action &
Reaction

Reactive
Synthesis

Games

Equality

Equivalence
Checking

Function
Synthesis

Verification Artificial Intelligence both

Fig. 1: Application of QBF in different domains

In this paper, we survey areas in which QBF encodings
and technology for solving their problems are applied in prac-
tice. Figure 1 summarizes those areas. Although applications
originate from different fields—mainly artificial intelligence
and formal verification—they all use quantification for similar
purposes like for compressing a SAT encoding by avoiding
unrolling a transition relation, for capturing action and reaction
of a two-players game, for controlling logical models, or for
equivalence checking. Many of the presented QBF applications
form the basis of the benchmarks that are collected at

http://www.qbflib.org,

the benchmark library portal of the QBF community. We de-
liberately do not consider approaches that perform reductions
to or from QBFs to show hardness or membership of some
formalism.

II. PRELIMINARIES

Given a set of propositional variables V , the language
of propositional logic L(V) contains all elements of V , the
truth constants > (true) and ⊥ (false), and all well-formed
formulas built from elements of L(V) and Boolean connectives
¬,∨,∧,→,↔, ⊕, . . . A formula F ∈ L(V) is satisfiable iff there
is an assignment of the variables occurring in F to true and
false such that F evaluates to true under this assignment under
the standard semantics of the Boolean connectives. Otherwise,
F is unsatisfiable. If F is satisfiable for all possible variable
assignments, then F is valid. For example, (x ↔ y) is a
propositional formula that is satisfiable but not valid.

The language of quantified Boolean formulas Q(V) extends
L(V) by quantifiers over V as follows: (1) L(V) ⊆ Q(V), (2) if
Φ ∈ Q(V), then also QvΦ ∈ Q(V) where Q ∈ {∀, ∃}. Then Q
is the quantifier of v and Φ the scope of Qv. If all variables v

occurring in a QBF Ψ are in the scope of a quantifier, then Ψ
is called closed. We sometimes write consecutive quantifiers
of the same type as a set, i.e., Qx1 . . .QxnΦ is also written
as QXΦ where X = {x1, . . . xn}. We even omit the sets of
variables if we would like to capture the quantifier structure—
for example, ∃X∀Y∃Z has the structure ∃∀∃. Often QBFs have
the structure P.F where P = Qx1 . . .Qxn is a quantifier prefix
and F is a propositional formula, called matrix.

A QBF ∀xΦ is true iff Φ|x=> and Φ|x=⊥ are true. Similarly,
a QBF ∃xΦ is true iff Φ|x=> or Φ|x=⊥ is true. By Φ|x=t we
denote that x is replaced by t in Φ and the resulting formula is
simplified according to the standard semantics of the Boolean
connectives. For example, the QBF ∀x∃y(x ↔ y) is true,
while the QBF ∃y∀x(x ↔ y) is false. The semantics of QBFs
imposes tree shaped models and counter-models for witnessing
(un-)satisfiability. The highlighted part of the left assignment
tree is a model of ∀x∃y(x ↔ y), and the highlighted part of
the right assignment tree is a counter-model of ∃y∀x(x ↔ y).

∀x

∃y

>

⊥

⊥

>

⊥

∃y

⊥

⊥

>

>

>

∃y

∀x

>

⊥

⊥

>

⊥

∀x

⊥

⊥

>

>

>

Modern QBF solvers are not only able to decide if a QBF is
true or false, but can also return a model or a counter-model,
also called winning strategies. These are usually represented
as Boolean circuits, encoding a solution of the original appli-
cation problem.

III. QBFS FOR COMPRESSION

Given a system model described by a state vector s and
a transition relation, the reachability problem—i.e., checking
whether a goal state can be reached from an initial state s0 in
k (or less) steps—can be expressed as the satisfiability of the
propositional formula

I(s0) ∧ T(s0, s1) ∧ ... ∧ T(sk−1, sk) ∧ G(sk) (1)

where I(s0) denotes that s0 is an initial state, G(sk) denotes
that sk is a goal state, and T(s, s′) the transition relation, which
describes valid state transitions in the system. Example 1
presents how to symbolically encode the transition relation.

Example 1. Given a transition system below on the left.
On the right, we see the symbolic encoding of the transition
relation T . To encode three states, we need two bits (x, y).

s1start {¬x,¬y}

s2

{x, y}

s3

{¬x, y}

T ((x, y), (x′, y′)) =

((x′ ⇔ x ∨ y) ∧ (y′ ⇔ y)) ∨

((x′ ⇔ ¬y) ∧ (y′ ⇔ x ∨ ¬y))

I (x, y) = ¬x ∧ ¬y

G(x, y) = ¬x ∧ y

State s1 is encoded by the pair (⊥,⊥). A SAT solver
could be used to find the states which can be reached
in one step by solving the formula T((⊥,⊥), (x ′, y′)). One
satisfying assignment is (x ′, y′) = (>,>), i.e., state s2. If
I(x, y) = ¬x∧¬y encodes the initial state, and G(x, y) = ¬x∧y
encodes the goal state, then the propositional formula I∧T∧G
encodes the problem to determine whether it is possible to
reach the goal in one step. Obviously, this formula is
unsatisfiable. However, by including T twice, I ∧ T ∧ T ∧ G,
such a path can be found. �

The SAT encoding contains k copies of the transition
relation due to the fact that T must be “unrolled” k times
in order to check the reachability of the goal state in k steps.
QBFs can be used to encode the problem more compactly as

∃s0, ..., sk I(s0) ∧ G(sk)∧

∀x, x ′[∨k−1
i=0 (x = si) ∧ (x ′ = si+1)] → T(x, x ′)

(2)

Satisfiability of the formula shows the existence of a valid
path s0, ..., sk of length k, starting at some initial state s0 and
terminating in some goal state sk . The last conjunct in the
formula represents that for any two states x and x ′, if x and
x ′ are adjacent along the sequence, then they are consistent
with the transition relation. The compactness of the formula is
due to containing only a single copy of the transition relation.
This technique is used for encoding both automated planning
and verification tasks in a similar manner.

A. Planning

Planning in artificial intelligence is the process of finding
a sequence of actions that will achieve a predefined goal.
The idea of encoding a planning problem in propositional
logic (see [7] for a survey) was first presented in [8]. The
approach translates the search for a plan that reaches a goal
state in k steps into a propositional formula, whose satisfying
truth assignments corresponds to valid plans. The classical
planning problem with the restriction to plans that are of
polynomial length w.r.t. the input size belong to the complexity
class NP [9]. Generalizations of the classical planning problem
like conditional planning are beyond NP. The conditional
problem with the restriction of plans of polynomial length
w.r.t. the input size, is Σp2 -complete [10], suggesting the use
of QBFs as shown in Equation 2.

Conditional planning involves the presence of uncertainty
in the initial state and in the nondeterminism of effects of
actions. In planning without observability the current state of
the system can not be exactly observed during plan execution.

This kind of conditional planning is known as conformant
planning. Formally, a conformant planning problem instance
is a 4-tuple 〈S, I, A,G〉 where S is a set of states, I and G
are formulas over S, representing the sets of initial and goal
states. Finally, A is a set of nondeterministic actions 〈p, e〉
with precondition p, a propositional formula over S and effect
e over S defined recursively as: (1) f ⇒ l is an effect where f
is a formula over S and l is set of literals over S. (2) if e1 and
e2 are effects over S then e1 |e2 is also an effect over S. The
operator ‘|’ denotes the nondeterministic choice between e1
and e2. The effect e updates the current state and is executed
if and only if its precondition is true.

Rintanen formulates the QBF encoding for conformant
planning as follows [10]: there exists a plan (a sequence
of actions), such that, for all possible contingencies (several
initial states and nondeterministic transitions), there exists an
execution E that reaches a goal state (prefix structure ∃∀∃).
The existence of a plan is determined by

∃P∀C∃E
(
I0 →

(k−1∨
i=0
R(si, si+1, Ai, N i) ∧ Gk)) (3)

where P =
⋃k−1

i=0 Ai is the set of actions representing a plan and
C = S0 ∪

⋃k−1
i=0 N i denotes contingencies due to several initial

states and nondeterminism, where N i are auxiliary variables
used to encode nondeterminism and S0 the variables of the
initial states. Finally, E =

⋃k
i=0 si denotes the sequence of

states representing an execution. The plan is represented as
a sequence of actions, that make transitions R(si, si+1, Ai, N i)

based on executed effects of actions. The formulas I0 and Gk

encode initial and goal states. In follow-up work [11], Rintanen
presents an efficient QBF encoding of conformant planning
with one alternation of quantifiers having a ∀∃ structure.

Safe planning [12], an extension to generating plans, verifies
safety properties, i.e. the plan never contains a bad state. The
safety properties are defined in the quantified linear temporal
logic. These properties are critical in robotics applications.

Recent work [13] translates planning problems into QBF
which describe objects in terms of equivalence classes. The
encoding performs a partial grounding with the goal to produce
an exponentially smaller sized formula. It represents a single
object for each ungrounded type and uses universal variables to
create multiple contexts for this representation. The encoding
by [14] translates the planning instance into a sequence of
QBFs incrementally. The formula is then solved using an
incremental QBF solver with the help of preprocessing and
inprocessing techniques. The work by [15] provides more
compact QBF encodings for generating plans. The encoding
is based on an explanatory frame axiom and causal links.
It makes improvement over the previous tree-based QBF
encoding [16] of the planning problem.

B. Model Checking

Model checking [17] is an automatic verification technique
widely used in industry. The aim of model checking is the

verification finite-state system w.r.t. correctness properties ex-
pressed in a temporal logic like LTL. Originally, model check-
ing relied on an explicit-state representation of the system, but
due to the state-explosion problem symbolic approaches were
investigated. Considerable improvement was achieved by the
application of Binary Decision Diagrams, but the industrial
breakthrough came with the application of SAT encodings [18]
in bounded model checking (BMC).

In general, BMC verifies that a global invariant p holds
in all states of the system that are reachable with k steps.
For this purpose, Equation 1 is applied to determine all those
states in which ¬p holds by defining G(sk) respectively. If
the propositional formula is true, then the model returned by
the SAT solver gives the trace to the state in which p does
not hold. An overview on SAT-based model checking can be
found in [19].

Since the transition relation is usually huge, the increase
of k becomes a limiting factor in the application of BMC.
In order to avoid the explicit duplication of the transition
function, QBF encodings as presented in Equation 2 have
been suggested [20], [21], [22]. The diameter of the system
has been shown to be an upper bound on the length k of
error traces. Encodings into QBF for diameter calculations
have been proposed in [23] as well as in [21]. Besides
circuit verification, QBF-based model checking is applied to
the verification of incomplete circuits designs [24], where
universal quantification models unspecified behavior. For more
details refer to [25].

IV. QBFS FOR LOGIC

Quantifiers allow both extension as well as restriction of
propositional models. As example consider the encoding of
the unique-SAT problem [26]. Given a propositional formula
F over variables V , the following QBF is true if and only if
F has exactly one model:

∃v1 . . . vn ∀u1 . . . un

(
F ∧

(
F[v1/u1, . . . vn/un] →

((v1 ↔ u1) ∧ . . . ∧ (vn ↔ un))
)) (4)

If this formula is true, then there is a truth assignment σ
to variables v1, . . . , vn such that (1) F is true under this
assignment (left part of the conjunction), and (2) for any
assignment τ, either τ = σ or F is false under τ (right
part of the conjunction). Similar ideas are used for finding
models of non-monotonic formalisms. Further, QBFs are used
for supporting the reasoning of more expressive logic as well.

A. Non-Monotonic Propositional Reasoning

In a non-monotonic setting, the addition of new knowledge
can require to retract previously drawn conclusions. Various
non-monotonic reasoning tasks have been translated to QBFs.
For instance [27] contains QBF encodings for Abduction,
Autoepistemic Logic, Disjunctive Logic Programs, Circum-
scription, and Default Logic. All of them belong to the second
level of the polynomial hierarchy.

a) Abduction: Given a propositional theory T over vari-
ables V , abductive reasoning starts with a set of hypotheses
H ⊆ V and infers the most likely explanation E ⊆ H for
a statement p ∈ V . Explanation E gives a plausible, most-
likely justification of p such that E is consistent with T and p
can be classically inferred from T ∪E . Egly et al. [27] encode
abductive explanation of p given hypotheses H = {h1, . . . , hn}
and fresh variables G = {g1, . . . gn} by the QBF

∃G
((∃V(T ∧ (G→ H))

)
∧

(∀V((T ∧ (G→ H)) → p)
))

where G → H is defined as
∧n

i=0(gi → hi). If a variable gi
is true, then hi ∈ E , otherwise hi < E . The left part of the
conjunction of the QBF ensures that T and E are consistent,
while the right part ensures that p is logically implied. Egly
et al. [27] also extend this encoding to solve the relevance
problem, i.e., to decide for some hypothesis h if it belongs to
some explanation E . Recent work [28] revisits QBF encodings
of abduction using QMaxSAT (see Sec. IV-B).

b) Autoepistemic Logic: The language of autoepistemic
logic [29] extends propositional logic by a modal operator �.
Intuitively, the modal atom �F means that the propositional
formula F is known. For example, the formula ¬�F → ¬F
states that if F is not known to be true, it is assumed to be
false, i.e., the formula expresses negation by failure. Given an
theory T containing modal atoms M , a stable expansion exists
if there is a consistent set E ⊆ M ∪ {¬�F | �F ∈ M} such
that T ∪ M |= �F for �F ∈ E and T ∪ M 6 |= �F for �F < E .
For translating the search of a stable extension into a QBF
decision problem [27], these conditions have to be included
for all modal atoms in M . In the translation, the modal atoms
�F ∈ M are viewed as propositional variables M ′ which are
existentially quantified in the outermost quantifier block. Let
v ∈ M ′ be the variable that stands for �F ∈ M . If the QBF
solver finds a solution in which v is true, then �F ∈ E ,
otherwise ¬�F ∈ E .

c) Disjunctive Programs: A disjunctive logic program
Π over variables V is given as a set of rules of the form
“H → P, N” where H is a disjunction, and P a conjunction
of variables, and N a conjunction of negated variables. An
interpretation I ⊆ V is a stable model of Π if it is minimal
model of ΠI , which is obtained from Π by (1) removing
rules with negated variables in I and (2) deleting all negated
variables. Existence of a stable model of Π is encoded as QBF
with two conditions [27]. First, program Π is interpreted as
propositional formula and required to have a model. Second,
such a model has to be minimal w.r.t. ΠI . Variants for skeptical
and brave reasoning are evaluated in [30], [31].

d) Circumscription: McCarthy [32] introduced circum-
scription to capture common sense reasoning that uses conjec-
tures to draw certain conclusions. The propositional variant of
circumscription is naturally formulated as a QBF [27]. Given
a theory T over a set of variables V , we define

CIRC(T) := T ∧ ∀V ′((T[V/V ′] ∧ (V ′ ≤ V)) → (V ≤ V ′))

stating that only minimal models of T should be considered.
Minimality refers to the number of variables set to true and is
obtained via the universally quantified variables V ′: if T has a
model σ, then there may not be a model σ′ of T[V/V ′] such
that σ′ has variables set to false which are set to true in σ.
A circumscription of T is a formula φ over variables V for
which the QBF ∀V(CIRC(T) → V) is true.

e) Default Logic: A default theory T = (W,∆) distin-
guishes two kinds of information about the world: a trusty
background theory W and defensible rules ∆ [33]. Such rules
allow the inferences of new facts under the current knowledge
base, but may prohibit similar inferences under new, maybe
more accurate knowledge. The decision problem of default
logic asks if for a given default theory T there exists a so-called
extension, a consistent set containing the background theory
and all derivable facts such that no additional information can
be derived. Egly et al. [27] presented two QBF encodings of
this decision problem. Based on these encodings, they also
implemented brave and cautious inference in QBF. While the
former decides if a given formula φ holds in some extension,
the latter decides if φ holds in all extensions.

f) Abstract Argumentation: Furthermore, several encod-
ings in the context of abstract argumentation have been pre-
sented. An argumentation framework F = (A, R) consists of
a finite set of arguments A and attacks between arguments
R ⊆ A × A [34]. A set S ⊆ A is conflict free iff there are no
a, b ∈ S with (a, b) ∈ R. Depending on the concrete setting,
reasoning in argumentation frameworks can result in decision
problems up to the forth level of the polynomial hierarchy. A
survey on different approaches to solve reasoning problems in
abstract argumentation can be found in [35]. To the best of
our knowledge Egly and Woltran were the first to use QBF
encodings for reasoning in argumentation frameworks [36].
Arieli and Caminada presented a QBF-based formalization
of abstract argumentation semantics [37]. QBF encodings of
acceptance problems of abstract dialectical frameworks found
at the third level of the polynomial hierarchy are presented
in [38].

B. Dependencies

Other reasoning problems also make use of QBF encodings.
Cooksey et al. express reasoning on relaxed memory models
in second order logic for which they implemented a solver
that internally relies on QBF technology [39]. Wimmer et
al. presented an approach to solve DQBFs, a NEXPTIME-
complete formalism, by solving equisatisfiable QBFs [40].
In contrast to QBF, dependencies between existential and
universal variables can be expressed in DQBF, in the form
of dependency sets. To solve a DQBF, dependencies are
eliminated carefully by removing universal variables from
single dependency sets at the price of generating copies of the
involved existential variables. The approach is implemented
in the DQBF solver HQS which won the DQBF Track of
QBFEval 2018.

Another area in which QBF solvers are applied [41], is
QMaxSAT, the problem of optimizing a cost function that

refers to a quantified set of constraints. In QMaxSAT there
are soft clausal constraints and the solver has to find the
largest subset of soft constraints such that the remaining QBF
is true. For this purpose a QBF solver is required that is able
to produce unsatisfiable cores.

Techniques involving QBFs have also been employed as
back-end technology for tasks in complex verification frame-
works. For instance, in symbolic software model checking,
QBF encodings (and related approaches) have been used for
detecting fixpoints [42], [43].

V. QBFS FOR MODELING ACTION AND REACTION

The evaluation of QBFs can also be seen as a two-player
game between the ∀-player and the ∃-player. Each player owns
all the variables of the respective quantification. Given a QBF
of the form Φ = Qx1 . . .Qxnφ with φ being a propositional
formula, the matrix of Φ, the ∀-player has the goal to make
the matrix true while the ∃-player has the goal to make the
matrix false. The moves in the game are the assignments of
the variables: a variable xi may only be assigned by its owner
and only if all variables xj with j < i have been assigned. The
QBF Φ is true if and only if for all moves of the ∀-player there
is a move of the ∃-player such that the matrix is true, i.e., there
exists a winning strategy. This two-player game semantics is
exploited for reactive synthesis. The QBF solver is used to
search for a safe implementation of a system controller such
that for all moves by the adversarial environment, there exist
moves by the controlled system such that during execution the
system does not reach an unsafe state. This results in a QBF
with two quantifier alternations.

A. Reactive Synthesis

The aim of synthesis is to derive the implementation of
a system automatically from a formal specification. Given
a finite-state transition system (S, I,U,C,T) where S is a
set of states, I ⊆ S are initial states, U are uncontrollable
(adversarial) input variables, C are controllable input variables,
and T is a transition relation of the form S × 2U × 2C × S. If
(s, u, c, s′) ∈ T then then it is possible to transition from state
s to s′ under inputs u and c. Furthermore, let P ⊆ S be a set
of states, described implicitly by a propositional or a linear
temporal logic (LTL) formula, representing the specification.
For example, a safety specification states that certain “bad
things” like a crash do not happen. The challenge is now to
synthesize a function which, for any state s that is reachable
from an initial state and for any input u of 2U , to set the
controlled inputs c of 2C such that (s, u, c, s′) ∈ T and s′ ∈ P,
i.e., s′ conforms to the specification.

Again QBFs can be used to encode the existence of a
winning region, that is a set of safe states such that for any
input u, there exists an input c leading back to a state in
the winning region. The algorithm for calculating the winning
region presented by Bloem et al. [44] first includes all safe
states P in an over-approximation of the winning region.
Then a QBF solver is consulted to find a state from which a
transition to an unsafe state (in one step) can not be avoided.

That state is excluded from the previous winning region.
Checking spurious states is repeated until fixpoint or an initial
state has to be removed, indicating that the specification is not
realizable. This approach repeatedly solves QBFs with prefix
∃∀∃. In earlier work [45], in each iteration the previously
constructed QBF is extended by a QBF expressing that an
additional step does not lead outside of the winning region.
This not only duplicates the transition relation but also requires
about 2n quantifier alternations.

Furthermore, debugging techniques based on QBF have
been proposed [46], [22] for VLSI design. In [47] the authors
show the usage of QBF encodings inside a framework aiming
at debugging complex systems, in order to determine fault
candidates that can fix all faulty behavior with respect to a
functional specification. Sequential Automated Test Pattern
Generation (ATPG) for circuit verification using QBFs has
been used for the first time in [22] and further benefits of using
QBFs for ATPG and circuit design were recently reported
in [48].

In very recent work [49], the given LTL specification is
first translated to a universal co-Büchi automaton B, that
is a labeled transition system which describes a language
consisting of words of infinite length. A word w is accepted
iff for all runs the states that are visited infinitely often
are accepting states. To synthesize a transition system T of
bounded size n such that every word of T is accepted by B, the
product of T and B may contain only paths that have a finite
number of non-accepting states. This property is ensured by
annotating the states of the product automaton such that every
initial state is annotated by a number. Furthermore, the non-
accepting states need to be labeled by a number that is strictly
greater than the labels of its source states. The QBF encoding
asks if there exist valid annotations and these annotations are
encoded as bit-vectors.

B. Games

In adversarial games, two players compete to reach a
destination position, at the same time preventing the opponent
from reaching her destination. Determining a plan for the
first player, such that she can win the game by reaching her
destination irrespective of the moves by the other player is
encoded in [50] as a QBF

∃X(∃VGX ∧ ∀Y¬GY) (5)

where GX and GY are goal formulas of player X and Y in con-
junctive normal form. The truth assignment to X corresponds
to a plan for the first player and the truth assignment to Y to
a plan for the second.

The work of [51] addresses unexpected computational diffi-
culties while modeling adversarial games as a QBF satisfaction
problem. The formulation takes the legal actions of each
player into the considerations while encoding the problem.
This reduces the exploration of the combinatorial space by
the QBF solver. The idea is to construct a QBF formula such
that a contradiction is derived as soon as an illegal action is
performed.

Diptarama presented an encoding of generalized Tic-Tac-
Toe [52]. Two players alternately put q stones on a grid
board until one achieves a given polyomino. They generated
formulas with up to 15 quantifier alternations. The encoding is
based on the approach of Gent and Rowley who introduced the
Connect-X problem on a w × h grid. For the Connect-4 prob-
lem, they produced a QBF with 21 quantifier alternations [53].

VI. QBFS FOR EQUALITY

Universal quantification also allows to ensure that two
circuits or even programs have the same behavior. If one of
them is not fully specified, the QBF solver is used to fill the
“holes” and synthesize or optimize Boolean functions.

A. Equivalence Checking

For logic programs under the answer-set semantics, several
notions of equivalence between programs have been sug-
gested [54] including ordinary, strong, uniform, relativised
equivalence as well as program comparison under projected
answer sets. In [55] a tool is presented that compiles all
these correspondence problems to QBFs. This tool has been
used for automatically assessing the solutions to programming
exercises of a university course on logic programming [56].

In [57] a QBF encoding as been used for the verification
of LAN security policy specifications; they encode in QBF
the problem to check if the implementation of a security
policy in an enterprise LAN satisfies a given security policy
model. In [58] the authors formalized in QBF the problem
to check the conformance of Software Product Lines between
the requirements and the design level. In [59] QBF is applied
to property verification in the design of hardware power
management modules.

B. Synthesis of Boolean Functions

Given a Boolean function f (V) over variables V , the task of
bi-decomposition consists of splitting f (V) into f1(V1,V3) and
f2(V2,V3) such that V = V1 ∪ V2 ∪ V3 and f (V) = f1(V1,V3) ◦
f2(V2,V3), ◦ ∈ {∨,∧, ⊕}. As shown in [60] this task can be
achieved by a QBF encoding that, on the one hand ensures
that neither V1 nor V2 is empty, that the two sets are disjoint
and in addition balanced. The resulting QBF has the prefix
structure ∃∀.

Wille et al. presented a QBF encoding for the synthesis
of a Boolean function from reversible gates [61]. A reversible
gate maps each possible input vector to a unique output vector
realizing a bijective function. The presented approach realizes
a given function by a cascade of reversible gates. Therefore,
a QBF with prefix ∃X∀Y has to be solved. The variables of
set X determine the inclusion and exclusion of the gates that
are available for synthesizing the given function, while the Y
variables ensure that the synthesized function and the given
function are equivalent.

VII. CONCLUSION

In the last 20 years we have seen many applications of
QBF solving in vastly diverse application domains of artificial

intelligence and beyond. The historical and particularly recent
advancement of the state of the art in QBF is quite remarkable,
as proven by the results of the annual QBF competition
QBFEVAL1 [3]. We believe that QBF is becoming mature
enough to be become a killer app for many tasks that require
more powerful reasoning than SAT.

Our survey shows that QBF technology has spread among
very different research communities who have to solve similar
problems in different contexts. The majority of problems for
which QBFs have been used are located in the lower levels of
the polynomial hierarchy indicating a high demand for solvers
specialized on that specific quantifier structure.

ACKNOWLEDGMENTS

This work has been supported by the Austrian Science Fund
(FWF) under projects W1255-N23 and S11408-N23 and the
LIT AI Lab funded by the State of Upper Austria.

REFERENCES

[1] O. Beyersdorff, M. Janota, F. Lonsing, and M. Seidl, “Proof Systems for
Practical QBF Solving.” Submitted for the 2. Edition of the Handbook
of Satisfiablity, to appear.

[2] E. Giunchiglia, P. Marin, and M. Narizzano, “Reasoning with quanti-
fied boolean formulas,” in Handbook of Satisfiability, ser. Frontiers in
Artificial Intelligence and Applications. IOS Press, 2009, vol. 185, pp.
761–780.

[3] L. Pulina and M. Seidl, “The 2016 and 2017 QBF Solvers Evaluations
(QBFEVAL’16 and QBFEVAL’17),” Artif. Intell., vol. 274, pp. 224–248,
2019.

[4] A. Biere, M. Heule, H. van Maaren, and T. Walsh, Eds., Handbook of
Satisfiability, ser. Frontiers in Artificial Intelligence and Applications,
vol. 185. IOS Press, 2009.

[5] D. E. Knuth, The Art of Computer Programming, Volume 4, Fascicle 6:
Satisfiability. Addison-Wesley Professional, 2015.

[6] L. J. Stockmeyer and A. R. Meyer, “Word problems requiring exponen-
tial time (preliminary report),” in ToC. ACM, 1973, pp. 1–9.

[7] J. Rintanen, “Planning and SAT,” in Handbook of Satisfiability, ser.
Frontiers in Artificial Intelligence and Applications. IOS Press, 2009,
vol. 185, pp. 483–504.

[8] H. A. Kautz and B. Selman, “Planning as satisfiability,” in ECAI, 1992,
pp. 359–363.

[9] T. Bylander, “The computational complexity of propositional STRIPS
planning,” Artif. Intell., vol. 69, no. 1-2, pp. 165–204, 1994.

[10] J. Rintanen, “Constructing conditional plans by a theorem-prover,” J.
Artif. Intell. Res., vol. 10, pp. 323–352, 1999.

[11] ——, “Asymptotically optimal encodings of conformant planning in
QBF,” in AAAI. AAAI Press, 2007, pp. 1045–1050.

[12] M. De Luca, E. Giunchiglia, M. Narizzano, and A. Tacchella, ““Safe
Planning” as a QBF evaluation problem,” in Second RoboCare Work-
shop, 2005, p. 45.

[13] M. Cashmore, M. Fox, and E. Giunchiglia, “Partially grounded planning
as quantified boolean formula,” in ICAPS. AAAI, 2013.

[14] U. Egly, M. Kronegger, F. Lonsing, and A. Pfandler, “Conformant
planning as a case study of incremental QBF solving,” Ann. Math. Artif.
Intell., vol. 80, no. 1, pp. 21–45, 2017.

[15] O. Gasquet, D. Longin, F. Maris, P. Régnier, and M. Valais, “Compact
tree encodings for planning as QBF,” Inteligencia Artificial, vol. 21,
no. 62, pp. 103–114, 2018.

[16] M. Cashmore, M. Fox, and E. Giunchiglia, “Planning as quantified
boolean formula,” in ECAI, ser. Frontiers in Artificial Intelligence and
Applications, vol. 242. IOS Press, 2012, pp. 217–222.

[17] E. M. Clarke, T. A. Henzinger, H. Veith, and R. Bloem, Eds., Handbook
of Model Checking. Springer, 2018.

[18] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu, “Symbolic model
checking without bdds,” in TACAS, ser. LNCS, vol. 1579. Springer,
1999, pp. 193–207.

1http://www.qbfeval.org

[19] A. Biere and D. Kröning, “Sat-based model checking,” in Handbook of
Model Checking. Springer, 2018, pp. 277–303.

[20] N. Dershowitz, Z. Hanna, and J. Katz, “Bounded model checking with
QBF,” in SAT, ser. LNCS, vol. 3569. Springer, 2005, pp. 408–414.

[21] T. Jussila and A. Biere, “Compressing BMC encodings with QBF,”
Electr. Notes Theor. Comput. Sci., vol. 174, no. 3, pp. 45–56, 2007.

[22] H. Mangassarian, A. G. Veneris, and M. Benedetti, “Robust QBF
encodings for sequential circuits with applications to verification, debug,
and test,” IEEE Trans. Computers, vol. 59, no. 7, pp. 981–994, 2010.

[23] M. N. Mneimneh and K. A. Sakallah, “Computing vertex eccentricity
in exponentially large graphs: QBF formulation and solution,” in SAT,
ser. LNCS, vol. 2919. Springer, 2003, pp. 411–425.

[24] M. Herbstritt and B. Becker, “On combining 01x-logic and QBF,” in
EUROCAST, ser. LNCS, vol. 4739. Springer, 2007, pp. 531–538.

[25] M. Benedetti and H. Mangassarian, “Qbf-based formal verification:
Experience and perspectives,” JSAT, vol. 5, no. 1-4, pp. 133–191, 2008.

[26] H. K. Büning and T. Lettmann, “Quantifizierte formeln,” in Aussagen-
logik: Deduktion und Algorithmen. Springer, 1994, pp. 361–408.

[27] U. Egly, T. Eiter, H. Tompits, and S. Woltran, “Solving advanced rea-
soning tasks using quantified boolean formulas,” in AAAI/IAAI. AAAI
Press / The MIT Press, 2000, pp. 417–422.

[28] A. Ignatiev, A. Morgado, and J. Marques-Silva, “Propositional abduction
with implicit hitting sets,” in ECAI, ser. Frontiers in Artificial Intelli-
gence and Applications, vol. 285. IOS Press, 2016, pp. 1327–1335.

[29] R. C. Moore, “Semantical considerations on nonmonotonic logic,” Artif.
Intell., vol. 25, no. 1, pp. 75–94, 1985.

[30] U. Egly, T. Eiter, V. Klotz, H. Tompits, and S. Woltran, “Computing
stable models with quantified boolean formulas: Some experimental
results,” in Answer Set Programming, 2001.

[31] ——, “Experimental evaluation of the disjunctive logic programming
module of the system QUIP,” in WLP, 2000, pp. 113–122.

[32] J. McCarthy, “Circumscription—a form of non-monotonic reasoning,”
Artificial intelligence, vol. 13, no. 1-2, pp. 27–39, 1980.

[33] R. Reiter, “A logic for default reasoning,” Artif. Intell., vol. 13, no. 1-2,
pp. 81–132, 1980.

[34] D. Poole, “Explanation and prediction: an architecture for default and
abductive reasoning,” Computational Intelligence, vol. 5, no. 2, pp. 97–
110, 1989.

[35] G. Charwat, W. Dvorák, S. A. Gaggl, J. P. Wallner, and S. Woltran,
“Methods for solving reasoning problems in abstract argumentation - A
survey,” Artif. Intell., vol. 220, pp. 28–63, 2015.

[36] U. Egly and S. Woltran, “Reasoning in argumentation frameworks using
quantified boolean formulas,” in COMMA, ser. Frontiers in Artificial
Intelligence and Applications, vol. 144. IOS Press, 2006, pp. 133–144.

[37] O. Arieli and M. W. A. Caminada, “A qbf-based formalization of abstract
argumentation semantics,” J. Applied Logic, vol. 11, no. 2, pp. 229–252,
2013.

[38] M. Diller, J. P. Wallner, and S. Woltran, “Reasoning in abstract di-
alectical frameworks using quantified boolean formulas,” Argument &
Computation, vol. 6, no. 2, pp. 149–177, 2015.

[39] S. Cooksey, S. Harris, M. Batty, R. Grigore, and M. Janota, “Pridemm: A
solver for relaxed memory models,” CoRR, vol. abs/1901.00428, 2019.

[40] R. Wimmer, A. Karrenbauer, R. Becker, C. Scholl, and B. Becker, “From
DQBF to QBF by dependency elimination,” in SAT, ser. LNCS, vol.
10491. Springer, 2017, pp. 326–343.

[41] A. Ignatiev, M. Janota, and J. Marques-Silva, “Quantified maximum
satisfiability,” Constraints, vol. 21, no. 2, pp. 277–302, 2016.

[42] B. Cook, D. Kroening, and N. Sharygina, “Symbolic model checking
for asynchronous boolean programs,” in SPIN, ser. LNCS, vol. 3639.
Springer, 2005, pp. 75–90.

[43] ——, “Verification of boolean programs with unbounded thread cre-
ation,” Theor. Comput. Sci., vol. 388, no. 1-3, pp. 227–242, 2007.

[44] R. Bloem, R. Könighofer, and M. Seidl, “SAT-Based Synthesis Methods
for Safety Specs,” in VMCAI, ser. LNCS, vol. 8318. Springer, 2014,
pp. 1–20.

[45] S. Staber and R. Bloem, “Fault localization and correction with QBF,”
in SAT, ser. LNCS, vol. 4501. Springer, 2007, pp. 355–368.

[46] M. F. Ali, S. Safarpour, A. G. Veneris, M. S. Abadir, and R. Drechsler,
“Post-verification debugging of hierarchical designs,” in ICCAD. IEEE
Computer Society, 2005, pp. 871–876.

[47] A. Sülflow, G. Fey, and R. Drechsler, “Using QBF to increase accuracy
of sat-based debugging,” in ISCAS. IEEE, 2010, pp. 641–644.

[48] S. Hillebrecht, M. A. Kochte, D. Erb, H. Wunderlich, and B. Becker,
“Accurate QBF-based test pattern generation in presence of unknown
values,” in DATE. EDA Consortium San Jose, CA, USA / ACM DL,
2013, pp. 436–441.

[49] P. Faymonville, B. Finkbeiner, M. N. Rabe, and L. Tentrup, “Encodings
of bounded synthesis,” in TACAS (1), ser. LNCS, vol. 10205, 2017, pp.
354–370.

[50] C. Otwell, A. Remshagen, and K. Truemper, “An effective QBF solver
for planning problems,” in MSV/AMCS. CSREA Press, 2004, pp. 311–
316.

[51] C. Ansótegui, C. P. Gomes, and B. Selman, “The achilles’ heel of QBF,”
in AAAI. AAAI Press / The MIT Press, 2005, pp. 275–281.

[52] Diptarama, R. Yoshinaka, and A. Shinohara, “QBF encoding of general-
ized tic-tac-toe,” in QBF@SAT, ser. CEUR Workshop Proceedings, vol.
1719. CEUR-WS.org, 2016, pp. 14–26.

[53] I. P. Gent and A. Rowley, “Encoding connect-4 using quantified boolean
formulae,” 2nd Intl. Work. Modelling and Reform. CSP, pp. 78–93, 2003.

[54] T. Eiter, H. Tompits, and S. Woltran, “On solution correspondences in
answer-set programming,” in IJCAI. Professional Book Center, 2005,
pp. 97–102.

[55] J. Oetsch, M. Seidl, H. Tompits, and S. Woltran, “cct: A correspondence-
checking tool for logic programs under the answer-set semantics,” in
JELIA, ser. LNCS, vol. 4160. Springer, 2006, pp. 502–505.

[56] ——, “cct on stage: Generalised uniform equivalence testing for veri-
fying student assignment solutions,” in LPNMR, ser. LNCS, vol. 5753.
Springer, 2009, pp. 382–395.

[57] P. Bera, P. Dasgupta, and S. Ghosh, “A verification framework for
analyzing security implementations in an enterprise lan,” in 2009 IEEE
International Advance Computing Conference. IEEE, 2009, pp. 1008–
1015.

[58] J. Millo, S. Ramesh, S. N. Krishna, and G. K. Narwane, “Compositional
verification of software product lines,” in IFM, ser. LNCS, vol. 7940.
Springer, 2013, pp. 109–123.

[59] T. Heyman, D. Smith, Y. Mahajan, L. Leong, and H. Abu-Haimed,
“Dominant Controllability Check Using QBF-Solver and Netlist Op-
timizer,” in SAT, ser. LNCS, vol. 8561. Springer, 2014, pp. 227–242.

[60] H. Chen, M. Janota, and J. Marques-Silva, “Qbf-based boolean function
bi-decomposition,” in DATE. IEEE, 2012, pp. 816–819.

[61] R. Wille, H. M. Le, G. W. Dueck, and D. Große, “Quantified synthesis
of reversible logic,” in DATE. ACM, 2008, pp. 1015–1020.

